Go Back   2023 2024 Courses.Ind.In > Main Category > Main Forum

  #1  
Old December 2nd, 2015, 12:53 PM
Super Moderator
 
Join Date: Apr 2013
Default NERIST Sample Paper Download

Discuss about nerist sample paper download here. Welcome to Courses.ind.in and this page is for nerist sample paper download discussion. If you are looking for information on nerist sample paper download then ask your question is as much details as possible in the “Reply” box provided below. The more detailed your question will be, the more easy will it be for our experts to answers your query. And if you have any updated or latest information on nerist sample paper download, then please share you knowledge with our experts in the “Reply” box below. Your reply will be published here and your knowledge can help many people. Thanks for stopping by at Courses.ind.in. Please visit again.
Reply With Quote Quick reply to this message
  #2  
Old April 12th, 2018, 09:28 AM
Unregistered
Guest
 
Default Re: nerist sample paper download

Hi buddy I have come to obtain NERIST Entrance Exam sample question paper so will you plz let me know from where I can do download it ??
Reply With Quote Quick reply to this message
  #3  
Old April 12th, 2018, 09:35 AM
Super Moderator
 
Join Date: Aug 2012
Default Re: nerist sample paper download

As you want here I am giving below NERIST Entrance Exam sample paper :

NERIST Entrance Exam sample paper






Syllabus
Syllabus NEE II


Physics


Physical World and Measurement: Physics scope and excitement, physics, technology and society, Forces in nature, Conservation laws, Examples of Gravitational, electromagnetic and Nuclear forces from daily-life experiences (qualitative only). Need for measurement, Units of measurement, systems of units, SI units, Fundamental and derived units, length, mass and time measurement, Accuracy and precision of measuring instruments. Errors in measurement, significant figures. Dimensions of Physical quantities. Dimensional analysis and application. Elementary concept of differentiation and integration for describing motion.

Kinematics: Uniform motion in a straight line, Position time graph, speed and velocity, Uniform and non-uniform motion, average speed and instantaneous velocity. Uniformly accelerated motion, velocity time graph, and relations for uniformly accelerated motion (Graphical method). Scalar and vector quantities, position and displacement vectors, Equality of vectors, multiplications of vectors by real number, Addition and subtraction of vectors, Unit vector, Resolution of a vector in a plane. Rectangular components, Scalar and Vector products of two vectors, vectors in 3 dimensions (elementary idea only) Motion in a plane, Uniform velocity and uniform acceleration, projectile motion, uniform circular motion.

Laws of Motion: Force and inertia, Newton’s first law of motion, Momentum, Newton’s second law of motion, Impulse , Newton’s third law of motion, conservation law of linear momentum and its application, Equilibrium of concurrent forces, Friction, static and dynamic friction, laws of friction, rolling and sliding friction, lubrication. Dynamics of uniform circular motion, centripetal force, Vehicle on a level road, Vehicle on a banked road. Inertial and non-inertial frames (Idea only).

Work, Energy and Power: Work done by a constant force and variable force, kinetic energy, Potential energy, work-energy theorem, power. Potential energy of a spring, conservative and neoconservative forces, conservation of mechanical energy (kinetic and potential energies), collisions, Elastic and inelastic collision in 1 dimension and 2 dimensions. Different forms of Energies in nature, Mass-Energy equivalence (Qualitative Idea).

Motion of system of particles and Rigid Body: Centre of mass of two particle system, generalization to N-particles, momentum conservation and center of mass motion, Application to familiar systems, Centre of mass of a rigid body.

Gravitation: The universal law of Gravitation, Gravitational constant, Acceleration due to gravity and its variation with altitude, latitude, depth and rotation of earth, Mass of the earth, Gravitational potential energy near the surface of earth, gravitational potential, Escape Velocity. Orbital Velocity of a Satellite. Weightlessness, Motion of Satellites, geostationary and polar satellites, Kepler’s laws of planetary motion. Proof of second and third law, (for circular orbit) Inertial and gravitational mass. Moment of force, torque, angular momentum, Physical meaning of angular momentum, conservation of angular momentum with some examples (Planetary motion). Equilibrium of rigid bodies, rigid body rotation and equation of rotational motion. Moment of Inertia & its physical significance, radius of gyration, parallel and perpendicular axis theorem (statement only) M.I. of circular ring, disc, 35 cylinder and thin straight rod. Rolling of a cylinder without slipping. Examples of binary system in nature (Binary Stars, Earth-moon system, diatomic molecules).

Mechanics of Solids and Fluids: States of matter, inter atomic and inter molecular forces. a) Solids: Elastic behavior, stress-strain relationship, Hooke’s law, Young’s modulus, bulk modulus, modulus of rigidity & some practical examples. b) Fluids: Pressure due to fluid column, Pascal’s law and its application (hydraulic lift and brakes) Effect of gravity on fluid pressure. Buoyancy, flotation, and Archimedes principle, Viscosity, Stoke’s law, terminal velocity, stream line flow, turbulent flow. Reynold’s number. Bernoulli’s theorem and its applications. c) Surface energy and surface tension, angle of contact, application of surface tension, excess pressure inside a liquid drop and bubble, capillary rise and action of detergent.

