PHYSICS FORMULAS

Density is mass per unit volume Density = mass / volume	velocity = displacement / time
Force = rate of change of momentum	Momentum = mass . velocity
<pre>Power is rate of work done Power = work / time Unit of power is watt Potential energy (P) PE = m.g.h m = mass g = acceleration due to gravity (9.81m/s²) h = height</pre>	<pre>Kinetic energy (P) P = (1/2).m.v² m = mass v = velocity</pre>
$\begin{array}{l} \mbox{Gravity (Force due to}\\ \mbox{gravity)}\\ F_{g}: Force of attraction\\ G: Gravitational constant\\ M_{1}: Mass of first object\\ & M_{2}: Mass of second\\ & object\\ & G M_{1}\\ F_{g}\\ = \frac{M_{2}}{r^{2}}\\ \end{array}$	Acceleration due to gravity at a depth 'd' from earth surface is : $g_d = g(1-\underline{d}$ R)
Acceleration due to gravity at height 'h' from earth surface is : h is very much smaller than R $g_h = g(1-\underline{2h})$	Escape velocity Escape velocity from a body of mass M and radius r is
R)	For example if you want to calculate the escape verlocity of sa object from earth then, M is dmass of earth r is radius of earth
OPTICS Index of refraction	Under constant acceleration linear motion

<pre>n = c/v n - index of refraction c - velocity of light in a vacuum v - velocity of light in the given material</pre>	v = final velocity u = intitial velocity a = acceleration t = time taken to reach velocity v from u s = displacement v = u + a t s = ut + $(1/2)at^2$ s = vt - $(1/2)at^2$ v ² = u ² + 2 a s
Friction force (kinetic friction) When the object is moving then Friction is defined as : $F_f = \mu F_n$ where $F_f = Friction$ force, $\mu =$ cofficient of friction $F_n = Normal$ force	Linear Momentum Momentum = mass x velocity
Capillary action The height to which the liquid can be lifted is given by: $2\gamma \cos$ h θ = ρgr	Simple harmonic motion Simple harmonic motion is defined by: d ² x/dt ² = - k x
<pre>γ: liquid-air surface tension(T)(T=energy/area) θ: contact angle ρ: density of liquid g: acceleration due to gravity r: is radius of tube</pre>	
Time period of pendulum	Waves 1
	1

	$= \frac{1}{T}$ $= \frac{2}{T}$ $\frac{\omega}{\pi} = \frac{1}{T}$ T $v = f \cdot \lambda$ where $\omega = \text{Angular}$ frequency, T=Time period, v = Speed of wave, $\lambda = \text{wavelength}$
Doppler effect Relationship between observed frequency f and emitted frequency f_0 : f = v $f_0(v + v_s)$ where, v=velocity of wave	Resonance of a g frequency = f $\frac{nv}{2}$ = L where L: length of the
v =velocity of source. It is positive if source of wave is moving away from observer. It is negative if source of wave is moving towards observer.	string n = 1, 2, 3
Resonance of a open tube of air(appr Approximate frequency = $f \frac{nv \circ xim}{ate}$ = L	Resonance of a open tube of air(accurate)

where, L: length of the cylinder n = 1, 2, 3 v = speed of sound	frequency = f $\frac{nv}{2(L+0.8D)}$ =)
	where, L: length of the cylinder n: 1, 2, 3 v: speed of sound d:diameter of the resonance tube
Resonance of a closed tube of Approximate frequency = $f \frac{\frac{\text{nv} \text{ oxim}}{\text{ate}}}{L}$ where, L: length of the cylinder n = 1, 2, 3 v = speed of sound	Resonance of a closed tube of frequency = f $\frac{nv}{4(L+0.8D)}$ =) air(accurate)
	<pre>where, L: length of the cylinder n: 1, 2, 3 v: speed of sound d:diameter of the resonance tube</pre>
intensity of sound $\begin{array}{c} & \text{int}\\ \text{ens}\\ \text{ity}\\ \text{of}\\ \hline Power \\ \text{sou}\\ \text{area} \end{array}$	Bragg's law $n\lambda = 2d \sin\theta$ where n = integer (based upon order) $\lambda = wavelength$

