Model Question Paper (Theory) B.A/B.Sc. III Year Examination, March/April 2011 MATHEMATICS PAPER-III

Time:3Hrs Maximum Marks:100

NOTE: Answer 6 questions from Section- A and 4 questions from Section –B choosing atleast one from each unit. Each question in Section- A carries 6 marks and each question in Section-B carries 16 marks.

SECTION-A $(6\times6=36)$

UNIT-I

- 1) Define a subspace. Prove that the intersection of two subspaces is again a subspace.
- 2) Define Linear transformation. Show that the mapping $T:V_3(R)\to V_2(R)$ defined as $T(a_1,a_2,a_3)=(3a_1-2a_2+a_3,\ a_1-3a_2-2a_3) \ \text{ is a linear transformation from } V_3(R)$ in to $V_2(R)$.

UNIT-II

- 3) Find all eigen values of the matrix $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$
- 4) Define orthogonal set. Show that any orthogonal set of non-zero vectors in an inner product space V is linearly independent.

UNIT-III

- 5) Evaluate $\iint x^2 y^2 dx dy$ over the domain $\{(x, y): x \ge 0; y \ge 0; (x^2 + y^2) \le 1\}$.
- 6) Evaluate $\iint (x^2 + y^2) dxdy$ over the domain bounded by xy = 1; y = 0; y = x; x = 2.

UNIT-IV

7) Define irrotational vector. Show that $A=(6xy+z^3)i+(3x^2-z)j+(3xz^2-y)k$ is Irrotational. Find φ such that $A=\nabla\varphi$.

8) Evaluate $\iint A \cdot n \, ds$ where A=18zi-12j+3yk and S is that part of the plane 2x+3y+6z=12 which is located in first octant.

SECTION-B (4×16=64)

UNIT-I

- 9) a) Define Basis of a vector space. Prove that any two basis of a finite dimensional vector Space V(F) have same number of elements.
 - b) If W_1,W_2 are two subspaces of a finite dimensional vector Space V(F) then $dim(W_1+W_2)=dimW_1+dimW_2-\dim(W_1\cap W_2).$
- 10) a) State and prove Rank and Nullity theorem in linear transformation.
 - b) Show that linear operator T defined on R^3 by T(x,y,z)=(x+z,x-z,y) is invertible. And hence find T^{-1} .

UNIT-II

- 11) a) Prove that distinct characteristic vectors of T corresponding to distinct characteristic of T are linearly independent.
 - b) Let T be the linear operator on \mathbb{R}^3 which is represented in standard ordered basis by

the matrix
$$\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$
. Prove that T is diagonalizable.

- 12) a) State and prove schwarz's inequality.
 - b) Apply the Gram- Schmidt process to the vector $\beta_1=(1,0,1);\ \beta_2=(1,0,-1);$ $\beta_3=(0,3,4)$ to obtain an orthonormal basis for $V_3(R)$ with the standard inner product.

<u>UNIT-III</u>

- 13) a) Prove the sufficient condition for the existence of the integral.
 - b) Verify that $\iint_R (x^2 + y^2) dy dx = \iint_R (x^2 + y^2) dx dy$ where the domain R is the triangle bounded by the lines y = 0, y = x, x = 1.

- 14)a) Prove the equivalence if a double integra with repeated integrals.
 - b) Evaluate the following integral: $\iint \frac{x-y}{x+y} dxdy$ over [0,1; 0,1].

UNIT-IV

- 15) a) For any vector A, Prove that $\nabla \times (\nabla \times A) = \nabla(\nabla \cdot A) \nabla^2 A$.
 - b) If $U = 3x^2y$; $V = xz^2 2y$. Evaluate grad[(grad U).(grad V)].
- 16) a) State and prove Green's theorem in a plane.
 - b) Verify stoke's theorem for $A=(2x-y)i-yz^2j-y^2zk$. where S is the upper half surface of the sphere $x^2+y^2+z^2=1$ and C is the boundary.

DEPARTMENT OF MATHEMATICS

B.A. / B.Sc.-III (Practical) Examination 2010-2011

Subject: MATHEMATICS (New Syllabus)

Paper: IV(a) Numerical Analysis

QUESTION BANK

Time: 3 hours Marks: 50

UNIT-I

1) Define the term percentage error. If $u=3v^7-6v$ Find the percentage error in u at v=1, if the error in v is 0.05.

- 2) Define the terms absolute and relative errors. If $y=\frac{0.31x+2.73}{x+0.35}$, where the coefficients are rounded off. Find the absolute and relative error in y when $x=0.5\pm0.1$
- 3) If $u=\frac{5xy^2}{z^3}$ then find maximum relative error at $\Delta x=\Delta y=\Delta z=0.001$ and x=y=z=1
- 4) Find the real root of $x^3 x 1 = 0$, using Bisection method.
- 5) Find the real root of $x^3 x^2 1 = 0$ up to three decimal places using Bisection method.
- 6) Use iterative method to find a real root of the following equation, correct to four decimal places $x = \frac{1}{(x+1)^2}$.
- 7) Use iterative method to find a real root of the following equation, correct to four decimal places $x = (5 x)^{\frac{1}{3}}$.
- 8) Use iterative method to find a real root of the following equation, correct upto four decimal places sinx = 10(x 1).
- 9) Establish the formula $x_{i+1} = \frac{1}{2}(x_i + \frac{N}{x_i})$ and hence compute the value of $\sqrt{2}$ correct to six decimal places.