Heat and Thermodynamics: Kinetic theory of gases-assumptions, concept of pressure, kinetic energy and temperature, r.m.s. speed, degree of freedom, law of equipartition of energy (statement only), mean free path and Avogadro’s number. Thermal equilibrium and temperature (Zeroth law of thermodynamics) Heat, work and internal energy, thermal expansion-thermometry. First law of thermodynamics, specific heat, specific heat of gas at constant volume and pressure (mono atomic, diatomic gases). Specific heat of solids (Dulong and Petits’ law). Thermodynamic variables and equation of state, phase diagram; ideal gas equation, isothermal and adiabatic processes, reversible and irreversible processes Carnot’s engine and refrigerator or heat pump. Efficiency and co-efficient of performance, second law of thermodynamics (statement only); and some practical applications. Transfer of heat-Conduction, convection and radiation. Thermal conductivity of solids, Black body radiation, Kirchhoff’s laws, Wein’s displacement law, Stefan’s law (statement only) Newton’s law of cooling, solar constant and determination of surface temperature of sun using Stefan’s law.

Oscillations: Periodic motion- period, frequency, displacement as a function of time and periodic functions. Simple Harmonic Motion (SHM) and its equation, Expression for velocity and acceleration of SHM. Oscillations of a spring, restoring force and force constant, Energy in SHM-Kinetic and potential energies, Simple pendulum- derivation of its time period, Free, forced and damped oscillations (qualitative idea only), resonance, coupled oscillations.

Waves: Longitudinal and transverse wave, wave motion, Displacement relation for progressive wave. Principle of superposition of waves, Reflection of waves, Standing waves in strings and pipes, fundamental and higher harmonics, Beats, Doppler’s effect, speed of sound in media.

Electrostatics: Frictional electricity, charges and their conservation, coulomb’s law, Forces between two point electric charges. Forces between multiple electric charges; Superposition principle and continuous charge distribution. Electric fields and its physical significance, electric field due to a point charge, electric field lines, electric field due to a dipole and behavior of a dipole in a uniform electric field. Electric potential-physical meaning, potential difference, electric potential due to a point charge, a dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges and of electric dipole in an electrostatic field. Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly changed infinite plane sheet and uniformly charged thin spherical shell. Conductors and insulators, presence of free charges and bound charges inside a conductor, Dielectrics and electric polarization, general concept of a capacitor and capacitance : Combination of capacitors in series and parallel, energy stored in a capacitor, capacitance of a parallel plate capacitor with and without dielectric medium between the plates; Van de Graff generator.

Current Electricity: Electric current, flow of electric charge in a metallic conductor, drift velocity and mobility and their relation with electric current, ohm’s law, electrical resistance, V-I characteristics, Exception, of ohm’s law (Non-linear V-I characteristics), Electrical resistivity and conductivity, classification of materials in terms of conductivity; Superconductivity (elementary idea); Carbon resistors, colour code for carbon resistors, combination of resistances- series and parallel. Temperature dependence of resistance, Internal resistance of a cell, Potential difference and e.m.f. of a cell, combinations of cells in series and in parallel. Kirchhoff’s laws - illustration by simple application. Wheatstone bridge and its Applications for temperature Measurements. Metre bridge- 36 special case of whetstone’s bridge. Potentiometer- principle and application to measure potential difference, and for comparing e.m.f. of two cells. Electric power, thermal effects of current and Joule’s law, Chemical Effects of Current: Faraday’s laws of electrolysis; Electrochemical Cells- Primary (Voltaic Lechlanche, Dry Daniel,) and secondary- rechargeable cells (lead accumulators, alkali accumulators) solid state cells. Thermoelectricity- origin, elementary idea of See beck effect; Thermocouple. Thermoe.m.f. neutral and inversion temperatures. Measurement of temperature using a thermocouple.
Attached Files
File Type: pdf NERIST Entrance Exam sample paper.pdf (856.6 KB, 0 views)
File Type: doc Syllabus NEE II.doc (47.0 KB, 0 views)
Reply With Quote Quick reply to this message
Reply
Similar Threads
Thread
jexpo sample paper download
NERIST Admit Card Download
scra sample paper download pdf
scra sample paper pdf download
NEET Exam Sample Paper Download
SCRA Sample Paper Download
Indian Army Clerk Sample Paper Download
NERIST Application Form Download
NERIST Admit Download
AFMC Sample Paper Download
MP PET Sample Paper Download
BCECE Sample Paper Download
Sample Paper Of UPES Met
Nerist Old Question Paper
AIIMS Sample Paper
Punjab JET Sample Paper
how to download nerist admit card
sample paper of bhu uet
CBSE Sample Paper 9th
TET Sample Paper Free Download


Quick Reply
Your Username: Click here to log in

Message:
Options



All times are GMT +5.5. The time now is 04:23 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Search Engine Friendly URLs by vBSEO 3.6.1
vBulletin Optimisation provided by vB Optimise (Lite) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.