# Model Question Paper (Theory) <br> B.A/B.Sc. III Year Examination, March/April 2011 MATHEMATICS PAPER-III 

Time:3Hrs
Maximum Marks:100
NOTE: Answer 6 questions from Section- $A$ and 4 questions from Section -B choosing atleast one from each unit. Each question in Section- A carries 6 marks and each question in Section-B carries $\mathbf{1 6}$ marks.

## SECTION-A $(6 \times 6=36)$

## UNIT-I

1) Define a subspace. Prove that the intersection of two subspaces is again a subspace.
2) Define Linear transformation. Show that the mapping $T: V_{3}(R) \rightarrow V_{2}(R)$ defined as $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}-2 a_{2}+a_{3}, a_{1}-3 a_{2}-2 a_{3}\right)$ is a linear transformation from $V_{3}(R)$ in to $V_{2}(R)$.

## UNIT-II

3) Find all eigen values of the matrix $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]$.
4) Define orthogonal set. Show that any orthogonal set of non-zero vectors in an inner product space V is linearly independent.

## UNIT-III

5) Evaluate $\iint x^{2} y^{2} d x d y$ over the domain $\left\{(x, y): x \geq 0 ; y \geq 0 ;\left(x^{2}+y^{2}\right) \leq 1\right\}$.
6) Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the domain bounded by $x y=1 ; y=0 ; y=x ; x=2$.

## UNIT-IV

7) Define irrotational vector. Show that $A=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is Irrotational. Find $\varphi$ such that $A=\nabla \varphi$.
8) Evaluate $\iint$ A.n $d s$ where $A=18 z i-12 j+3 y k$ and $S$ is that part of the plane $2 x+3 y+6 z=12$ which is located in first octant.

## SECTION-B ( $4 \times 16=64$ )

## UNIT-I

9) a) Define Basis of a vector space. Prove that any two basis of a finite dimensional vector Space $V(F)$ have same number of elements.
b) If $W_{1}, W_{2}$ are two subspaces of a finite dimensional vector Space $V(F)$ then

$$
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

10) a) State and prove Rank and Nullity theorem in linear transformation.
b) Show that linear operator $T$ defined on $R^{3}$ by $T(x, y, z)=(x+z, x-z, y)$ is invertible. And hence find $T^{-1}$.

## UNIT-II

11) a) Prove that distinct characteristic vectors of $T$ corresponding to distinct characteristic of $T$ are linearly independent.
b) Let $T$ be the linear operator on $R^{3}$ which is represented in standard ordered basis by the matrix $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$. Prove that $T$ is diagonalizable.
12) a) State and prove schwarz's inequality .
b) Apply the Gram-Schmidt process to the vector $\beta_{1}=(1,0,1) ; \beta_{2}=(1,0,-1)$;
$\beta_{3}=(0,3,4)$ to obtain an orthonormal basis for $V_{3}(R)$ with the standard inner product.

## UNIT-III

13) a) Prove the sufficient condition for the existence of the integral.
b) Verify that $\iint_{R}\left(x^{2}+y^{2}\right) d y d x=\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where the domain R is the triangle bounded by the lines $y=0, y=x, x=1$.
14)a) Prove the equivalence if a double integra with repeated integrals.
b) Evaluate the following integral: $\iint \frac{x-y}{x+y} d x d y$ over $[0,1 ; 0,1]$.

## UNIT-IV

15) a) For any vector $A$, Prove that $\nabla \times(\nabla \times A)=\nabla(\nabla . \mathrm{A})-\nabla^{2} A$.
b) If $U=3 x^{2} y ; V=x z^{2}-2 y$. Evaluate $\operatorname{grad}[(\operatorname{gradU}) \cdot(\operatorname{gradV})]$.
16) a) State and prove Green's theorem in a plane.
b) Verify stoke's theorem for $A=(2 x-y) i-y z^{2} j-y^{2} z k$. where $S$ is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and $C$ is the boundary.