Use newton Raphson method to obtain a root and correct to three decimal places of the following equations:

- 10) sinx = 1 x 11) $x^4 + x^2 80 = 0$ 12)3x = cosx + 1.
- 13) Find $\sqrt[3]{12}$ by Nweton's method.
- 14) Find a double root of $x^3 3x^2 + 4 = 0$ by Generalised Newton's method.
- 15) Using Ramanujan's method find a real root of the equation $xe^x = 1$.

- 16) Find the root of the equation sin x = 1 x by Ramanujan's method.
- 17) Find the smallest root of the equation $f(x) = x^3 6x^2 + 11x 6 = 0$.
- 18) Using Ramanujan's method, find the real root of the equation

$$1 - x + \frac{x^2}{(2!)^2} - \frac{x^3}{(3!)^2} + \frac{x^4}{(4!)^2} - \dots = 0.$$

- 19) Find the root of the equation $f(x) = x^3 2x 5 = 0$ which lies between 2 & 3 by Muller's method.
- 20) Use Muller's method to find a root of the equation $x^3 x 1 = 0$.

UNIT-II

- 21) Using the difference operator prove the following (i) $\mu = \sqrt{1+rac{\delta^2}{4}}$
- (ii) $1 + \mu^2 \delta^2 = (1 + \frac{\delta^2}{2})^2$
- 22) Find u_6 if $u_0=-3$, $u_1=6$, $u_2=8$, $u_3=12$ and $3^{\rm rd}$ differences are constant.
- 23) Find a cubic polynomial which takes the values

х	(0	1	2	3	4	5
y	1	1	2	4	8	15	26

- 24) If $y_0=2649$, $y_2=2707$, $y_3=2967$, $y_4=2950$, $y_5=2696$ and $y_6=2834$ then find y_1 .
- 25) Prove the following

a)
$$u_x = u_{x-1} + \Delta u_{x-2} + \Delta^2 u_{x-3} + \dots + \Delta^{n-1} u_{x-n} + \Delta^n u_{x-n}$$

b)
$$u_x + x_{c_1} \Delta^2 u_{x-1} + x_{c_2} \Delta^4 u_{x-2} + \dots = u_0 + x_{c_1} \Delta u_1 + x_{c_2} \Delta^2 u_2 + \dots$$

26) From the following table ,find the number of students who secured mark between 60 and 70.

Marks obtained	0-40	40-60	60-80	80-100	100-120
Number of students	250	120	100	70	50

27) Find the cubic polynomial which takes the values:

$$y(1) = 24$$
, $y(3) = 120$, $y(5) = 336$, $y(7) = 720$. Hence obtain $y(8)$.

28) The following data gives the melting point of an alloy of lead and zinc; θ is the temperature in degree centigrade;x is the percent of lead. Find θ when x = 84.

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

29) From the following table, find the value of $e^{1.17}$ by using Gauss forward formula.

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
e^x	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693

30) The following values of x and y are given .Find the value of y(0.543).

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7
y(x)	2.631	3.328	4.097	4.944	5.875	6.896	8.013

31) Use Gauss interpolation formula to find y_{41} with help of following data $y_{30}=3678.2,\ y_{35}=2995.1,\ y_{40}=2400.1,\ y_{45}=1876.2,\ y_{50}=1416.2$

32) By using central difference formula find the value of log 337.5 satisfying the following table

x	310	320	330	340	350	360
logx	2.4014	2.5052	2.5185	2.5315	2.5441	2.5563

33) Values of $y=\sqrt{x}$ are listed in the following table, which are rounded off to 5 decimal places. Find $\sqrt{1.12}$ by using Stirling's formula

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
$y = \sqrt{x}$	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

34) By using Lagrange's formula, express the following rational fraction as sum of partial fractions $\frac{x^2+6x+1}{(x^2-1)(x^2-10x+24)}$.

35) By means of Lagrange's formula prove that approximately

$$y_0 = \frac{1}{2} (y_1 + y_{-1}) - \frac{1}{8} \left[\frac{1}{2} (y_3 - y_1) - \frac{1}{2} (y_{-1} - y_{-3}) \right]$$

36) Apply Lagrange's formula to find the root of f(x) = 0 when f(30) = -30, f(34) = -13, f(38) = 3, f(42) = 18.

37) Use Stirling's formula to find
$$u_{32}$$
 for the following table $u_{20}=14.035,\ u_{25}=13.674,\ u_{30}=13.257,\ u_{35}=12.734,\ u_{40}=12.089,\ u_{45}=11.309.$

38) Construct the divided difference table for the given data and evaluate f(1).

х	-4	-2	-1	0	2	5	10
f(x)	469	47	7	1	-5	271	7091

39) Use Newton's divided difference interpolation to obtain a polynomial f(x) satisfying the following data of values and hence find f(5.)

\boldsymbol{x}	-1	0	3	6	7
f(x)	3	-6	39	822	1611

40) Prove that the third order divided difference of the function $f(x) = \frac{1}{x}$ with arguments a, b, c, d is $-\frac{1}{abcd}$.

UNIT-III

41) Fit a straight line of the form y = a + bx to the data

х	0	5	10	15	20	25	30
у	10	14	19	25	31	36	39

42) Find best values of a, b, c so that the parabola $y = a + bx + cx^2$ fits the data

х	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y	1.1	1.2	1.5	2.6	2.8	3.3	4.1

43) Fit a second degree parabola of the $y = ax^2 + bx + c$ to the following data.

x	0	1	2	3	4
y	1	5	10	22	38