
 jar \%ko/leZ 1 sk I ref J hi. Me wt thegik

## STUDY PACKAGE Subject: Mathematics Topic: COMPLEX NUMBER

Available Online :www.MathsBySuhag.com


1. Theory
2. Short Revision
3. Exercise (Ex. $1+5=6$ )
4. Assertion \& Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-J EE(Advanced)
7. 15 Yrs. Que. from AIEEE (J EE Main)

## Student's Name :

$\qquad$
Class
Roll No.


Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal屈: 0903903 7779, 98930 58881, WhatsApp 9009260559

# Complex Numbers 

## 1. The complex number system

There is no real number $x$ which satisfies the polynomial equation $x^{2}+1=0$. To permit solutions of this and similar equations, the set of complex numbers is introduced.
We can consider a complex number as having the form $a+b i$ where $a$ and $b$ are real number and $i$, which is called the imaginary unit, has the property that $i^{2}=-1$.
It is denoted by $z$ i.e. $z=a+i b$. ' $a$ ' is called as real part of $z$ which is denoted by $(\operatorname{Re} z)$ and ' $b$ ' is called as imaginary part of $z$ which is denoted by ( $\operatorname{Im} z$ ).
Any complex number is :
(i) Purely real, if $b=0$
(ii) Purely imaginary, if $a=0$
; (ii)

NOTE: (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete number system is $\mathrm{N} \subset \mathrm{W} \subset \mathrm{I} \subset \mathrm{Q} \subset \mathrm{R} \subset \mathrm{C}$.
(b) Zero is purely real as well as purely imaginary but not imaginary.
(c) $\quad \mathrm{i}=\sqrt{-1}$ is called the imaginary unit.

$$
\text { Also } i^{2}=-1 ; i^{3}=-i ; i^{4}=1 \text { etc. }
$$

(d) $\sqrt{\mathrm{a}} \sqrt{\mathrm{b}}=\sqrt{\mathrm{ab}}$ only if atleast one of a or b is non-negative.
(e) is $z=a+i b$, then $a-i b$ is called complex conjugate of $z$ and written as $\bar{z}=a-i b$

## Self Practice Problems

1. Write the following as complex number
(i) $\sqrt{-16}$
(ii) $\sqrt{x},(x>0)$
(iii) $-\mathrm{b}+\sqrt{-4 \mathrm{ac}},(\mathrm{a}, \mathrm{c}>0)$
Ans.
(i) $0+i \sqrt{16}$
(ii) $\sqrt{x}+0 i$
(iii) $-b+i \sqrt{4 a c}$

Write the following as complex number
(i)
$\sqrt{x} \quad(x<0)$
(ii)
roots of $x^{2}-(2 \cos \theta) x+1=0$

## 2. Algebraic Operations:

Fundamental operations with complex numbers
In performing operations with complex numbers we can proceed as in the algebra of real numbers, replacing $i^{2}$ by -1 when it occurs.

$$
\begin{array}{rlrl}
\text { 1. } & \text { Addition } & (a+b i)+(c+d i)=a+b i+c+d i=(a+c)+(b+d) i \\
\text { 2. } & \text { Subtraction } & (a+b i)-c+d i)=a+b i-c-d i=(a-c)+(b-d) i \\
\text { 3. } & \text { Multiplication }(a+b i)(c+d i)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(a d+b c) i \\
\text { 4. } & \text { Division } & \frac{a+b i}{c+d i} & =\frac{a+b i}{c+d i} \cdot \frac{c-b i}{c-d i}=\frac{a c-a d i+b c i-b d i^{2}}{c^{2}-d^{2} i^{2}} \\
& =\frac{a c+b d+(b c-a d) i}{c^{2}-d^{2}}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i
\end{array}
$$

Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative.
e.g. $z>0,4+2 i<2+4 i$ are meaningless.

In real numbers if $a^{2}+b^{2}=0$ then $a=0=b$ however in complex numbers, $z_{1}{ }^{2}+z_{2}{ }^{2}=0$ does not imply $z_{1}=z_{2}=0$.
Example : Find multiplicative inverse of $3+2 i$.
Solution Let $z$ be the multiplicative inverse of $3+2 i$. then

$$
\Rightarrow \quad z \cdot(3+2 i)=1
$$

$$
\Rightarrow \quad z=\frac{1}{3+2 i}=\frac{3-2 i}{(3+2 i)(3-2 i)}
$$

$$
\Rightarrow \quad z=\frac{3}{13}-\frac{2}{13} i
$$

$$
\left(\frac{3}{13}-\frac{2}{13} i\right) \quad \text { Ans. }
$$

## Self Practice Problem

1. Simplify $i^{n+100}+i^{n+50}+i^{n+48}+i^{n+46}, n \in I$.

Ans. 0

## 3. Equality In Complex Number:

Two complex numbers $z_{1}=a_{1}+i b_{1} \& z_{2}=a_{2}+i b_{2}$ are equal if and only if their real and imaginary parts are equal respectively
i.e. $\quad z_{1}=z_{2}$
$\Rightarrow \quad \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $I_{m}\left(z_{1}\right)=I_{m}\left(z_{2}\right)$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com


Find the value of expression $x^{4}-4 x^{3}+3 x^{2}-2 x+1$ when $x=1+i$ is a factor of expression.
$\mathrm{x}=1+\mathrm{i}$
$\Rightarrow \quad x-1=i$
$\Rightarrow \quad(x-1)^{2}=-1$
$\Rightarrow \quad x^{2}-2 x+2=0$
Now $\quad x^{4}-4 x^{3}+3 x^{2}-2 x+1$
$=\left(x^{2}-2 x+2\right)\left(x^{2}-3 x-3\right)-4 x+7$
$\therefore \quad$ when $x=1+i \quad$ i.e. $\quad x^{2}-2 x+2=0$ $x^{4}-4 x^{3}+3 x^{2}-2 x+1=0-4(1+i)+7$
$=-4+7-4 i$
$=3-4 \mathrm{i}$ Ans.
Example: $\quad$ Solve for $z$ if $z^{2}+|z|=0$
$\Rightarrow \quad(x+i y)^{2}+\sqrt{x^{2}+y^{2}}=0$
$\Rightarrow \quad x^{2}-y^{2}+\sqrt{x^{2}+y^{2}}=0$ and $2 x y=0$
$\Rightarrow \quad x=0$ or $y=0$
when $x=0 \quad-y^{2}+|y|=0$
$\begin{array}{ll}\Rightarrow & y=0,1,-1 \\ \Rightarrow & z=0, i,-i\end{array}$
when $\mathrm{y}=0 \quad \mathrm{x}^{2}+|\mathrm{x}|=0$
$\Rightarrow \quad x=0 \quad \Rightarrow \quad z=0 \quad$ Ans. $\quad z=0, z=i, z=-i$

Example: Solution.

