PHYSICS FORMULAS

Density is mass per unit volume Density = mass / volume	```velocity = displacement / time```
Force $=$ rate of change of momentum	```Momentum = mass . velocity```
Power is rate of work done Power = work / time Unit of power is watt Potential energy (P) $\mathrm{PE}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~h}$ $m=m a s s$ $g=$ acceleration due to gravity (9.81m/s ${ }^{2}$) $\mathrm{h}=\text { height }$	$\begin{aligned} & \text { Kinetic energy } \\ & \mathrm{P}=(1 / 2) \cdot \mathrm{m} \cdot \mathrm{v}^{2} \\ & \mathrm{~m}=\mathrm{mass} \\ & \mathrm{~V}=\text { velocity } \end{aligned}$
```Gravity (Force due to gravity) F G}\mp@subsup{}{}{9}\mathrm{ : Gravitational constant M M object Fg```	Acceleration due to gravity at a depth 'd' from earth surface is : $\mathrm{g}_{\mathrm{d}}=\mathrm{g}(1-\underline{\mathrm{d}}$   R)
Acceleration due to gravity at height 'h' from earth surface is :   $h$ is very much smaller than $R$ $\mathrm{g}_{\mathrm{h}}=\mathrm{g}(1-\underline{2 h}$   R )	Escape velocity   Escape velocity   from a body of mass   $M$ and radius $r$ is   For example if you want to calculate the escape verlocity of sa object from earth then,   M is dmass of earth $r$ is radius of earth
OPTICS   Index of refraction	```Under constant acceleration linear motion```


$\mathrm{n}=\mathrm{c} / \mathrm{v}$   n - index of refraction   c - velocity of light in a vacuum   v - velocity of light in the given material	$\begin{aligned} & \mathrm{v}=\text { final velocity } \\ & \mathrm{u}=\text { intitial } \\ & \mathrm{velocity} \\ & \mathrm{a}=\text { acceleration } \\ & \mathrm{t}=\text { time taken to } \\ & \text { reach velocity } \mathrm{v} \\ & \text { from } u \\ & \mathrm{~s}=\text { displacement } \\ & \mathrm{v}=\mathrm{u}+\mathrm{at} \\ & \mathrm{~s}=\mathrm{ut}+(1 / 2) a \mathrm{t}^{2} \\ & \mathrm{~s}=\mathrm{vt}-(1 / 2) a t^{2} \\ & v^{2}=u^{2}+2 a \mathrm{~s} \end{aligned}$
```Friction force (kinetic friction) When the object is moving then Friction is defined as : F where F cofficient of friction F```	Linear Momentum Momentum $=$ mass x velocity
```Capillary action The height to which the liquid can be lifted is given by: 2\gammacos h = pgr Y: liquid-air surface tension(T)(T=energy/area) 0: contact angle p: density of liquid g: acceleration due to gravity r: is radius of tube```	Simple harmonic motion   Simple harmonic   motion is defined by : $d^{\frac{1}{2}} x / d t^{2}=-k x$
Time period of pendulum	Waves $1$


	```\[ { }^{=}{ }_{T} \] \[ 2 \] \[ \omega_{\pi} \] \[ = \] T \[ V=f \cdot \lambda \] \\ where \(\omega=\) Angular frequency, T=Time period, v = Speed of wave, \(\lambda=\) wavelength```
```Doppler effect Relationship between observed frequency f and emitted frequency f}\mp@subsup{f}{0}{}\mathrm{ : f= V fo( v + vs)``` where, $\mathrm{v}=\mathrm{velocity} \mathrm{of} \mathrm{wave}$ $\mathrm{v}_{\mathrm{s}}=$ velocity of source. It is positive if source of wave is moving away from observer. It is negative if source of wave is moving towards observer.	```Resonance of a strin g frequency =f 2 L where L: length of the string n = 1, 2, 3...```
$\begin{array}{\|} \begin{array}{r} \text { Resonance of a open tube of } \\ \text { oir } \\ \text { appr } \end{array} \\ \text { Approximate frequency }=\mathrm{f} \frac{\text { nv oxim }}{\text { ate })} \\ = & 2 \end{array}$	Resonance of a open tube of air(accurate)


where,   L: length of the cylinder   $\mathrm{n}=1,2,3 \ldots$   $v=$ speed of sound	