where e = charge of electron m = mass of electron V = potential difference between the plates thru which the electron pass λ = wavelength	
Circular motion formula $v = \omega r$ Centripetal acceleration (a) 2 = r	Torque (it measures how the force acting on the object can rotate the object) Torque is cross product of radius and Force Torque = (Force) X (Moment arm) X sin θ T = F L sin θ whete θ = angle between force and moment arm
Forces of gravitation $F = G (m_1.m_2)/r^2$ where G is constant. G = 6.67E - 11 N m ² / kg ²	Stefan-Boltzmann Law The energy radiated by a blackbody radiator per second = P P = A σ T ⁴ where, σ = Stefan- Boltzmann constant σ = 5.6703 × 10 ⁻⁸ watt/m ² K ⁴
$\eta = 1 - \frac{T_c}{T}$	<pre>Ideal gas law P V = n R T P = Pressure (Pa i.e. Pascal) V = Volume (m³) n = number of of gas (in moles) R = gas constant (8.314472 .m³.Pa.K⁻ ¹mol⁻¹]) T = Temperatue (in Kelvin [K])</pre>
Boyles law (for ideal gas) $P_1 V_1 = P_2 V_2$ T (temperature is constant)	Charles law (for ideal gas)

	V V $\frac{1}{2} = \frac{2}{2}$ T ₁ T ₂ P (pressure is constant)
Translational kinetic energy K per gas molecule (average molecular kinetic energy:)	Internal energy of monoatomic gas
$K \frac{3}{2} k$ $= \frac{1}{2} T$	$K \frac{3}{2} n R$ $= \frac{1}{2} T$
k = 1.38066 x 10 ⁻²³ J/K Boltzmanns constant	<pre>n = number of of gas (in moles) R = gas constant (8.314472 .m³.Pa.K⁻¹ "mol⁻¹])</pre>
Root mean square speed of gas	Ratio of specific heat (γ)
3 k V^2_{rms} T	С
= m	$\gamma \frac{p}{C}$
$k = 1.38066 \times 10^{-23} J/K$ Boltzmanns constant m = mass of gas	v
	C_p = specific heat capacity of the gas in a constant pressure process C_v = specific heat capacity of the gas in a constant

	volume process
<pre>Internal entergy of ideal gas Internal entergy of ideal gas (U) = c_v nRT</pre>	In Adiabatic process no heat is gained or lost by the system. Under adiabetic condition PV^{γ} = Constant $TV^{\gamma^{-1}}$ = Constant where γ is ratio of specific heat.
	C $\gamma \underline{p}$ $= C$ v
Boltzmann constant (k)	Speed of the sound in gas
$\frac{R}{k} = \frac{N}{a}$ $R = gas constant$ $N_a = Avogadro's number.$	R = gas constant(8.314 J/mol K) T = the absolute temperature M = the molecular weight of the gas (kg/mol) γ = adiabatic constant = c_p/c_v
Capillary action The height to which the liquid can be lifted is given by h=height of the liquid lifted T=surface tension r=radius of capillary tube h= <u>2T</u> ρr	Resistance of a wire $ \begin{array}{c} \rho \\ R \\ = \frac{L}{A} \\ \rho = rsistivity \\ L = length of the \\ wire \end{array} $

	A = cross-sectional
g	area of the wire
<pre>Ohm's law V = I . R V = voltage applied R = Resistance I = current Electric power (P) = (voltage applied) x (current) P = V . I = I² . R V = voltage applied R = Resistance I = current</pre>	Resistor combination If resistors are in series then equivalent resistance will be $R_{eq} = R_1 + R_2 + R_3 + .$ $ + R_n$ If resistors are in parallel then equivalent resistance will be $1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3 + + 1/R_n$
In AC circuit average power is : $P_{avg} = V_{rms}I_{rms} \cos \varphi$ where, $P_{avg} = Average Power$ $V_{rms} = rms$ value of voltage $I_{rms} = rms$ value of current	In AC circuit Instantaneous power is : $P_{Instantaneous} = V_m I_m \sin\omega t$ $\sin(\omega t - \phi)$ where, $P_{Instantaneous} =$ Instantaneous Power $V_m =$ Instantaneous voltage $I_m =$ Instantaneous current
<pre>Capacitors Q = C.V where Q = charge on the capacitor C = capacitance of the capacitor V = voltage applied to the capacitor</pre>	Total capacitance (Ceq) for PARALLEL Capacitor Combinations: $C_{eq} = C_1 + C_2 + C_3 + .$ $ + C_n$ Total capacitance (Ceq) for SERIES Capacitor Combinations: $1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3 + + 1/C_n$
Parallel Plate Capacitor	Cylindrical Capacitor
A $C = \kappa$	$C = 2 \pi \kappa$ L
ε ₀	ϵ_0 ln
d	