Find square root of $9+40 \mathrm{i}$
Let $(x+i y)^{2}=9+40 \mathrm{i}$
$\begin{array}{ll}\therefore & x^{2}-y^{2}=9 \\ \text { and } & x y=20\end{array}$
squing (i) and adding with 4 times the square of (ii)
we get $x^{4}+y^{4}-2 x^{2} y^{2}+4 x^{2} y^{2}=81+1600$
$\Rightarrow \quad\left(x^{2}+y^{2}\right)^{2}=168$
$\Rightarrow \quad x^{2}+y^{2}=4$
from (i) + (iii) we get $x^{2}=25 \stackrel{\text { linlon }}{\Rightarrow} x= \pm 5$ and $y=16 \quad \Rightarrow \quad y= \pm 4$
from equation (ii) we can see that
$x \& y$ are of same sign
$\therefore \quad x+i y=+(5+4 i)$ or $=(5+4 i)$
sq. roots of $a+40 i= \pm(5+4 i)$
Ans. $\quad \pm(5+4 i)$

## Self Practice Problem

1. Solve for $z: \bar{z}=i z^{2}$

Ans. $\pm \frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}, 0, \mathrm{i}$

## 4. Representation Of A Complex Number:

(a) Cartesian Form (Geometric Representation):

Every complex number $z=x+i$ y can be represented by a point on the Cartesian plane known as complex plane (Argand diagram) by the ordered pair ( $x, y$ ).


Length OP is called modulus of the complex number which is denoted by $|z| \& \theta$ is called the argument or amplitude.
$|z|=\sqrt{x^{2}+y^{2}} \& \theta=\tan ^{-1} \frac{y}{x}$ (angle made by OP with positive $x$-axis)

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
NOTE : (i) Argument of a complex number is a many valued function. If $\theta$ is the argument of a complex


If $z=a+i b$, then it's modulus is denoted and defined by $|z|=\sqrt{a^{2}+b^{2}}$. Infact $|z|$ is the distance of $z$ from origin. Hence $\left|z_{1}-z_{2}\right|$ is the distance between the points represented by $z_{1}$ and $z_{2}$.

## Properties of modulus

(i) $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
(iv) $\quad\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
(iii) $\quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
(iv) $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right.$
(Equality in (iii) and (iv) holds if and only if origin, $z_{1}$ and $z_{2}$ are collinear with $z_{1}$ and $z_{2}$ on the same side of origin).
Example: If $|z-5-7 i|=9$, then find the greatest and least values of $|z-2-3 i|$.
Solution. We have $9=|z-(5+7 i)|=$ distance between $z$ and $5+7 i$.
Thus locus of $z$ is the circle of radius 9 and centre at $5+7 i$. For such a $z$ (on the circle), we have to find its greatest and least distance as from $2+3 i$, which obviously 14 and 4 .
Example: $\quad$ Find the minimum value of $|1+z|+|1-z|$.
Solution $\quad|1+z|+|1-z| \geq|1+z+1-z| \quad$ (triangle inequality)
$\begin{array}{ll}\Rightarrow & |1+z|+|1-z| \geq 2 \\ \quad \text { minimum value of }(|1+z|+|1-z|)=2\end{array}$
Geometrically $|z+1|+|1-2|=|z+1|+|z-1|$ which represents sum of distances of $z$ from
1 and - 1
it can be seen easily that minimu $(P A+P B)=A B=2$
Ans. $\quad 2^{1 / 4} e^{1\left(\frac{\pi}{8}+n \pi\right)}$

www.MathsBySuhag.com
Example: $\quad\left|z-\frac{2}{z}\right|=1$ then find the maximum and minimum value of $|z|$
Solution.

$$
\begin{aligned}
& \left|z-\frac{2}{z}\right|=1 \quad| | z\left|-\left|\frac{2}{z}\right|\right| \leq\left|z-\frac{2}{2}\right| \leq|z|+\left|-\frac{2}{z}\right| \\
& \text { Let }|z|=r \\
& \Rightarrow \quad\left|r-\frac{2}{r}\right| \leq 1 \leq r+\frac{2}{r} \\
& r+\frac{2}{r} \geq 1 \quad \Rightarrow \quad r \in R^{+} \ldots \ldots \ldots \ldots \text { (i) } \\
& \text { and }\left|r-\frac{2}{r}\right| \leq 1 \Rightarrow \quad-1 \leq r-\frac{2}{r} \leq 1 \\
& \Rightarrow \quad \begin{array}{r}
r \in(1,2) \\
\therefore \quad \text { from(i) and (ii) } r \in(1,2) \\
\text { Ans. } \quad r \in(1,2)
\end{array}
\end{aligned}
$$

## © Self Practice Problem

$|z-3|<1$ and $|z-4 i|>M$ then find the positive real value of $M$ for which these exist at least one complex number $z$ satisfy both the equation.
Ans. $M \in(0,6)$

## 6. Agrument of a Complex Number :

Argument of a non-zero complex number $P(z)$ is denoted and defined by $\arg (z)=$ angle which OP makes with the positive direction of real axis.
If $O P=|z|=r$ and $\arg (z)=\theta$, then obviously $z=r(\cos \theta+i \sin \theta)$, called the polar form of $z$. In what follows, 'argument of $z$ ' would mean principal argument of $z$ (i.e. argument lying in $(-\pi, \pi$ ] unless the context requires otherwise. Thus argument of a complex number $z=a+i b=r(\cos \theta+i \sin \theta)$ is the value of $\theta$ satisfying $r \cos \theta=a$ and $r \sin \theta=b$.

Thus the argument of $z=\theta, \pi-\theta,-\pi+\theta,-\theta, \theta=\tan ^{-1}\left|\frac{b}{a}\right|$, according as $z=a+i b$ lies in I, II, III or $\mathrm{IV}^{\text {th }}$ quadrant.

Properties of arguments
(i)
$\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)+2 m \pi$ for some integer $m$.
(ii) $\arg \left(z_{1} / z_{2}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)+2 m \pi$ for some integer $m$.
(iii) $\arg \left(z^{2}\right)=2 \arg (z)+2 m \pi$ for some integer $m$.
(iv) $\arg (z)=0 \quad \Leftrightarrow \quad z$ is real, for any complex number $z \neq 0$
(v) $\quad \arg (z)= \pm \pi / 2 \Leftrightarrow \quad z$ is purely imaginary, for any complex number $z \neq 0$
(vi) $\quad \arg \left(z_{2}-z_{1}\right)=$ angle of the line segment
$P^{\prime} \mathrm{Q}^{\prime} \| P Q$, where $\mathrm{P}^{\prime}$ lies on real axis, with the real axis.