```Resonance of a closed tube of air( appr Approximate frequency =f \ 4 L where, L: length of the cylinder n = 1, 2, 3... v = speed of sound```	Resonance of a closed tube of ```frequency =f}\frac{nv}{4(L+0.8D ) air(accurate) where, L: length of the cylinder n: 1, 2, 3... v: speed of sound d:diameter of the resonance tube```
	```Bragg's law n}\lambda=2d sin where n = integer (based upon order) \lambda = wavelength```



where   e = charge of electron   $m=$ mass of electron   $\mathrm{V}=$ potential difference   between the plates thru which   the electron pass   $\lambda=$ wavelength	
Circular motion formula $v=\omega r$   Centripetal acceleration (a) 2 $=$	Torque (it measures how the force acting on the object can rotate the object)   Torque is cross product of radius and Force Torque $=$ (Force) X (Moment arm) $X$ sin $\theta$   $T=F L \sin \theta$ whete $\theta=$ angle between force and moment arm
Forces of gravitation $\begin{aligned} & F=G\left(m_{1} \cdot m_{2}\right) / r^{2} \\ & \text { where } G \text { is constant. } G= \\ & 6.67 \mathrm{E}-11 \mathrm{~N} \mathrm{~m} / \mathrm{kg}^{2} \end{aligned}$	Stefan-Boltzmann   Law   The energy radiated by a blackbody radiator per second $=P$ $\mathrm{P}=\mathrm{A} \subset \mathrm{T}^{4}$   where, $\sigma=$ StefanBoltzmann constant $\begin{aligned} & \sigma=5.6703 \times 10^{-8} \\ & \text { watt } / \mathrm{m}^{2} \mathrm{~K}^{4} \end{aligned}$
Efficiency of Carnot cycle $\eta=1-\frac{T_{\mathrm{c}}}{\mathrm{~T}}$	Ideal gas law   $\mathrm{P} V=\mathrm{n} R \mathrm{~T}$   $\mathrm{P}=$ Pressure (Pa   i.e. Pascal)   $\mathrm{V}=$ Volume $\left(\mathrm{m}^{3}\right)$   $\mathrm{n}=$ number of of   gas (in moles)   $\mathrm{R}=$ gas constant (   8.314472 . $\mathrm{m}^{3}$. Pa. K   ${ }^{1} \mathrm{~mol}^{-1}$ ] )   $\mathrm{T}=$ Temperatue (in Kelvin [K])
Boyles law (for ideal gas)   $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$   $\mathrm{T}^{1}$ (temperature is constant)	Charles law (for ideal gas)


	$\begin{aligned} & \mathrm{V} \mathrm{~V} \\ & \mathrm{l}^{1}=2 \\ & \mathrm{~T}_{1} \mathrm{~T}_{2} \\ & \mathrm{P} \text { (pressure is } \\ & \text { constant) } \end{aligned}$
Translational kinetic energy K per gas molecule (average molecular kinetic energy:) $\begin{aligned} & \mathrm{K}_{-}^{3} \mathrm{k} \\ & ={ }_{2}^{\mathrm{T}} \end{aligned}$ $\mathrm{k}=1.38066 \mathrm{x} 10^{-23} \mathrm{~J} / \mathrm{K}$   Boltzmanns constant	Internal energy of monoatomic gas $\begin{aligned} & \mathrm{K}_{-}^{3} \mathrm{nR} \\ & ={ }_{2} \mathrm{~T} \\ & \\ & \mathrm{n}=\text { number of of } \\ & \mathrm{gas} \text { (in moles) } \\ & \mathrm{R}=\text { gas constant ( } \\ & 8.314472 . \mathrm{m}^{3} \cdot \mathrm{~Pa} \cdot \mathrm{~K}^{-} \\ & \mathrm{m}^{-1} \mathrm{~mol}^{-1} \text { ) } \end{aligned}$
Root mean square speed of gas ```3k V 'rms T = m k = 1.38066 x 10-23 J/K Boltzmanns constant m = mass of gas```	```Ratio of specific heat (Y) C \gamma p = C v C capacity of the gas in a constant pressure process C capacity of the gas in a constant```


	volume process
Internal entergy of ideal gas   Internal entergy of ideal gas (U) $=C_{v} n R T$	In Adiabatic   process no heat is gained or lost by the system.   Under adiabetic condition   $\mathrm{PV}^{\curlyvee}=$ Constant   $\mathrm{TV}^{\gamma^{-1}}=$ Constant   where $Y$ is ratio of specific heat.   C   $\gamma \stackrel{p}{ }$ $={ }_{C}$
```Boltzmann constant (k) R k = N a R = gas constant Na}= Avogadro's number.```	```Speed of the sound in gas R = gas constant (8.314 J/mol K) T = the absolute temperature M = the molecular weight of the gas (kg/mol) Y = adiabatic constant = C col c```