# DEPARTMENT OF MATHEMATICS 

## B.A. / B.Sc.-III (Practical) Examination 2010-2011

## Subject : MATHEMATICS (New Syllabus)

## Paper: IV(a) Numerical Analysis

QUESTION BANK
Time : 3 hours
Marks : 50
UNIT-I

1) Define the term percentage error. If $u=3 v^{7}-6 v$ Find the percentage error in $u$ at $v=1$, if the error in $v$ is 0.05 .
2) Define the terms absolute and relative errors. If $y=\frac{0.31 x+2.73}{x+0.35}$, where the coefficients are rounded off. Find the absolute and relative error in $y$ when $x=0.5 \pm 0.1$
3) If $u=\frac{5 x y^{2}}{z^{3}}$ then find maximum relative error at $\Delta x=\Delta y=\Delta z=0.001$ and $x=y=z=1$
4) Find the real root of $x^{3}-x-1=0$, using Bisection method.
5) Find the real root of $x^{3}-x^{2}-1=0$ up to three decimal places using Bisection method.
6) Use iterative method to find a real root of the following equation, correct to four decimal places $x=\frac{1}{(x+1)^{2}}$.
7) Use iterative method to find a real root of the following equation, correct to four decimal places $x=(5-x)^{\frac{1}{3}}$.
8) Use iterative method to find a real root of the following equation, correct upto four decimal places $\sin x=10(x-1)$.
9) Establish the formula $x_{i+1}=\frac{1}{2}\left(x_{i}+\frac{N}{x_{i}}\right)$ and hence compute the value of $\sqrt{2}$ correct to six decimal places.
Use newton Raphson method to obtain a root and correct to three decimal places of the following equations:
10) $\sin x=1-x \quad$ 11) $x^{4}+x^{2}-80=0 \quad$ 12) $3 x=\cos x+1$.
11) Find $\sqrt[3]{12}$ by Nweton's method.
12) Find a double root of $x^{3}-3 x^{2}+4=0$ by Generalised Newton's method.
13) Using Ramanujan's method find a real root of the equation $x e^{x}=1$.
14) Find the root of the equation $\sin x=1-x$ by Ramanujan's method.
15) Find the smallest root of the equation $f(x)=x^{3}-6 x^{2}+11 x-6=0$.
16) Using Ramanujan's method, find the real root of the equation

$$
1-x+\frac{x^{2}}{(2!)^{2}}-\frac{x^{3}}{(3!)^{2}}+\frac{x^{4}}{(4!)^{2}}-\cdots=0
$$

19) Find the root of the equation $f(x)=x^{3}-2 x-5=0$ which lies between 2 \& 3 by Muller's method.
20) Use Muller's method to find a root of the equation $x^{3}-x-1=0$.

## UNIT-II

21) Using the difference operator prove the following (i) $\mu=\sqrt{1+\frac{\delta^{2}}{4}}$
(ii) $1+\mu^{2} \delta^{2}=\left(1+\frac{\delta^{2}}{2}\right)^{2}$
22) Find $u_{6}$ if $u_{0}=-3, u_{1}=6, u_{2}=8, u_{3}=12$ and $3^{\text {rd }}$ differences are constant.
23) Find a cubic polynomial which takes the values

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 2 | 4 | 8 | 15 | 26 |

24) If $y_{0}=2649, y_{2}=2707, y_{3}=2967, y_{4}=2950, y_{5}=2696$ and $y_{6}=2834$ then find $y_{1}$.
25) Prove the following
a) $u_{x}=u_{x-1}+\Delta u_{x-2}+\Delta^{2} u_{x-3}+\cdots+\Delta^{n-1} u_{x-n}+\Delta^{n} u_{x-n}$.
b) $u_{x}+x_{c_{1}} \Delta^{2} u_{x-1}+x_{c_{2}} \Delta^{4} u_{x-2}+\cdots=u_{0}+x_{c_{1}} \Delta u_{1}+x_{c_{2}} \Delta^{2} u_{2}+\cdots$
26) From the following table ,find the number of students who secured mark between 60 and 70 .

| Marks obtained | $0-40$ | $40-60$ | $60-80$ | $80-100$ | $100-120$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of students | 250 | 120 | 100 | 70 | 50 |