where C = [Farad (F)] κ = dielectric constant A = Area of plate d = distance between the plate ε_0 = permittivity of free space (8.85 X 10 ⁻¹² C ² /N m ²)	(b/a) where C = [Farad (F)] $\kappa = dielectric$ constant L = length of cylinder [m] a = outer radius of conductor [m] b = inner radius of conductor [m] $\epsilon_0 = permittivity of$ free space (8.85 X $10^{-12} C^2/N m^2$)
Spherical Capacitor $\begin{array}{c} a b \\ C = 4 \pi \kappa \\ \hline \\ \epsilon_0 \\ b \\ a \end{array}$ where C = [Farad (F)] κ = dielectric constant a = outer radius of conductor [m] b = inner radius of conductor [m] ϵ_0 = permittivity of free space (8.85 X 10 ⁻¹² C ² /N m ²)	<pre>Magnetic force acting on a charge q moving with velocity v F = q v B sin θ where F = force acting on charge q (Newton) q = charge (C) v = velocity (m/sec²) B = magnetic field θ = angle between V (velocity) and B (magnetic field)</pre>
<pre>Force on a wire in magnetic field (B) F = B I l sin 0 where F = force acting on wire (Newton) I = Current (Ampere) l = length of wire (m) B = magnetic field 0 = angle between I (current) and B (magnetic field)</pre>	In an RC circuit (Resistor- Capacitor), the time constant (in seconds) is: $\tau = RC$ R = Resistance in Ω C = Capacitance in in farads.

In an RL circuit (Resistor- inductor), the time constant (in seconds) is: $\tau = L/R$ R = Resistance in Ω C = Inductance in henries	Self inductance of a solenoid = L = $\mu n^{2}LA$ n = number of turns per unit length L = length of the solenoid.
Mutual inductance of two solenoid two long thin solenoids, one wound on top of the other $M = \mu_0 N_1 N_2 LA$ $N_1 = total$ number of turns per unit length for first solenoid $N_2 =$ number of turns per unit length for second solenoid A = cross-sectional area L = length of the solenoid.	Energy stored in capacitor $E \frac{1}{2} C V$ $= \frac{2}{2}$
Coulomb's Law Like charges repel, unlike charges attract. $F = k (q_1 \cdot q_2)/r^2$ where k is constant. $k = 1/(4$ $\pi \varepsilon_0) \approx 9 \times 10^9 \text{ N.m}^2/\text{C}^2$ $q_1 = \text{charge on one body}$ $q_2 = \text{charge on the other body}$ r = distance between them Calculator based upon Coulomb's Law	Ohm's law V = IR where V = voltage I = current R = Resistence
Electric Field around a point charge (q) $E = k (q/r^2)$ where k is constant. $k = 1/(4 \pi \epsilon_0) \approx 9 \times 10^9 \text{ N.m}^2/\text{C}^2$ q = point charge r = distance from point charge (q)	Electric field due to thin infinite sheet $\frac{\sigma}{E} = 2$ ϵ_0 where E = Electric field (N/C) σ = charge per unit area C/m ² ϵ_0 = 8.85 X 10 ⁻¹² C ² /N

	m²
Electric field due to thick infinite sheet o	Magnetic Field around a wire (B) when r is greater than the radius of the wire.
Ε = ε	B μ ₀ Ι
0 where	$= 2\pi$ r
E = Electric field (N/C) σ = charge per unit area C/m ² ε_0 = 8.85 X 10 ⁻¹² C ² /N m ²	where I = current r = distance from wire and r ≥ Radius of the wire
Magnetic Field around a wire (B) when r is less than the radius of the wire.	Magnetic Field At the center of an arc
$B \frac{\mu_0 \operatorname{Ir}}{R^2}$ $= \frac{2 \pi}{R^2}$	$ \begin{array}{c} \mu_0 I \\ B \\ \phi \\ = \overline{} \\ 4 \pi r \end{array} $
where I = current R = radius of wire r = distance from wire and $r \leq Radius$ of the wire (R)	where I = current r = radius from the center of the wire
Bohr's model	Emitting Photons(Rydberg For
nh L	mul 1 1 a)

$= \frac{1}{2}$	$\frac{1}{n_1^2}$ $\frac{1}{n_2^2}$
<pre>where L = angular momentum n = principal quantum number = 1,2,3,n h = Planck's constant.</pre>	where $n_{1} < n_{2}$ $E_{0} = 13.6 \text{ eV}$
Half life of radioactive element $\ln(2 t_{1/2} = \frac{)}{\lambda}$	Average life of radioactive element 1 τ_{-} = λ