- Each unit carries 12 Marks
- Answer all units choosing one question from each unit
- All parts of the unit must be answered in one place only.
- Figures in the right hand margin indicate marks allotted.

UNIT - I

1. a) Find the differential equation of family of circles passing through the origin and having centre on the x - axis.
b) Solve $2 x \frac{d y}{d x}-y=10 x^{3} y^{5}$

OR

2. a) Solve: $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$.
b) A body originally at $80^{\circ} \mathrm{C}$ cools down to $60^{\circ} \mathrm{C}$ in 20 minutes, the temperature of air being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 40 minutes from the original?

UNIT - II

3. a) Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x$.
b) $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=\sin [2 \log (1+x)]$

OR

4. a) Solve $y^{11}-2 y^{1}+2 y=e^{x} \tan x$ by method of variation of parameters.
b) Show that the frequency of free vibrations in a closed electrical circuit with inductance L and capacity C in series is $30 / \pi \sqrt{ }$ LC per minute.

UNIT - III

5. a) Verify Lagranges mean value theorem for $f(x)=(x-1)(x-2)(x-3)$ in $(0,4)$
b) If x is positive show that $\mathrm{x}>\log (1+\mathrm{x})>\mathrm{x}-\frac{x^{2}}{2}$

OR
6. If $\mathrm{a}<\mathrm{b}$, prove that $\frac{b-a}{1+b^{2}}<\tan ^{-1} \mathrm{~b}-\tan ^{-1} \mathrm{a}<\frac{b-a}{1+a^{2}}$ Using Lagranges mean value theorem and deducve the following :
(i) $\frac{\pi}{4}+\frac{3}{25}<\operatorname{Tan}^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$
(ii) $\frac{5 \pi+4}{20}<\operatorname{Tan}^{-1} 2<\frac{\pi+2}{4}$
b) Find "c" of Cauchy's mean value theorem for $\mathrm{f}(\mathrm{x})=\sqrt{x}$ and $\mathrm{g}(\mathrm{x})=\frac{1}{\sqrt{x}} \forall x \in[a, b]$, where $0<\mathrm{a}<\mathrm{b}$.

UNIT - IV

7. State the Leibnitz test for the convergence of an alternating series.

Using this test, find the nature of convergence of

$$
1-\frac{x}{1^{2}}+\frac{x^{2}}{2^{2}}-\frac{x^{3}}{3^{2}}+\ldots \ldots .
$$

b) Discuss interval of convergence of the power series $\sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n}$

OR

8. a) Use Cauchy's root test to find the convergence of the

$$
\begin{equation*}
\text { series } \sum\left(\frac{n+1}{2 n+5}\right)^{n} x^{n} \tag{6}
\end{equation*}
$$

b) State Raabe's test .Test the convergence of the infinite series

$$
1+\frac{x}{2}+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+\frac{4!}{5^{4}} x^{4}+\ldots \ldots \ldots \infty
$$

UNIT - V

9. a) Verify Cayley Hamilton theorem for the matrix $\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ and find its inverse
b) Test for consistency and solve $2 \mathrm{x}-3 \mathrm{y}+7 \mathrm{z}=5,3 \mathrm{x}+\mathrm{y}-3 \mathrm{z}=13$, $2 \mathrm{x}+19 \mathrm{y}-47 \mathrm{z}=32$.

OR

10. Reduce the quadratic form $2 \mathrm{xy}+2 \mathrm{yz}+2 \mathrm{zx}$ into Canonical form and find its nature. Also calculate A^{4}.

Time: 3 Hours
Instructions:

- Each unit carries 12 Marks
- Answer all units choosing one question from each unit
- All parts of the unit must be answered in one place only.
- Figures in the right hand margin indicate marks allotted.

UNIT - I
1 a) Solve $y \sin 2 x d x-\left(y^{2}+\cos ^{2} x\right) d y=0$.
b) Solve $\frac{d y}{d x}=x^{3} y^{3}-x y$

OR

2. a) Solve $\left(x^{2}-y^{2}\right) d x-x y d y=0$.
b) A radioactive substance disintegrates at a rate proportional to its mass.

When mass is 10 mgm , the rate of disintegration is 0.051 mgm per day.
How long it will take for the mass to be reduced from m 10 mgm to 5 mgm . 6

UNIT - II

3. a) Solve $\frac{d^{3} y}{d x^{3}}-2 \frac{d y}{d x}+4 y=e^{x} \sin x$..
b) $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$.

OR

4 a) Solve by the method of variation of parameters $\left(D^{2}-2 D\right) y=e^{x} \sin x$.
b) The damped LCR circuit is governed by the equations
$L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=0$ where $\mathrm{L}, \mathrm{C}, \mathrm{R}$, are positive constants. Find the conditions under winch the circuit is over damped, under damped and critically damped. Find also the critical resistance.