27) Find the cubic polynomial which takes the values:
$y(1)=24, y(3)=120, y(5)=336, y(7)=720$. Hence obtain $y(8)$.
28) The following data gives the melting point of an alloy of lead and zinc; $\theta$ is the temperature in degree centigrade; $x$ is the percent of lead.Find $\theta$ when $x=84$.

| $x$ | 40 | 50 | 60 | 70 | 80 | 90 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\theta$ | 184 | 204 | 226 | 250 | 276 | 304 |

29) From the following table, find the value of $e^{1.17}$ by using Gauss forward formula.

| $x$ | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | 1.25 | 1.30 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $e^{x}$ | 2.7183 | 2.8577 | 3.0042 | 3.1582 | 3.3201 | 3.4903 | 3.6693 |

30) The following values of $x$ and $y$ are given .Find the value of $y(0.543)$.

| $x$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y(x)$ | 2.631 | 3.328 | 4.097 | 4.944 | 5.875 | 6.896 | 8.013 |

31) Use Gauss interpolation formula to find $y_{41}$ with help of following data $y_{30}=3678.2, \quad y_{35}=2995.1, \quad y_{40}=2400.1, \quad y_{45}=1876.2, \quad y_{50}=1416.2$
32) By using central difference formula find the value of log 337.5 satisfying the following table

| $x$ | 310 | 320 | 330 | 340 | 350 | 360 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $\log x$ | 2.4014 | 2.5052 | 2.5185 | 2.5315 | 2.5441 | 2.5563 |

33) Values of $y=\sqrt{x}$ are listed in the following table, which are rounded off to 5 decimal places. Find $\sqrt{1.12}$ by using Stirling's formula

| $x$ | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | 1.25 | 1.30 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y=\sqrt{x}$ | 1.00000 | 1.02470 | 1.04881 | 1.07238 | 1.09544 | 1.11803 | 1.14017 |

34) By using Lagrange's formula, express the following rational fraction as sum of partial fractions $\frac{x^{2}+6 x+1}{\left(x^{2}-1\right)\left(x^{2}-10 x+24\right)}$.
35) By means of Lagrange's formula prove that approximately

$$
y_{0}=\frac{1}{2}\left(y_{1}+y_{-1}\right)-\frac{1}{8}\left[\frac{1}{2}\left(y_{3}-y_{1}\right)-\frac{1}{2}\left(y_{-1}-y_{-3}\right)\right]
$$

36) Apply Lagrange's formula to find the root of $f(x)=0$ when

$$
f(30)=-30, f(34)=-13, f(38)=3, f(42)=18
$$

37) Use Stirling's formula to find $u_{32}$ for the following table
$u_{20}=14.035, u_{25}=13.674, u_{30}=13.257, u_{35}=12.734, u_{40}=12.089$, $u_{45}=11.309$.
38) Construct the divided difference table for the given data and evaluate $f(1)$.

| $x$ | -4 | -2 | -1 | 0 | 2 | 5 | 10 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 469 | 47 | 7 | 1 | -5 | 271 | 7091 |

39) Use Newton's divided difference interpolation to obtain a polynomial $f(x)$ satisfying the following data of values and hence find $f(5$.

| $x$ | -1 | 0 | 3 | 6 | 7 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 3 | -6 | 39 | 822 | 1611 |

40) Prove that the third order divided difference of the function $f(x)=\frac{1}{x}$ with arguments $a, b, c, d$ is $-\frac{1}{a b c d}$.

## UNIT-III

41) Fit a straight line of the form $y=a+b x$ to the data

| $x$ | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 10 | 14 | 19 | 25 | 31 | 36 | 39 |

42) Find best values of $a, b, c$ so that the parabola $y=a+b x+c x^{2}$ fits the data

| $x$ | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1.1 | 1.2 | 1.5 | 2.6 | 2.8 | 3.3 | 4.1 |

43) Fit a second degree parabola of the $y=a x^{2}+b x+c$ to the following data.

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 5 | 10 | 22 | 38 |

