

10. If $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$, then the value of x and y are 1) x = 3, y = 32) x = -3, y = 32) x = 3, y = -3 4) x = -3, y = -3Ans: (1) 11. If ${}^{n}C_{12} = {}^{n}C_{8}$ then is equal to 3) 6 1) 12 2) 26 4) 20 Ans: (4) 12. The total number of terms in the expansion of $(x + a)^{47} - (x - a)^{47}$ after simplification is 3) 48 1) 24 2) 47 4) 96 Ans: (1) 13. The plane 2x - 3y + 6z - 11 = 0 makes an angle sin⁻¹ (α) with X-axis. The value of α is equal to 3) $\frac{\sqrt{2}}{3}$ 4) $\frac{\sqrt{3}}{2}$ 1) $\frac{2}{7}$ 2) $\frac{3}{7}$ Ans: (1) 14. If coefficient of variation is 60 and standard deviation is 24, then Arithmetic mean is 1) 40 2) 1/40 3) 7/20 4) 20/7 Ans: (1) 15. If $f(x) = \begin{cases} Kr^2 & \text{if } x \le 2 \\ 3 & \text{if } x \ge 2 \end{cases}$ is continuous at x = 2, then the value of K is 3) 3 1) 4/3 2) 3/4 4) 4Ans: (2) 16. If $|x - 2| \le 1$, then 2) x∈(1, 3) 1) x ∈(-1, 3) 3) x∈[1, 3] 4) x∈[-1, 3) Ans: (3) 17. If A is a square matrix of order 3 x 3, then |KA| is equal to 2) $K^{3}|A|$ 1) $K^{2}|A|$ 3) K|A| 4) 3K|A| Ans: (2) 18. The contrapositive statement of statement "If x is prime number, then x is odd" is 1) If x is not is prime number, then x is not odd 2) If x is not odd, then x is not a prime number 3) If x is a prime number, then x is not odd. 4) If x is not a prime number, then x is odd. Ans: (2) 19. If A and B are finite sets and $A \subset B$, then 1) n(A \cap B) = ϕ 2) $n(A \cup B) = n(B)$ 3) $n(A \cap B) = n(B)$ 4) $n(A \cup B) = n(A)$ Ans: (2) 20. The range of the function $f(x) = \sqrt{9 - x^2}$ is 2) [0, 3) 1) (0, 3] 3) (0, 3) 4) [0, 3] Ans: (4) 21. If a matrix A is both symmetric and skew symmetric, then 1) A is diagonal matrix 2) A is a zero matrix 3) A is scalar matrix 4) A is square matrix Ans: (4)

 23. The perpendicular distance of the point P (6, 7, 8) from XY-plane is

 1) 8
 2) 6
 3) 7
 4) 5

Ans: (1)

24. The shaded region in the figure is the solution set of the inequations.

Sin the range of set X is 1) $[0, \pi]$ 2) $[0, \pi] - \left[\frac{\pi}{2}\right]$ 3) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ 4) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ Ans: (2) 32. Two events A and B will be independent if 1) P (A' \cap B') = (1 - P (A)) (1 - P(B)) 2) P (A) + P (B) = 1 3) P (A) = P (B) 4) A and B are mutually exclusive Ans: (3) 33. If $\vec{a} \notin \vec{b}$ are unit vectors, then angle between \vec{a} and \vec{b} for $\sqrt{3} \vec{a} - \vec{b}$ to be unit vector is 1) 60° 2) 45° 3) 30° 4) 90° Ans: (3) 34. The point on the curve $y^{2} = x$ where the tangent makes an angle of $\pi / 4$ with X – axis is 1) $(4, 2)$ 2) $\left(\frac{1}{4}, \frac{1}{2}\right)$ 3) $(1, 1)$ 4) $\left(\frac{1}{2}, \frac{1}{4}\right)$ Ans: (3) 35. The derivative of $\cos^{-1}(2x^{2} - 1)$ w.r.t $\cos^{-1}x$ is 1) $\frac{-1}{2\sqrt{1-x^{2}}}$ 2) $\frac{e^{x}}{x}$ 3) 2 4) $1-x^{2}$ Ans: (3) 36. $\int \frac{(x+3)e^{x}}{(x+4)^{2}} dx$ is equal to 1) $\frac{1}{(x+4)^{2}} + C$ 2) $\frac{e^{x}}{(x+3)} + C$ 3) $\frac{e^{x}}{(x+4)^{2}} + C$ 