Example: Solve for $z$, which satisfy $\operatorname{Arg}(z-3-2 i)=\frac{\pi}{6}$ and $\operatorname{Arg}(z-3-4 i)=\frac{2 \pi}{3}$.
From the figure, it is clear that there is no $z$, which satisfy both ray


Example: Sketch the region given by
(i) $\quad \operatorname{Arg}(z-1-i) \geq \pi / 3$
(ii) $|z|=\leq 5 \& \operatorname{Arg}(z-i-1)>\pi / 3$

(i) $\quad|\operatorname{Arg}(z-i-2)|<\pi / 4$
(ii) $\quad \operatorname{Arg}(z+1-i) \leq \pi / 6$
2. Consider the region $|z-15 i| \leq 10$. Find the point in the region which has
(i) $\quad \max |z|$
(ii) $\quad \min |z|$
(iii) max $\arg (z) \quad$ (iv) $\min \arg (z)$
7. Conjugate of a complex Number
Conjugate of a complex number $z=a+b$ is denoted and defined by $\bar{z}=a-i b$.
In a complex number if we replace i by - i, we get conjugate of the complex number. $\bar{z}$ is the mirror image of $z$ about real axis on Argand's Plane.
Imaginary Axis
Properties of conjugate

(vii) $\quad\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right) \overline{\left(z_{1}+z_{2}\right)}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}$
(viii) $\quad \overline{\left(\bar{z}_{1}\right)}=z$
(ix) If $w=f(z)$, then $\bar{w}=f(\bar{z})$
(x) $\quad \arg (z)+\arg (\bar{z})=0$
Example: If $\frac{z-1}{z+1}$ is purely imaginary, then prove that $|z|=1$
Solution. $\operatorname{Re}\left(\frac{z-1}{z+1}\right)=0$

$$
\begin{array}{ll}
\Rightarrow & \frac{z-1}{z+1}+\left(\frac{\overline{z-1}}{z+1}\right)=0 \quad \Rightarrow \quad \frac{z-1}{z+1}+\frac{\bar{z}-1}{\bar{z}+1}=0 \\
\Rightarrow & z \bar{z}-\bar{z}+z-1+z \bar{z}-z+\bar{z}-1=0 \\
\Rightarrow & z \bar{z}=1 \\
\Rightarrow & |z|=1 \quad \text { Hence proved }
\end{array}
$$

## Self Practice Problem

1. If $\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}$ is unmodulus and $z_{2}$ is not unimodulus then find $\left|z_{1}\right|$.

## Ans. $\quad\left|z_{1}\right|=2$

## 8. Rotation theorem

(i) If $P\left(z_{1}\right)$ and $Q\left(z_{z}\right)$ are two complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|$, then $z_{2}=z_{1} e^{i \theta}$ where $\theta=\angle P O Q$ (ii) If $P\left(z_{1}\right), Q\left(z_{2}\right)$ and $R\left(z_{3}\right)$ are three complex numbers and $\angle P Q R=\theta$, then

$$
\left(\frac{z_{3}-z_{2}}{z_{1}-z_{2}}\right)=\left|\frac{z_{3}-z_{2}}{z_{1}-z_{2}}\right| e^{i \theta}
$$




$$
\frac{z_{3}-z_{2}}{z_{1}-z_{2}}=\left|\frac{z_{3}-z_{4}}{z_{1}-z_{2}}\right| e^{i \theta}
$$


Example: If $\arg \left(\frac{z-1}{z+i}\right)=\frac{\pi}{3}$ then interrupter the locus.
Here arg $\left(\frac{1-z}{-1-z}\right)$ represents the angle between lines joining -1 and $z$ and $1+z$. As this angle
is constant, the locus of $z$ will be a of a circle segment. (angle in a segment is count). It can be
seen that locus is not the complete side as in the major are $\arg \left(\frac{1-z}{-1-z}\right)$ will be equal to $-\frac{2 \pi}{3}$.
Here $\arg \left(\frac{1-z}{-1-z}\right)$ represents the angle between lines joining -1 and $z$ and $1+z$. As this angle
is constant, the locus of $z$ will be a of a circle segment. (angle in a segment is count). It can be
seen that locus is not the complete side as in the major are $\arg \left(\frac{1-z}{-1-z}\right)$ will be equal to $-\frac{2 \pi}{3}$.
Here $\arg \left(\frac{1-z}{-1-z}\right)$ represents the angle between lines joining -1 and $z$ and $1+z$. As this angle
is constant, the locus of $z$ will be a of a circle segment. (angle in a segment is count). It can be
seen that locus is not the complete side as in the major are arg $\left(\frac{1-z}{-1-z}\right)$ will be equal to $-\frac{2 \pi}{3}$. Now try to geometrically find out radius and centre of this circle.

$$
\text { centre } \equiv\left(0, \frac{1}{\sqrt{3}}\right) \quad \text { Radius } \equiv \frac{2}{\sqrt{3}}
$$

Ans.
Example: If $A(z+3 i)$ and $B(3+4 i)$ are two vertices of a square $A B C D$ (take in anticlock wise order) then find $C$ and $D$.
Solution. Let affix of $C$ and $D$ are $z_{3}+z_{4}$ respectively
Considering $\angle D A B=90^{-}+A D=A B$

Solution

$$
\begin{aligned}
& \arg \left(\frac{z-1}{z+i}\right)=\frac{\pi}{3} \\
& \Rightarrow \quad \arg \left(\frac{1-z}{-1-z}\right)=\frac{\pi}{3}
\end{aligned}
$$

## Self Practice Problems

1. $z_{1}, z_{2}, z_{3}, z_{4}$ are the vertices of a square taken in anticlockwise order then prove that
$z_{1}, z_{2}, z_{3}, z_{4}$ are the vertices of $2 z_{2}=(1+i) z_{1}+(1-i) z_{3}$
Ans. $\quad(1+i) z_{1}+(1-i) z_{3}$
2. Check that $z_{1} z_{2}$ and $z_{3} z_{4}$ are parallel or, not
where, $\quad z_{1}=1+i \quad z_{3}=4+2 i$
$z_{2}=2-i \quad z_{4}=1-i$
Ans. Hence, $z_{1} z_{2}$ and $z_{3} z_{4}$ are not parallel.
3. $\quad P$ is a point on the argand diagram on the circle with $O P$ as diameter "two point $Q$ and $R$ are taken such that $\angle \mathrm{POQ}=\angle \mathrm{QOR}$ If $O$ is the origin and $P, Q, R$ are represented by complex $z_{1}, z_{2}, z_{3}$ respectively then show that

$$
\begin{aligned}
& z_{2}^{2} \cos 2 \theta=z_{1} z_{3} \cos ^{2} \theta \\
& z_{1} z_{0} \cos ^{2} \theta
\end{aligned}
$$