Capillary action The height to which the liquid can be lifted is given by h=height of the liquid lifted T=surface tension r=radius of capillary tube $\mathrm{h}=\underline{2 \mathrm{~T}}$ ρr	```Resistance of a wire \rho R =}\frac{L}{A p = rsistivity L = length of the wire```

g	A = cross-sectional area of the wire
```Ohm's law V = I . R V = voltage applied R = Resistance I = current Electric power (P) = (voltage applied) x (current) P = V . I = I . . R V = voltage applied R = Resistance I = current```	Resistor combination If resistors are in series then equivalent resistance will be $R_{e q}=R_{1}+R_{2}+R_{3}+$ $+R_{n}$   If resistors are in parallel then equivalent resistance will be $1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}+$ $1 / R_{3}+$. . . . . . + $1 / R_{n}$
In AC circuit average power is : $P_{\text {avg }}=V_{r m s} I_{r m s} \cos \varphi$   where,   $\mathrm{P}_{\text {avg }}=$ Average Power   $\mathrm{V}_{\mathrm{rms}}^{\text {avg }}=$ rms value of voltage   $I_{\text {rms }}^{\text {ms }}=$ rms value of current	In AC circuit   Instantaneous power   is :   $\mathrm{P}_{\text {Instantaneous }}=\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}}$ sin $\omega \mathrm{t}$   $\sin (\omega t-\varphi)$   where,   $\mathrm{P}_{\text {Instantaneous }}=$   Instantaneous Power   $\mathrm{V}_{\mathrm{m}}=$ Instantaneous   voltage   $I_{m}=$ Instantaneous   current
```Capacitors Q = C.V where Q = charge on the capacitor C = capacitance of the capacitor V = voltage applied to the capacitor```	Total capacitance (Ceq) for PARALLEL Capacitor Combinations: $\begin{aligned} & C_{\text {eq }}=C_{1}+C_{2}+C_{3}+. \\ & \cdot \cdot \cdot \cdot+C_{n} \end{aligned}$   Total capacitance (Ceq) for SERIES Capacitor Combinations: $\begin{aligned} & 1 / C_{e q}=1 / C_{1}+1 / C_{2}+ \\ & 1 / C_{3}+\cdot \\ & 1 / C_{n} \end{aligned}$
Parallel Plate Capacitor	Cylindrical Capacitor
A	$\mathrm{C}=2 \pi \kappa \quad \mathrm{~L}$
$\begin{array}{cc} \varepsilon_{0} & - \\ & \mathrm{d} \end{array}$	ε_{0} \ln

where $C=[$ Farad (F)] $\mathrm{k}=$ dielectric constant $A=$ Area of plate d = distance between the plate $\varepsilon_{0}=$ permittivity of free space $\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \mathrm{m}^{2}\right)$	(b/a) where $\mathrm{C}=[\operatorname{Farad}(\mathrm{F})]$ k = dielectric constant $\mathrm{L}=$ length of cylinder [m] $\mathrm{a}=$ outer radius of conductor [m] $\mathrm{b}=$ inner radius of conductor [m] $\varepsilon_{0}=$ permittivity of free space (8.85 X $10^{-12} \mathrm{C}^{2} / \mathrm{N} \mathrm{m}^{2}$)
Spherical Capacitor ```C=4\pi\kappa b - \varepsilon a where C = [Farad (F)] k = dielectric constant a = outer radius of conductor [m] b = inner radius of conductor [m] \varepsilon space (8.85 X 10-12 C / /N m```	```Magnetic force acting on a charge q moving with velocity v F = q v B sin } where F = force acting on charge q (Newton) q = charge (C) v = velocity (m/ sec}\mp@subsup{}{}{2} B = magnetic field 0 = angle between V (velocity) and B (magnetic field)```
```Force on a wire in magnetic field (B) F = B I l sin } where F = force acting on wire (Newton) I = Current (Ampere) l = length of wire (m) B = magnetic field 0 = angle between I (current) and B (magnetic field)```	In an RC circuit (ResistorCapacitor), the time constant (in seconds) is:   $\tau=R C$   $\mathrm{R}=$ Resistance in $\Omega$   $C=$ Capacitance in in farads.