4) $\frac{e^{x}}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \left[\frac{\sin^{-1}(nx) \tan^{-1}(\frac{x}{\pi})}{\sin^{-1}(\frac{x}{\pi})} \right]$, $B = \left[-\cos^{-1}(nx) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) \\ \tan^{-1}(nx) \end{bmatrix}$ then A - B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{2} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y - 1(y \pm 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$ Ans: (1)	31. The range of sec ⁻¹ x	ic			
32. Two events A and B will be independent if 1) P (A' ∩ B') = (1 − P (A)) (1 − P(B)) 2) P (A) + P (B) = 1 3) P (A) = P (B) 4) A and B are mutually exclusive Ans: (1) 33. If $\vec{a} \otimes \vec{b}$ are unit vectors, then angle between \vec{a} and \vec{b} for $\sqrt{3}$ \vec{a} - \vec{b} to be unit vector is 1) 60° 2)45^{\circ} 3) 30^{\circ} 4) 90° Ans: (3) 34. The point on the curve $y^2 = x$ where the tangent makes an angle of $\pi / 4$ with X – axis is 1) $(4, 2)$ 2) $\left(\frac{1}{4}, \frac{1}{2}\right)$ 3) $(1, 1)$ 4) $\left(\frac{1}{2}, \frac{1}{4}\right)$ Ans: (2) 35. The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t $\cos^{-1} x$ is 1) $\frac{-1}{2\sqrt{1-x^2}}$ 2) $\frac{2}{x}$ 3) 2 4) 1+x^2 Ans: (3) 36. $\int \frac{(x+3)e^x}{(x+4)^2} + C$ 2) $\frac{e^x}{(x+3)} + C$ 3) $\frac{e^x}{(x+4)^2} + C$ 4) $\frac{e^x}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \left[\frac{\sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi})}{\sin^{-1}(\frac{x}{\pi})} \right]$, $B = \left[\frac{-\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi})}{\tan^{-1}(\pi x)} \right]$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^2 x}{\cot^2 x + \tan^2 x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$	-		3) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	4) $\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$	
1) $P(A' \cap B') = (1 - P(A))(1 - P(B))$ 3) $P(A) = P(B)$ 3) $P(A) = P(B)$ 4) A and B are mutually exclusive 3) $P(A) = P(B)$ 3) $P(A) = P(B)$ 4) A and B are mutually exclusive 3) $P(A) = P(B)$ 4) A and B are mutually exclusive 3) $P(A) = P(B)$ 4) $P(A) = P(B)$ 4) A and B are mutually exclusive 3) $P(A) = P(B)$ 4) $P(B) = 1$ 4) $P(B) = P(B)$ 4) $P(B) = P(B)$ 5) $P(B$		(-)		()	
33. If $\vec{a} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1) P ($A' \cap B'$) = (1 - P (A)) (1- P(B)) 3) P (A) = P (B)		2) $P(A) + P(B) = 1$		
1) 60° 2) 45° 3) 30° 4) 90° Ans: (3) 34. The point on the curve $y^{2} = x$ where the tangent makes an angle of $\pi / 4$ with X - axis is 1) $(4, 2)$ 2) $(\frac{1}{4}, \frac{1}{2})$ 3) $(1, 1)$ 4) $(\frac{1}{2}, \frac{1}{4})$ Ans: (2) 35. The derivative of $\cos^{-1}(2x^{2} - 1)$ w.r.t $\cos^{-1}x$ is 1) $\frac{-1}{2\sqrt{1-x^{2}}}$ 2) $\frac{2}{x}$ 3) 2 4) $1-x^{2}$ Ans: (3) 36. $\int \frac{(x+3)e^{x}}{(x+4)^{2}} dx$ is equal to 1) $\frac{1}{(x+4)^{2}} + C$ 2) $\frac{e^{x}}{(x+3)} + C$ 3) $\frac{e^{x}}{(x+4)^{2}} + C$ 4) $\frac{e^{x}}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) \tan^{-1}(\pi x) \end{bmatrix}$ then A-B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$					