Ans. $\quad z_{1} z_{3} \cos ^{2} \theta$

## 9. Demoivre's Theorem:

## Case I

## Statement:

## If n is any integer then

(i) $\quad(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
(ii) $\left.\quad\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}\right)+i \sin \theta_{2}\right)\left(\cos \theta_{3}+i \sin \theta_{2}\right)\left(\cos \theta_{3}+i \sin \theta_{3}\right) \ldots .\left(\cos \theta_{n}+i \sin \theta_{n}\right)$ $=\cos \left(\theta_{1}+\theta_{2}+\theta_{3}+\ldots \ldots . . \theta_{n}\right)+i \sin \left(\theta_{1}+\theta_{2}+\theta_{3}+\ldots \ldots .+\theta_{n}\right)$

## Case II

Statement: If $p, q \in Z$ and $q \neq 0$ then
$(\cos \theta+i \sin \theta)^{p / q}=\cos \left(\frac{2 k \pi+p \theta}{q}\right)+i \sin \left(\frac{2 k \pi+p \theta}{q}\right)$ where $k=0,1,2,3, \ldots \ldots, q-1$

## $\varepsilon$ 10. Cube Root Of Unity :

(i) The cube roots of unity are $1, \frac{-1+\mathrm{i} \sqrt{3}}{2}, \frac{-1-\mathrm{i} \sqrt{3}}{2}$.
(ii) If $\omega$ is one of the imaginary cube roots of unity then $1+\omega+\omega^{2}=0$. In general $1+\omega^{r}+\omega^{2 r}=0$; where $r \in I$ but is not the multiple of 3 .
(iii) In polar form the cube roots of unity are:
$\cos 0+i \sin 0 ; \cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}, \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}$
(iv) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.
(v) The following factorisation should be remembered:
( $a, b, c \in R \& \omega$ is the cube root of unity)

| $a^{3}-b^{3}=(a-b)(a-\omega b)\left(a-\omega^{2} b\right)$ | $x^{2}+x+1=(x-\omega)\left(x-\omega^{2}\right)$ |
| :---: | :---: |
| $\mathrm{a}^{3}+\mathrm{b}^{3}=(a+b)(\mathrm{a}+\omega \mathrm{b})\left(\mathrm{a}+\omega^{2} \mathrm{~b}\right)$ | $a^{2}+a b+b^{2}=(a-b w)\left(a-b w^{2}\right)$ |
| $c^{3}-3 a b c=(a+b+c)$ | c) |

Example: Find the value of $\omega^{192}+\omega^{194}$
E Example:
0 Solution.
0
$\Phi$
© Example:
0
0
$\omega^{192}+\omega^{194}$
$=1+\omega^{2} \quad=-\omega$
Ans. - $\omega$

## Solution.

If $1, \omega, \omega^{2}$ are cube roots of unity prove
(i) $\quad\left(1-\omega+\omega^{2}\right)^{2}\left(1+\omega-\omega^{2}\right)=4$
(ii) $\quad\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}=32$
(iii) $\quad(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)=9$
(iv) $\quad\left(1-\omega+\omega^{2}\right)\left(1-\omega^{2}+\omega^{4}\right)\left(1-\omega^{4}+\omega^{8}\right)$
(i)
$\left(1-\omega+\omega^{2}\right)\left(1+\omega-\omega^{2}\right)$
$=(-2 \omega)\left(-2 \omega^{2}\right)$
$=4$
Self Practice Problem
Find $\sum_{r=0}^{10}\left(1+\omega^{r}+\omega^{2 r}\right)$
Ans.

## 11. $\mathbf{n}^{\text {th }}$ Roots of Unity :

If $1, \alpha_{1}, \alpha_{2}, \alpha_{3} \ldots \alpha_{n-1}$ are the $n, n^{\text {th }}$ root of unity then :
(i) They are in G.P. with common ratio $\mathrm{e}^{\mathrm{i}(2 \pi / n)}$
\&

(ii) $\quad 1^{\mathrm{p}}+\alpha_{1}^{\mathrm{p}}+\alpha_{2}^{\mathrm{p}}+\ldots .+\alpha_{\mathrm{n}-1}^{\mathrm{p}}=0$ if p is not an integral multiple of n $=n$ if $p$ is an integral multiple of $n$
(iii) $\quad\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) \ldots . .\left(1-\alpha_{n-1}\right)=n$
\&
$\left(1+\alpha_{1}\right)\left(1+\alpha_{2}\right) \ldots \ldots . .\left(1+\alpha_{n-1}\right)=0$ if $n$ is even and 1 if $n$ is odd.
(iv) 1. $\alpha_{1} \alpha_{2} \alpha_{3} \ldots \ldots . . \alpha_{n-1}=1$ or -1 according as $n$ is odd or even.
Example: Find the roots of the equation $z^{6}+64=0$ where real part is positive.
Solution.
$z^{6}=-64$
$z^{6}=z^{6} \cdot e^{+i(2 n+1) \pi} \quad x \in z$

$$
\Rightarrow \quad z=z e^{i(2 n+1) \frac{\pi}{6}}
$$

$\therefore \quad z=2 e^{i \frac{\pi}{6}}, 2 e^{i \frac{\pi}{2}}, z e^{i \frac{\pi}{2}}, z e^{i \frac{5 \pi}{6}}=e^{i \frac{7 \pi}{6}}, z e^{i \frac{3 \pi}{2}}, z e^{i \frac{11 \pi}{2}}$
$\therefore \quad$ roots with + ve real part are $=e^{\frac{i \pi}{6}}+e^{i \frac{11 \pi}{6}}$
$2 e^{i\left(-\frac{\pi}{6}\right)}$
Ans.
${\underset{O}{C}}_{E}^{E x}$ Example: Find the value $\sum_{\mathrm{k}=1}^{6}\left(\sin \frac{2 \pi \mathrm{k}}{7}-\cos \frac{2 \pi \mathrm{k}}{7}\right)$

$\begin{array}{ll}\text { £ 1. Resolve } z^{7}-1 \text { into linear and quadratic factor with real coefficient. } \\ \text { 〇 } & \text { Ans. } \quad(z-1)\left(z^{2}-2 \cos \frac{2 \pi}{7} z+1\right) \cdot\left(z^{2}-2 \cos \frac{4 \pi}{7} z+1\right) \cdot\left(z^{2}-2 \cos \frac{6 \pi}{7} z+1\right)\end{array}$
2. Find the value of $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}$.

