PAPER : ISRO Placement Paper 2005 At Hyderabad

Paper Type : Technical - Other
Test Date : 30 June 2005
Test Location : Hyderabad
Written Test for Scientist / Engineer_SC : [Mechanical Engineering]
Date: 30-06-2005
Place: St. Anne's School, Hyderabad.
Question Pattern for Written Examination
80 Questions
2.00 hrs Duration

1/4 Negative Marks
All are Objective \& Multiple choice Questions.

1 The concept of ------------------------------------ derived from the "ZEROTH LAW OF
THERMODYNAMICS".
TEMPERATURE

2 The concept of --------------------------------------- derived from the "SECOND LAW OF THERMODYNAMICS".

ENTROPY

3 The expression for isentropic index [?] in terms of number of degrees of freedom
(n)
$1+[2 / n]$

4 The critical Reynolds no upto which the viscous flow exists in pipe
2000

5 Two forces of equal magnitude P acts at right angles to each other and having same directions. Find out the expression for their resultant $[\mathrm{R}]$ -
$[2]^{1 ⁄ 2} \mathrm{P}$

6 The angular frequency of handclock--------------------
?/30 rad/s

7 The equation for free torsional vibration-
[1/2?] [q/I] $]^{1 / 2}$

8 A thin cylinder is subjected to longitudinal stress $s 0$ and internal pressure P , findout the maximum shearstress developed in it [q max] ---------------------------
0.5 s0

9 Rate of moment of momentum is equal to the \qquad
Torque applied by the body

10 The expression for loss of energy [he] due to sudden enlargement of the pipe-------he $=[\mathrm{v} 1-\mathrm{v} 2]^{2} / 2 \mathrm{~g}$

11 A spring of stiffness K is divided into " n " number of springs. Each spring having stiffness
\qquad
nK

12 The non-dimensional number corresponds to
[inertia forcelcompressibility force]¹⁄2------------------------------- Euler number

13 Equation for forced vortex flow- \qquad
$\mathrm{v} / \mathrm{r}=$ constant

14 The causes of cavitation
Metallic surfaces are damaged
Noise \& vibrations

15 How to increase the thermal efficiency in Carnot cycle by \qquad
Decreasing low temperature

16 The slenderness ratio in columns can be obtained from the \qquad
Least radius of gyration

17 50:1 gear reduction ratio possible in- \qquad
worm gear

18 Wire drawing property named as \qquad ductility

19 One man is standing in the elevator and the elevator is moving in the upward direction. What type of reading regarding the weight of man will we get from gauge----------------The weight of man shown by the gauge will more the actual weight of the man.

20 LMTD for counterflow heat exchanger is compared to parallel to heat exchanger----More

21 The free damping equation $2 y^{00}+3 y^{0}+8 y=0$. Calculate damping factor (D.F) ------3/8

22 The discharges for the two parallel pipes of same lengths are Q1 \& Q2 respectively and their diameters are $200 \mathrm{~mm} \& 800 \mathrm{~mm}$ respectively. Calculate the ratio of discharge of smaller pipe to larger pipe.

1/32

23 A compressor is used to compress the air from 5 bar to 10 bar .Calculate its critical pressure [P?]
2.64 bar

24 Equivalent twisting moment \qquad
$\mathrm{Te}=\left[\mathrm{T}^{2}+\mathrm{M}^{2}\right]^{1 / 2}$

25 The shear stress distribution in pipe flow \qquad
Centre is zero and linearly varying from the center to the wall

26 The irrational component in x-y is--------------
dv/dx = du/dy

27 The ratio kinetic viscosity/thermal diffusivity is \qquad
Nusselt Number

28 The cylinder is subjected to insulations $\mathrm{K} \& 2 \mathrm{~K}$ at the outside surface to avoid heat transfer. In order to arrest heat transfer effectively , which insulation should be provided first at the outer surface?

2K \& K respectively

29 The wall having conductivities
K1 K2

Findout the equivalent conductivity of the material--------------------?

29 The maximum amplitude in this vibration equation $y=6 \sin ? t$ \qquad 6

30 The thermal boundary layer in an ideal fluid flow is \qquad 0

31 What does tend to stagnation point \qquad
The velocity is 0 at the stagnation point due to the increase in pressure energy from the conversion of K.E into P.E.