Ans: (3) 34. The point on the curve $y^2 = x$ where the tangent makes an angle of $\pi / 4$ with X - axis is 1) (4, 2) 2) $\left(\frac{1}{4}, \frac{1}{2}\right)$ 3) (1, 1) 4) $\left(\frac{1}{2}, \frac{1}{4}\right)$ Ans: (2) 35. The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t $\cos^{-1}x$ is 1) $\frac{-1}{2\sqrt{1-x^2}}$ 2) $\frac{2}{x}$ 3) 2 4) $1-x^2$ Ans: (3) 36. $\int \frac{(x+3)e^x}{(x+4)^2} dx$ is equal to 1) $\frac{1}{(x+4)^2} + C$ 2) $\frac{e^x}{(x+3)} + C$ 3) $\frac{e^x}{(x+4)^2} + C$ 4) $\frac{e^x}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \left[\frac{\sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi})}{\sin^{-1}(\frac{x}{\pi})} \right]$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) \\ \tan^{-1}(\pi x) \end{bmatrix}$ then A-B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$					
1) (4, 2) 2) $\left(\frac{1}{4}, \frac{1}{2}\right)$ 3) (1, 1) 4) $\left(\frac{1}{2}, \frac{1}{4}\right)$ Ans: (2) 35. The derivative of $\cos^{-1}(2x^{2} - 1)$ w.r.t $\cos^{-1}x$ is 1) $\frac{-1}{2\sqrt{1-x^{2}}}$ 2) $\frac{2}{x}$ 3) 2 4) $1-x^{2}$ Ans: (3) 36. $\int \frac{(x+3)e^{x}}{(x+4)^{2}} dx$ is equal to 1) $\frac{1}{(x+4)^{2}} + C$ 2) $\frac{e^{x}}{(x+3)} + C$ 3) $\frac{e^{x}}{(x+4)^{2}} + C$ 4) $\frac{e^{x}}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \left[\frac{\sin^{-1}(\pi x)}{\sin^{-1}(\frac{x}{\pi})} \cot^{-1}(\pi x) \right]$, $B = \left[-\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) \tan^{-1}(\pi x) \right]$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$	Ans: (3)		·		
Ans: (2) 35. The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t $\cos^{-1}x$ is 1) $\frac{-1}{2\sqrt{1-x^2}}$ 2) $\frac{2}{x}$ 3) 2 4) $1-x^2$ Ans: (3) 36. $\int \frac{(x+3)e^x}{(x+4)^2} dx$ is equal to 1) $\frac{1}{(x+4)^2} + C$ 2) $\frac{e^x}{(x+3)} + C$ 3) $\frac{e^x}{(x+4)^2} + C$ 4) $\frac{e^x}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A-B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equation $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$					
35. The derivative of $\cos^{-1}(2x^2 - 1)$ w.r.t $\cos^{-1}x$ is 1) $\frac{-1}{2\sqrt{1-x^2}}$ 2) $\frac{2}{x}$ 3) 2 4) $1-x^2$ Ans: (3) 36. $\int \frac{(x+3)e^x}{(x+4)^2} dx$ is equal to 1) $\frac{1}{(x+4)^2} + C$ 2) $\frac{e^x}{(x+3)} + C$ 3) $\frac{e^x}{(x+4)^2} + C$ 4) $\frac{e^x}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_0^{\pi/2} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$	1) (4, 2)	$2)\left(\frac{1}{4},\frac{1}{2}\right)$	3) (1, 1)	$4)\left(\frac{1}{2},\frac{1}{4}\right)$	
1) $\frac{-1}{2\sqrt{1-x^2}}$ 2) $\frac{2}{x}$ 3) 2 4) $1-x^2$ Ans: (3) 36. $\int \frac{(x+3)e^x}{(x+4)^2} dx$ is equal to 1) $\frac{1}{(x+4)^2} + C$ 2) $\frac{e^x}{(x+3)} + C$ 3) $\frac{e^x}{(x+4)^2} + C$ 4) $\frac{e^x}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$					
Ans: (3) 36. $\int \frac{(x+3)e^{x}}{(x+4)^{2}} dx \text{ is equal to}$ 1) $\frac{1}{(x+4)^{2}} + C$ 2) $\frac{e^{x}}{(x+3)} + C$ 3) $\frac{e^{x}}{(x+4)^{2}} + C$ 4) $\frac{e^{x}}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$	4	2			