5a) Verify Rolle's theorem for $f(x)=x^{2}\left(1-x^{2}\right)$ in $[0,1]$.
b) Obtain Taylor's series expansion of $f(x)=\operatorname{cosx}$ in powers of x.

OR

6a) Using Cauchy's mean value theorem prove that $\frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\cot \theta$, where $0<\alpha<\theta<\beta<\pi / 2$.
b) Obtain Maclaurin's series expansion of $f(x)=(1+x)^{n}$.

UNIT - IV

7 a) If $\sum u_{n}$ converges then prove that $\lim _{n \rightarrow \infty} u_{n}=0$.
b Discuss the convergence of $\sum \sin \frac{1}{n}$.

OR

1 a)) Discuss the convergence of $\sum \frac{\sqrt{n}}{n^{2}+1}$.
b) Discuss the convergence of $\sum\left(\frac{n+1}{n+2}\right)^{n} x^{n}(x>0)$.

UNIT - V

2 a) Verify Cayley Hamilton theorem for the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and find its inverse.
b) For what values of λ and μ the equations $x+y+z=6, x+2 y+3 z=10$, $x+2 y+\lambda z=\mu$ habe (i) no solution, (ii) unique solution, (iii) an infinite number of solutions

OR

3 Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 x y-2 y z+2 z x$ into Canonical form and specify the matrix of transformation

Time: 3 Hours
Max. Marks: 60
Instructions:

- Each unit carries 12 Marks
- Answer all units choosing one question from each unit
- All parts of the unit must be answered in one place only.
- Figures in the right hand margin indicate marks allotted.

UNIT - I
1 a) Solve the differential equation $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$.
b) Solve the differential equation $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$.

OR

2. a) Solve the differential equation $\frac{d y}{d x}=\frac{y+x-2}{y-x-4}$.

6
b) Show that the system of confocal conics $\frac{x^{2}}{a^{2}+\lambda}+\frac{Y^{2}}{b^{2}+\lambda}=1$ is self orthogonal where λ is a parameter.

UNIT - II

3. a) Solve the differential equation $\left(D^{3}+2 D^{2}+D\right) y=e^{2 x}+x^{2}+x+\sin 2 x$. 6
b) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+y=x \cos x$ using the method of variation of parameters.

OR

4a) Solve $(2 x-1)^{3} \frac{d^{3} y}{d x^{3}}+(2 x-1) \frac{d y}{d x}-2 y=x$.
b) An e.m.f. E Sin pt is applied at $\mathrm{t}=0$ to a circuit containing a capacitance ' C ' and inductance L . The current ' i ' satisfies the equation $L \frac{d i}{d t}+\frac{1}{C} \int i d t=E \operatorname{Sin} p t \quad$. If $\mathrm{p}^{2}=1 /(\mathrm{LC})$ and initially the current ' i ' and the charge q are zero. Show that the current at time t is $\mathrm{Et} / 2 \mathrm{~L}$ Sin pt where $\mathrm{i}=\mathrm{dq} / \mathrm{dt}$.

UNIT - III

5a) Verify Rolle's theorem for the function $\log \left[\frac{x^{2}=a b}{x(a+b)}\right]$ in the interval $[\mathrm{a}, \mathrm{b}]$ where $a>0, b>0$.

6
b) Show that $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}=x+\frac{4 x^{3}}{3!}+\ldots \ldots .$.

OR

6a) Calculate $\sqrt[5]{245}$ using Lagrange mean value theorem.
b) Expand $\log \left(1+\sin ^{2} x\right)$ in terms of x upto $6^{\text {th }}$ degree.
UNIT - IV

7 a) Test the convergence of the infinite series

$$
\begin{equation*}
\left(\frac{2^{2}}{1^{2}}-\frac{2}{1}\right)^{-1}+\left(\frac{3^{23}}{2^{3}}-\frac{3}{2}\right)^{-2}+\left(\frac{4^{4}}{3^{4}}-\frac{4}{3}\right)^{-3}+\ldots \ldots \ldots \tag{6}
\end{equation*}
$$

b) Test the absolute convergence or conditional convergence of the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n \sqrt{n}}$

OR

8 a)) Discuss the nature of the infinite series

$$
\begin{equation*}
1+\frac{3}{7} x+\frac{3.6}{7.10} x^{2}+\frac{3.6 .9}{7.10 .13} x^{3}+\ldots \ldots \ldots . . . \infty \tag{6}
\end{equation*}
$$

b) Find the interval of convergence of $\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots \ldots \ldots$
UNIT - V

9 a). Find the values of k for which the system of equations $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$, $x+2 y+4 z=k, \quad x+4 y+10 z=k^{2}$ is consistent and solve for each possible value of k .
b) Verify Cayley-Hamilton theorem for $\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1\end{array}\right]$ and find its inverse.

OR

10 If $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ calculate A^{4} by diagonalising A.