Ans. $-\frac{1}{2}$

## 12. The Sum Of The Following Series Should Be Remembered :

(i) $\cos \theta+\cos 2 \theta+\cos 3 \theta+\ldots \ldots+\cos n \theta=\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \cos \left(\frac{n+1}{2}\right) \theta$.
(ii) $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots \ldots+\sin n \theta=\frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \sin \left(\frac{n+1}{2}\right) \theta$.

NOTE: If $\theta=(2 \pi / n)$ then the sum of the above series vanishes.

## 13. Logarithm Of A Complex Quantity :

(i) $\quad \log _{e}(\alpha+i \beta)=\frac{1}{2} \log _{e}\left(\alpha^{2}+\beta^{2}\right)+i\left(2 n \pi+\tan ^{-1} \frac{\beta}{\alpha}\right)$ where $n \in I$.
(ii) $\mathrm{i}^{i}$ represents a set of positive real numbers given by $\mathrm{e}^{-\left(2 n \pi+\frac{\pi}{2}\right)}, \mathrm{n} \in \mathrm{I}$.

Example: Find the value of
(i) $\log (1+\sqrt{3} i) \quad$ Ans. $\log 2+i\left(2 n \pi+\frac{\pi}{3}\right)$
(ii) $\log (-1)$
(iii) $\mathrm{z}^{\mathrm{i}}$

Ans. i $\pi$
Ans. $\quad \cos (\ln 2)+i \sin (\ln 2)=e^{i(n 2)}$
(iv) $\mathrm{i}^{\mathrm{i}}$
(v) $\left|(1+i)^{\prime}\right|$

Ans. $e^{-(4 n+1) \cdot \frac{\pi}{2}}$
(vi) $\quad \arg \left((1+i)^{\prime}\right)$

Ans. $\quad e^{-(8 n+1) \cdot \frac{\pi}{4}}$
Ans. $\quad \frac{1}{2} \ln (2)$.
(i) $\left.\quad \log (1+\sqrt{3} i)=\log \left(2 e^{i\left(\frac{\pi}{3}+2 n \pi\right.}\right)\right)$
$=\log 2+i\left(\frac{\pi}{3}+2 n \pi\right)$
(iii) $\left.\quad 2^{i}=e^{i / n 2}=\cos (\ell n 2) \cos (\ell n 2)+i \sin (\ell n 2)\right]$

## ag.com

## 14. Geometrical Properties :

## Distance formula :

If $z_{1}$ and $z_{2}$ are affixies of the two points $\downarrow P$ and $Q$ respectively then distance between $P+Q$ is given by $\left|z_{1}-z_{2}\right|$.

## Section formula

If $z_{1}$ and $z_{2}$ are affixes of the two points $P$ and $Q$ respectively and point $C$ devides the line joining $P$ and $Q$ internally in the ratio $m: n$ then affix $z$ of $C$ is given by

$$
\mathrm{z}=\frac{\mathrm{m} z_{2}+n z_{1}}{m+n}
$$

If $C$ devides $P Q$ in the ratio $m: n$ externally then

$$
\mathrm{z}=\frac{\mathrm{mz} \mathrm{z}_{2}-\mathrm{nz}}{1} \mathrm{~m}-\mathrm{n}
$$

(2) $\operatorname{amp}(z)=\theta$ is a ray emanating from the origin inclined at an angle $\theta$ to the $x-a x i s$.
(3) $|z-a|=|z-b|$ is the perpendicular bisector of the line joining $a$ to $b$.
(4) The equation of a line joining $z_{1} \& z_{2}$ is given by, $z=z_{1}+t\left(z_{1}-z_{2}\right)$ where $t$ is a real parameter.
(5) $\quad z=z_{1}(1+i t)$ where $t$ is a real parameter is a line through the point $z_{1}$ \& perpendicular to the line joining $z_{1}$ to the origin.
(6) The equation of a line passing through $z_{1} \& z_{2}$ can be expressed in the determinant form as $\left|\begin{array}{ccc}\mathrm{z} & \overline{\mathrm{z}} & 1 \\ \mathrm{z}_{1} & \overline{\mathrm{z}}_{1} & 1 \\ \mathrm{z}_{2} & \overline{\mathrm{Z}}_{2} & 1\end{array}\right|=0$. This is also the condition for three complex numbers to be collinear. The above equation on manipulating, takes the form $\bar{\alpha} \mathrm{z}+\alpha \overline{\mathrm{z}}+\mathrm{r}=0$ where r is real and $\alpha$ is a non zero complex constant.
(8) The equation of the circle described on the line segment joining $z_{1} \& z_{2}$ as diameter is $\arg \frac{\mathrm{z}-\mathrm{z}_{2}}{\mathrm{z}-\mathrm{z}_{1}}= \pm \frac{\pi}{2}$ or $\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{2}\right)+\left(\mathrm{z}-\mathrm{z}_{2}\right)\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{1}\right)=0$.
(9) Condition for four given points $z_{1}, z_{2}, z_{3} \& z_{4}$ to be concyclic is the number
$\frac{z_{3}-z_{1}}{z_{3}-z_{2}} \cdot \frac{z_{4}-z_{2}}{z_{4}-z_{1}}$ should be real. Hence the equation of a circle through 3 non collinear points $z_{1}, z_{2} \& z_{3}$ can be taken as $\frac{\left(z-z_{2}\right)\left(z_{3}-z_{1}\right)}{\left(z-z_{1}\right)\left(z_{3}-z_{2}\right)}$ is real
$\Rightarrow \quad \frac{\left(\mathrm{z}-\mathrm{z}_{2}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{1}\right)}{\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)}=\frac{\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{2}\right)\left(\overline{\mathrm{z}}_{3}-\overline{\mathrm{z}}_{1}\right)}{\left(\overline{\mathrm{z}}-\overline{\mathrm{z}}_{1}\right)\left(\overline{\mathrm{z}}_{3}-\overline{\mathrm{z}}_{2}\right)}$.
$\operatorname{Arg}\left(\frac{z-z_{1}}{z-z_{2}}\right)=\theta$ represent (i) a line segment if $\theta=\pi$
(ii) Pair of ray if $\theta=0$ (iii) a part of circle, if $0<\theta<\pi$.