36. $\int \frac{(x+3)e^{x}}{(x+4)^{2}} dx \text{ is equal to}$ 1) $\frac{1}{(x+4)^{2}} + C$ 2) $\frac{e^{x}}{(x+3)} + C$ 3) $\frac{e^{x}}{(x+4)^{2}} + C$ 4) $\frac{e^{x}}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx \text{ is equal to}$ 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1) \text{ is}$ 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$	1) $\frac{-1}{2\sqrt{1-x^2}}$	2) $\frac{2}{x}$	3) 2	4) 1-x ²	
$1) \frac{1}{(x+4)^{2}} + C \qquad 2) \frac{e^{x}}{(x+3)} + C \qquad 3) \frac{e^{x}}{(x+4)^{2}} + C \qquad 4) \frac{e^{x}}{(x+4)}$ Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$					
Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y} \right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y} \right = -x + C$	(X 1)				
Ans: (4) 37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y} \right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y} \right = -x + C$	1) $\frac{1}{(x+4)^2} + C$	2) $\frac{e^{x}}{(x+3)} + C$	3) $\frac{e^{x}}{(x+4)^{2}} + C$	4) $\frac{e^{x}}{(x+4)}$	
37. If $A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & \cot^{-1}(\pi x) \end{bmatrix}$, $B = \begin{bmatrix} -\cos^{-1}(\pi x) & \tan^{-1}\left(\frac{x}{\pi}\right) \\ \sin^{-1}\left(\frac{x}{\pi}\right) & \tan^{-1}(\pi x) \end{bmatrix}$ then A- B is equal to 1) 0 2) 2I 3) I 4) $\frac{1}{2}I$ Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$		(X+3)	(++)		
1) 0 2) 2I 3) I 4) $\frac{1}{2}$ I Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y} \right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y} \right = -x + C$		$\tan^{-1}\left(\frac{\mathbf{x}}{\pi}\right)$, B = $\begin{bmatrix} -\cos^{2}\theta & -\cos^{2}\theta \\ -\cos^{2}\theta & -\cos^{2}\theta \end{bmatrix}$	$\operatorname{pos}^{-1}(\pi \mathbf{x}) \operatorname{tan}^{-1}\left(\frac{\mathbf{x}}{\pi}\right)$	then A- B is equal to	
Ans: (4) 38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx$ is equal to 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1 - y} \right = x + C$ 2) $\log 1 - y = x + C$ 3) $\log 1 + y = x + C$ 4) $\log \left \frac{1}{1 - y} \right = -x + C$	$\left[\sin \left(\frac{\pi}{\pi} \right) \right]$	$\cot^{-}(\pi X)$ SII	$\operatorname{tan}^{-}\left(\frac{\pi}{\pi}\right)$ $\operatorname{tan}^{-}\left(\pi X\right)$		
38. $\int_{0}^{\pi/2} \frac{\tan^{7} x}{\cot^{7} x + \tan^{7} x} dx \text{ is equal to}$ 1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y}\right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y}\right = -x + C$	1) 0	2) 21	3) I	4) $\frac{1}{2}$ I	
1) $\frac{\pi}{6}$ 2) $\frac{\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$ Ans: (2) 39. General solution of differential equation $\frac{dy}{dx} + y = 1(y \neq 1)$ is 1) $\log \left \frac{1}{1-y} \right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y} \right = -x + C$					
Ans: (2) 39. General solution of differential equatin $\frac{dy}{dx} + y = 1 (y \neq 1)$ is 1) $\log \left \frac{1}{1-y} \right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y} \right = -x + C$	38. $\int_0^{\pi/2} \frac{\tan^7 x}{\cot^7 x + \tan^7 x}$	dx is equal to			