32 Match the following:

i. subsonic nozzle : figure
ii. Supersonic nozzle : figure
iii. Subsonic diffuser : figure
iv. Centrifugal compressor : figure

40 Cold working of metal increases
Tensile strength

41 The power absorbed in belt drive depends on-
Tension in tight side, Tension in slack side, coefficient of friction \& Radius of pulley.

42 The temperature loss related hysteresis loss

43 The convergent pipe having entry and exit diameters are 100 and 50 mm respectively, find out their velocity ratio from entry to exit. \qquad
1/4

44 They had given one composite circular pipe having 4 varying cross sections. They are 2D, $1.5 \mathrm{D}, 4 \mathrm{D} \& \mathrm{D}$ respectively. The water is entering at velocity V at section 1 and leaving at section 4. Find out the pressure decreasing order. \qquad
P4>P2>P1>P3

45 The bulb having weight 150 N supported by two ropes and attached to the walls having angles $45^{\circ} \& 60^{\circ}$. Findout the reaction forces in the ropes?

This is related to Lamis theorem

46 A hollow sphere of radius r. A particle is moving with coefficient of friction $1 /[3] \frac{1}{2}$ inside the sphere from wall . which height will it become rest?

47 The disc is resting on the rough wall by a rope tied at the center. The rope makes angle with the wall around 30°. The tension in the string is \qquad -than the weight of the disc. more

48 A railway wagon containing partially full of water. Which angle-

49 Findout the graph between discharge $[Q]$ in the x-axis and head $[H]$ in the y-axis- \qquad

50 In welding pitch dimension is limited to \qquad

51 The composition of inconel alloy \qquad

52 There is a heat transfer between two walls having thickness and conductivities k1 \& K2 respectively. The linear temperature profile of first wall is more steeper than the second wall . Findout the ratio K1/K2 \qquad
a) >0 b) <0 c) $=0$ d) the given data is insufficient

53 The max shear stress developed in solid circular shaet is 100 MPa . Calculate the max normal stress developed in it? ??????

54 This question related to welding \qquad

55 Bearing liner \qquad
a) Babbit metal b) Gun metal

56 Electrical resistance material \qquad Nichrome

57 This question related to radiation

58 A sun emits 1150 K at 0.5μ. A furnace emits 300 k from small door

59 In the simple pendulum , the maximum amplitude depends on ------------------ increase in length

60 The fuel flow increases if \qquad
a) exhaust valve burnt b) filter choke c) silencer choke

61 The jet propulsion depends on- \qquad
a) jet velocity b) weight ratio

62 What is the condition for perfect frame \qquad

63 Depth of cut can be increased by \qquad

64 The workpiece can be held in \qquad

65 This is related toNucleate boiling

66 What is the expression for Reynolds number in terms of diameter of the pipe \qquad Re $=? \mathrm{VD} / \mu$

67 Air conditioning means---------------
a) cooling \& heating b)dehumidifying c) removing impurities from air d)all

68 Fibrous fracture occurs in \qquad
a)brittle fracture b) ductile fracture c)shear fracture d)none

69 In laser beam machining, the workpiece should be- \qquad
a) absorbed by all the rays b) reflected by all the rays

70 Foam and coke are good insulators. Why? \qquad
a)less density b)

71 Gold property \qquad
a)good conductor b)good insulator

72 In lathe, the workpiece can be held in \qquad
a) live center b)steady rest c)3-way chuck d)4-way chuck

INTERVIEW PATTERN:

I. Project Explanation

II. Fluid Mechanics:

i. Define laminar flow \& Turbulent flow
ii. What is the value of Reynolds no in pipe flow
iii. What is the significance of Reynolds no
iv. Head losses in pipe
v. Define boundary layer in pipe flow \& thickness of boundary layer
vi. What is the variation of d in laminar \& turbulent flow

III. Strength of materials

i. Draw the figure for spring damper system
ii. Differential equation for spring damper system
iii. Find out the deflection of spring damper system
iv. Define stiffness and unit of stiffness

IV. Material Science

i. Ferrous materials
ii. Non-ferrous materials
iii. Define fatigue
iv. Define fatigue resistance?
v. Curve for fatigue
vi. Fatigue limit