Area of triangle formed by the points $z_{1}, z_{2} \& z_{3}$ is $\left|\frac{1}{4 i}\right| \begin{array}{lll}z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1 \\ z_{3} & \bar{z}_{3} & 1\end{array}|\mid$
(vii) $|z-3 i|=25$
(viii) $\quad \arg \left(\frac{z-3+5 i}{z+i}\right)=\pi$

Ans. I
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(iii)
(v)
(viii)
有
Column - II
(i) circle
(ii) Straight line
(iii) Ellipse
(iv) Hyperbola
(v) Major Arc
(vi) Minor arc
(vii) Perpendicular bisector of a line segment
(viii) Line segment
(vi)
(vii) (viii)
(iv)
(i)
(ii)

## 15. (a) Reflection points for a straight line :

(b) Inverse points w.r.t. a circle :

Two points $P$ \& $Q$ are said to be inverse w.r.t. a circle with centre ' $O$ ' and radius $\rho$, if:
(i) the point $O, P, Q$ are collinear and $P, Q$ are on the same side of $O$.
(ii) $\mathrm{OP} . \mathrm{OQ}=\rho^{2}$.

Note : that the two points $z_{1} \& z_{2}$ will be the inverse points w.r.t. the circle $z \bar{z}+\bar{\alpha} z+\alpha \bar{z}+r=0$ if and only if $\mathrm{z}_{1} \overline{\mathrm{z}}_{2}+\bar{\alpha} \mathrm{z}_{1}+\alpha \overline{\mathrm{z}}_{2}+\mathrm{r}=0$.

## 16. Ptolemy's Theorem:

It states that the product of the lengths of the diagonals of a convex quadrilateral inscribed in a circle is equal to the sym of the products of lengths of the two pairs of its opposite sides.
i.e. $\quad\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|=\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right|+\left|z_{1}-z_{4}\right|\left|z_{2}-z_{3}\right|$.

(ii)

Equation real and imaginary parts on both sides, $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=0$ and

$$
\begin{aligned}
\left.\begin{array}{rl}
\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma & =0 \\
z_{1}{ }^{3}+z_{2}{ }^{3}+z_{3}{ }^{3} & =\left(z_{1}+z_{2}\right)^{3}-3 z_{1} z_{2}\left(z_{1}+z_{2}\right)+z^{3} \\
& =\left(-z_{3}\right)^{3}-3 z_{1} z_{2}\left(-z_{3}\right)+z_{3}^{3} \\
& =3 z_{1} z_{2} z_{3}
\end{array}\right) \text { using (1) }
\end{aligned}
$$

$\therefore \quad(\cos \alpha+i \sin \alpha)^{3}+\left(\cos ^{3} \beta+i \sin \beta\right)^{3}+(\cos \gamma+i \sin \gamma)^{3}$

$$
=3(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)(\cos \gamma+i \sin \gamma)
$$

or $\quad \cos 3 \alpha+i \sin 3 \alpha+\cos 3 \beta+i \sin 3 \beta+\cos 3 \gamma+i \sin 3 \gamma$

$$
=3\{\cos (\alpha+\beta+\gamma)+i \sin (\alpha+\beta+\gamma)
$$

Equation imaginary parts on both sides, $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$

## Alternative method

$\mathrm{C} \equiv \cos \alpha+\cos \beta+\cos \gamma=0$
$\mathrm{S} \equiv \sin \alpha+\sin \beta+\sin \gamma=0$
$C+i S=e^{i \alpha}+e^{\beta}+e^{i \gamma}=0$
$\mathrm{C}-\mathrm{iS}=\mathrm{e}^{-\mathrm{i} \alpha}+\mathrm{e}^{-1 \beta}+\mathrm{e}^{-1 \gamma}=0$
From (1) $\Rightarrow \quad\left(e^{-i \alpha}\right)^{2}+\left(e^{-i \beta}\right)^{2}+\left(e^{-i}\right)^{2}=\left(e^{i \alpha}\right)\left(e^{i \beta}\right)+\left(e^{i \beta}\right)\left(e^{i \gamma}\right)+\left(e^{i \gamma}\right)\left(e^{i \alpha}\right)$ $\begin{array}{ll}\Rightarrow & \mathrm{e}^{i 2 \alpha}+\mathrm{e}^{i 2 \beta}+\mathrm{e}^{i 2 \gamma}=\mathrm{e}^{i \alpha} \mathrm{e}^{i \beta} \mathrm{e}^{i \gamma}\left(\mathrm{e}^{-2 \gamma}+\mathrm{e}^{-i \alpha}+\mathrm{e}^{i \beta}\right) \\ \Rightarrow & \mathrm{e}^{\mathrm{i}(2 \alpha)}+\mathrm{e}^{i 2 \beta}+\mathrm{e}^{i 2 \gamma}=0 \quad \text { (from 2) }\end{array}$
Comparing the real and imaginary parts we
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma-\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0$
Also from $(1)\left(\mathrm{e}^{\mathrm{i} \alpha}\right)^{3}+\left(\mathrm{e}^{\mathrm{i} \beta}\right)^{3}+\left(\mathrm{e}^{\mathrm{i})^{2}}\right)^{3}=3 \mathrm{e}^{\mathrm{i} \mathrm{\alpha} \alpha} \mathrm{e}^{\mathrm{i} \beta} \mathrm{e}^{\mathrm{in}}$
Comparing the real and imaginary parts we obtain the results.
Example: If $z_{1}$ and $z_{2}$ are two complex numbers and $c>0$, then prove that

## Solution.

We have to prove :
i.e. $\quad\left|z_{1}\right|^{3}+\left|z_{2}\right|^{2}+z_{1} \bar{z}_{2}+\bar{z}_{2} z_{2} \leq(1+c)\left|z_{1}\right|^{2}+\left(1+c^{-1}\right)\left|z_{2}\right|^{3}$

$$
\text { or } z_{1} \overline{\mathrm{z}}_{2}+\overline{\mathrm{z}}_{2} \mathrm{z}_{2} \leq \mathrm{c}\left|\mathrm{z}_{1}\right|^{2}+\mathrm{c}^{-1}\left|\mathrm{z}_{2}\right|^{2} \quad \text { or } \mathrm{c}\left|\mathrm{z}_{1}\right|^{2}+\frac{1}{\mathrm{c}}\left|\mathrm{z}_{2}\right|^{2}-\mathrm{z}_{1} \overline{\mathrm{z}}_{2}-\overline{\mathrm{z}}_{2} \mathrm{z}_{2} \geq 0
$$