In an RL circuit (Resistorinductor ), the time constant (in seconds) is:   $\tau=L / R$   $\mathrm{R}=$ Resistance in $\Omega$   $C=$ Inductance in henries	```Self inductance of a solenoid = L = \mun}\mp@subsup{}{}{2}L n = number of turns per unit length L = length of the solenoid.```
Mutual inductance of two solenoid two long thin solenoids, one wound on top of the other   $\mathrm{M}=\mu_{0} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{LA}$   $N_{1}=$ total number of turns   per unit length for first   solenoid   $\mathrm{N}_{2}=$ number of turns per unit   length for second solenoid   A = cross-sectional area   $\mathrm{L}=$ length of the solenoid.	```Energy stored in capacitor E _ C V = 2```
Coulomb's Law   Like charges repel, unlike charges attract. $\mathrm{F}=k \quad\left(q_{1} \cdot q_{2}\right) / \dot{r}^{2}$   where $k$ is constant. $k=1 /(4$   $\left.\Pi \varepsilon_{0}\right) \approx 9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$   $q_{1}=$ charge on one body   $q_{2}=$ charge on the other body   $r=$ distance between them   Calculator based upon Coulomb's Law	$\begin{aligned} & \text { Ohm's law } \\ & \mathrm{V}=\mathrm{IR} \\ & \text { where } \\ & \mathrm{V}=\text { voltage } \\ & \mathrm{I}=\text { Current } \\ & \mathrm{R}=\text { Resistence } \end{aligned}$
Electric Field around a point charge (q)   $\mathrm{E}=k\left(\mathrm{q} / \mathrm{r}^{2}\right)$   where $k$ is constant. $k=1 /(4$   $\left.\Pi \varepsilon_{0}\right) \approx 9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$   q = point charge   $r=$ distance from point   charge (q)	```Electric field due to thin infinite sheet E = 2 \varepsilon where E = Electric field (N/C) \sigma = charge per unit area C/m \mp@subsup{\varepsilon}{0}{}}=8.85 X 10 -12 C'/```


	$\mathrm{m}^{2}$
```Electric field due to thick infinite sheet \sigma E = \varepsilon 0 where E = Electric field (N/C) \sigma = charge per unit area C/m```	```Magnetic Field around a wire (B) when r is greater than the radius of the wire.``` ```\mu B = 2\pi r where I = current r = distance from wire and r \geq Radius of the wire``` ```\mu B = 2\pi r where I = current r = distance from wire and r \geq Radius of the wire```
Magnetic Field around a wire (B) when r is less than the radius of the wire. ```B = 2\pi R2 where I = current R = radius of wire r = distance from wire and r \leq Radius of the wire (R)```	```Magnetic Field At the center of an arc \mu B = 早 where I = current r = radius from the center of the wire```
Bohr's model $L^{n h}$	Emitting Photons (Rydberg For mul a)