(using $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right) \leq\left|z_{1} \bar{z}_{2}\right|$ )
or $\quad\left(\sqrt{c}\left|z_{1}\right|-\frac{1}{\sqrt{c}}\left|z_{2}\right|\right)^{2} \geq 0 \quad$ which is always true.
If $\theta, \in[\pi / 6, \pi / 3], i=1,2,3,4,5$, and $z^{4} \cos \theta_{1}+z^{3} \cos \theta_{2}+z^{3} \cos \theta_{3} .+z \cos \theta_{4}+\cos \theta_{5}=2 \sqrt{3}$, then show that $|z|>\frac{3}{4}$
Solution. Given that

$$
\begin{array}{ll} 
& \cos \theta_{1} \cdot z^{4}+\cos \theta_{2} \cdot z^{3}+\cos \theta_{3} \cdot z^{2}+\cos \theta_{4} \cdot z+\cos \theta_{5}=2 \sqrt{3} \\
\text { or } & \left|\cos \theta_{1} \cdot z^{4}+\cos \theta^{2} \cdot z^{3}+\cos \theta^{3} \cdot z^{2}+\cos \theta_{4} \cdot z+\cos \theta_{5}\right|=2 \sqrt{3} \\
& 223 \leq\left.\cos \theta_{1} z^{4}\right|^{2}+\left|\cos \theta_{2} \cdot z^{3}\right|+\left|\cos \theta_{3} \cdot z^{2}\right|+\cos \theta_{4} \cdot z\left|+\left|\cos \theta_{5}\right|\right. \\
\because & \theta i \in[\pi / 6, \pi / 3]
\end{array}
$$

$$
\therefore \quad \frac{1}{2} \leq \cos \theta_{i} \leq \frac{\sqrt{3}}{2}
$$

$$
2 \sqrt{3} \leq \frac{\sqrt{3}}{2}|z|^{4}+\frac{\sqrt{3}}{2}|z|^{3}+\frac{\sqrt{3}}{2}|z|^{2}+\frac{\sqrt{3}}{2}|z|+\frac{\sqrt{3}}{2}
$$

$$
3<|z|+|z|^{2}+|z|^{3}+|z|^{4}+|z|^{5}+\ldots \ldots \infty
$$

$$
3<\frac{|z|}{1-|z|} \quad 3-e|z|<|z|
$$

$4|z|>3$

$$
|z|>\frac{3}{4}
$$

Example: $\quad$ Two different non parallel lines cut the circle $|z|=r$ in point $a, b, c, d$ respectively. Prove that these lines meet in the point $z$ given by $z=\frac{a^{-1}+b^{-1}-c^{-1}-d^{-1}}{a^{-1} b^{-1}-c^{-1} d^{-1}}$
Since point P, A, B are collinear

$\therefore \quad\left|\begin{array}{lll}z & \bar{z} & 1 \\ a & \bar{a} & 1 \\ b & \bar{b} & 1\end{array}\right|=0 \Rightarrow \quad z(\bar{a}-\bar{b})-\bar{z}(a-b)+(a \bar{b}-a \bar{b})=0$
Similarlym, since points $P, C, D$ are collinear

$$
\begin{array}{ll}
\therefore & z(\bar{a}-\bar{b})(c-d)-z(\bar{c}-\bar{d})(a-b)=(c \bar{d}-\bar{c} d)(a-b)-(a \bar{b}-\bar{a} b)(c-d)  \tag{iii}\\
\because & z \bar{z}=r^{2}=k \text { (say) } \quad \therefore \quad \bar{a}=\frac{k}{a}, \bar{b}=\frac{k}{b}, \bar{c}=\frac{k}{c} \text { etc. }
\end{array}
$$

From equation (iii) we get
$z\left(\frac{k}{a}-\frac{k}{b}\right)(c-d)-z\left(\frac{k}{c}-\frac{k}{d}\right)(a-b)=\left(\frac{c k}{d}-\frac{k d}{c}\right)(a-b)-\left(\frac{a k}{b}-\frac{b k}{a}\right)(c-d)$
$\therefore \quad z=\frac{\mathrm{a}^{-1}+\mathrm{b}^{-1}-\mathrm{c}^{-1}-\mathrm{d}^{-1}}{\mathrm{a}^{-1} \mathrm{~b}^{-1}-\mathrm{c}^{-1} \mathrm{~d}^{-1}}$

## 1. DEFINITION :

Complex numbers are definited as expressions of the form $a+i b$ where $a, b \in R \& i=\sqrt{-1}$. It is denoted by $z$ i.e. $z=a+i b$. ' $a$ ' is called as real part of $z(\operatorname{Re} z)$ and ' $b$ ' is called as imaginary part of $\mathrm{z}(\operatorname{Im} \mathrm{z})$.

## Short Revision

Every Complex Number Can Be Regarded As
 system is $\mathrm{N} \subset \mathrm{W} \subset \mathrm{I} \subset \mathrm{Q} \subset \mathrm{R} \subset \mathrm{C}$.
(b) Zero is both purely real as well as purely imaginary but not imaginary.
(c) $\quad i=\sqrt{-1}$ is called the imaginary unit. Also $i^{2}=-1 ; i^{3}=-i ; i^{4}=1$ etc.
(d) $\sqrt{\mathrm{a}} \sqrt{\mathrm{b}}=\sqrt{\mathrm{a} b}$ only if atleast one of either a or b is non-negative.
2. CONJUGATE COMPLEX :

If $z=a+i b$ then its conjugate complex is obtained by changing the sign of its imaginary part $\&$ is denoted by $\bar{z}$. i.e. $\bar{z}=a-i b$.

## Note that :

(i) $\quad z+\bar{z}=2 \operatorname{Re}(z) \quad$ (ii) $\quad z-\bar{z}=2 i \operatorname{Im}(z) \quad$ (iii) $\quad z \bar{z}=a^{2}+b^{2}$ which is real
(iv) $\quad$ If $z$ lies in the $1^{\text {st }}$ quadrant then $\bar{z}$ lies in the $4^{\text {th }}$ quadrant and $-\bar{z}$ lies in the $2^{\text {nd }}$ quadrant.
3.
ALGEBRAIC OPERATIONS:

The algebraic operations on complex numbers are similiar to those on real numbers treating $i$ as a polynomial. Inequalities in complex numbers are not defined. There is no validity if we say that complex number is positive or negative.
e.g. $z>0,4+2 \mathrm{i}<2+4 \mathrm{i}$ are meaningless .

However in real numbers if $\mathrm{a}^{2}+\mathrm{b}^{2}=0$ then $\mathrm{a}=0=\mathrm{b}$ but in complex numbers,
4. EQUALITY IN COMPLEXNUMBER :

Two complex numbers $z_{1}=a_{1}+i b_{1} \& z_{2}=a_{2}+i b_{2}$ are equal if and only if their real \& imaginary
5. REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS :
(a) Cartesian Form (Geometric Representation) :

Every complex number $z=x+i$ y can be represented by a point on the cartesian plane known as complex plane (Argand diagram) by the ordered pair ( $\mathrm{x}, \mathrm{y}$ ).
length OP is called modulus of the complex number denoted by $|\mathrm{z}| \&$ $\theta$ is called the argument or amplitude .
eg. $|z|=\sqrt{x^{2}+y^{2}} \quad \&$

$\theta=\tan ^{-1} \frac{y}{x}$ (angle made by OP with positive $\left.x-a x i s\right)$

NOTE :(i) $|z|$ is always non negative. Unlike real numbers $|z|=\left[\begin{array}{cll}z & \text { if } & z>0 \\ -z & \text { if } & z<0\end{array}\right.$ is not correct
(ii) Argument of a complex number is a many valued function. If $\theta$ is the argument of a complex number then $2 \mathrm{n} \pi+\theta ; \mathrm{n} \in \mathrm{I}$ will also be the argument of that complex number. Any two arguments of a complex number differ by $2 n \pi$.
(iii) The unique value of $\theta$ such that $-\pi<\theta \leq \pi$ is called the principal value of the argument.
(iv) Unless otherwise stated, amp z implies principal value of the argument.
(v) By specifying the modulus \& argument a complex number is defined completely. For the complex number $0+0 \mathrm{i}$ the argument is not defined and this is the only complex number which is given by its modulus.
(vi) There exists a one-one correspondence between the points of the plane and the members of the set of complex numbers.

## (b) Trignometric / Polar Representation :

(a) $\mathrm{z}+\overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z}) \quad ; \quad \mathrm{z}-\overline{\mathrm{z}}=2 \mathrm{i} \operatorname{Im}(\mathrm{z}) \quad ; \quad \overline{(\overline{\mathrm{z}})}=\mathrm{z} \quad ; \quad \overline{\mathrm{z}_{1}+\mathrm{z}_{2}}=\overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{2}$;
$\overline{\mathrm{z}_{1}-\mathrm{z}_{2}}=\overline{\mathrm{z}}_{1}-\overline{\mathrm{z}}_{2} \quad ; \quad \overline{\mathrm{z}_{1} \mathrm{z}_{2}}=\overline{\mathrm{z}}_{1} \cdot \overline{\mathrm{z}}_{2} \quad \overline{\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)}=\frac{\overline{\mathrm{z}}_{1}}{\overline{\mathrm{z}}_{2}} ; \mathrm{z}_{2} \neq 0$
(b) $\quad|\mathrm{z}| \geq 0 ;|\mathrm{z}| \geq \operatorname{Re}(\mathrm{z}) ;|\mathrm{z}| \geq \operatorname{Im}(\mathrm{z}) ;|\mathrm{z}|=|\overline{\mathrm{z}}|=|-\mathrm{z}| ; \quad \mathrm{z} \overline{\mathrm{z}}=|\mathrm{z}|^{2} ;$
$\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \quad ; \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, z_{2} \neq 0,\left|z^{n}\right|=|z|^{n} ;$
$\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left[\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right]$
$\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad$ [TRIANGLE INEQUALITY]
(c) (i)
(i) $\quad \operatorname{amp}\left(z_{1} \cdot z_{2}\right)=a m p z_{1}+a m p z_{2}+2 k \pi$
$k \in I$
(ii) $\quad \operatorname{amp}\left(\frac{z_{1}}{z_{2}}\right)=\operatorname{amp} \mathrm{z}_{1}-\operatorname{amp} \mathrm{z}_{2}+2 \mathrm{k} \pi ; \quad \mathrm{k} \in \mathrm{I}$
(iii) $\quad \operatorname{amp}\left(\mathrm{z}^{\mathrm{n}}\right)=\mathrm{namp}(\mathrm{z})+2 \mathrm{k} \pi$.
where proper value of $k$ must be chosen so that RHS lies in $(-\pi, \pi]$.
(7) VECTORIAL REPRESENTATION OFA COMPLEX :

Every complex number can be considered as if it is the position vector of that point. If the point $P$ represents the complex number $z$ then, $\overrightarrow{\mathrm{OP}}=\mathrm{z}$ \& $|\overrightarrow{\mathrm{OP}}|=|\mathrm{z}|$. NOTE

If $\overrightarrow{O P}=z=r e^{i \theta}$ then $\overrightarrow{O Q}=z_{1}=r e^{i(\theta+\phi)}=z$. e ${ }^{i \phi}$. If $\overrightarrow{O P}$ and $\overrightarrow{O Q}$ are of unequal magnitude then $\stackrel{\Lambda}{\mathrm{OQ}}=\stackrel{\Lambda}{\mathrm{OP}}{ }^{\mathrm{i} \phi}$
(ii) If $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ are four points representing the complex numbers $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3} \& \mathrm{z}_{4}$ then

(iii) $z_{2}-z_{1}$,
$\mathrm{AB} \perp \mathrm{CD}$ if $\frac{\mathrm{z}_{4}-\mathrm{z}_{3}}{\mathrm{z}_{2}-\mathrm{z}_{1}}$ is purely imaginary ]
(iii) If $z_{1}, z_{2}, z_{3}$ are the vertices of an equilateral triangle where $z_{0}$ is its circumcentre then
(a) $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}-z_{1} z_{2}-z_{2} z_{3}-z_{3} z_{1}=0$
(b) $\mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2}=3 \mathrm{z}_{0}^{2}$
8. DEMOIVRE'S THEOREM : Statement $: \cos n \theta+i \sin n \theta$ is the value or one of the values of $(\cos \theta+\mathrm{i} \sin \theta)^{\mathrm{n}} ¥ \mathrm{n} \in \mathrm{Q}$. The theorem is very useful in determining the roots of any complex quantity Note : Continued product of the roots of a complex quantity should be determined using theory of equations.
CUBE ROOT OF UNITY: (i) The cube roots of unity are $1, \frac{-1+\mathrm{i} \sqrt{3}}{2}, \frac{-1-\mathrm{i} \sqrt{3}}{2}$.
(ii) If $w$ is one of the imaginary cube roots of unity then $1+\underset{w}{2}+w^{2}=0$. In general $1+w^{r}+w^{2 r}=0$; where $r \in I$ but is not the multiple of 3 .
(iii) In polar form the cube roots of unity are: $\cos 0+\mathrm{i} \sin 0 ; \cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}, \cos \frac{4 \pi}{3}+\mathrm{i} \sin \frac{4 \pi}{3}$
(iv) The three cube roots of unity when plotted on the argand plane constitute the verties of an equilateral triangle.
(v) The following factorisation should be remembered:
( $a, b, c \in R \& \omega$ is the cube root of unity)