39. General solution of differential equatin $\frac{dy}{dx} + y = 1 (y \neq 1)$ is 1) $\log \left \frac{1}{1-y} \right = x + C$ 2) $\log 1-y = x + C$ 3) $\log 1+y = x + C$ 4) $\log \left \frac{1}{1-y} \right = -x + C$	1) $\frac{\pi}{6}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{2}$	4) $\frac{\pi}{3}$	
1) $\log \left \frac{1}{1 - y} \right = x + C$ 3) $\log 1 + y = x + C$ 4) $\log \left \frac{1}{1 - y} \right = -x + C$	Ans: (2)			-	
3) $\log 1+y = x + C$ 4) $\log \frac{1}{ 1-y } = -x + C$	39. General solution of differential equatin $\frac{dy}{dx} + y = 1 (y \neq 1)$ is				
	$1) \log \left \frac{1}{1-y} \right = x + C$		2) log 1-y = x+C		
Ans: (1)	3) $\log 1 + y = x + C$		4) $\log \left \frac{1}{1-y} \right = -x + \frac{1}{1-y}$	+ C	
	Ans: (1)		6		

40. If $\tan^{-1}x + \tan^{-1}y = \frac{4\pi}{5}$, then $\cot^{-1}x + \cot^{-1}y$ is equal to 2) $\frac{3\pi}{5}$ 4) $\frac{2\pi}{5}$ 1) $\frac{\pi}{5}$ 3) π Ans: (1) 41. $3 + 5 + 7 + \dots$ to n term is 2) $(n + 1)^2$ 4) n² 3) n (n + 2) 1) n (n – 2) Ans: (3) 42. If $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ then x is equal to 1) $\pm 2\sqrt{2}$ 4) 2 2) 4 3)8 Ans: (1) 43. If an LPP admits optimal solution at two consecutive vertices of a feasible region, then 1) the LPP under consideration must be reconstructed 2) the required optimal solution is at the midpoint of the line joining two points. 3) the LPP under consideration is not solvable 4) the optimal solution occurs at every point on the joining these two points. Ans: (4) 44. $\int \sqrt{x^2 + 2x + 5} dx$ is equal to 1) (x + 1) $\sqrt{x^2 + 2x + 5} + \frac{1}{2} \log |x + 1 + \sqrt{x^2 + 2x + 5}| + C$ 2) (x + 1) $\sqrt{x^2 + 2x + 5} + 2 \log |x + 1 + \sqrt{x^2 + 2x + 5}| + C$ 3) (x + 1) $\sqrt{x^2 + 2x + 5 - 2} \log \left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C$ 4) $\frac{1}{2}(x + 1)\sqrt{x^2 + 2x + 5 + 2} \log |x + 1 + \sqrt{x^2 + 2x + 5}| + C$ Ans: (4) 45. The distance of the point (-2, 4, -5) from the line $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ is 4) $\frac{\sqrt{37}}{10}$ 3) $\sqrt{\frac{37}{10}}$ 1) $\frac{37}{\sqrt{10}}$ 2) $\frac{37}{10}$ Ans: (3) 46. $\int |x+2| dx$ is equal to 2) 30 3) 29 4) 28 1) 27 Ans: (3) 47. $\int_0^{\pi/2} \frac{1}{a^2 \cdot \sin^2 x + b^2 \cdot \cos^2 x} dx$ is equal to 1) $\frac{\pi a}{4b}$ 2) $\frac{\pi b}{4a}$ 3) $\frac{\pi a}{2b}$ 4) $\frac{\pi}{2ab}$ Ans: (4) 5

48. Binary operation * on R - { -1} defined by a * b = $\frac{a}{b+1}$ is 1) * is associative and commutative 2) * is neither associative nor commutative 3) * is commutative but not associative 4) * is associative but not commutative Ans: (2) 49. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} , $+\vec{b}$, $+\vec{c}=\vec{0}$, then the value of \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} is equal to 4) $-\frac{3}{2}$ 2) $\frac{3}{2}$ 3) 3 1) 1 Ans: (4) 50 Let $\Delta = \begin{vmatrix} Ax & x^2 & 1 \\ By & y^2 & 1 \\ Cz & z^2 & 1 \end{vmatrix}$ and $\Delta_1 = \begin{vmatrix} A & B & C \\ x & y & z \\ zy & zx & xy \end{vmatrix}$ then 2) $\Delta_1 = 2\Delta$ 3) $\Delta_1 = -\Delta$ 1) $\Delta_1 = \Delta$ 4) $\Delta_1 \neq \Delta$ Ans: (1) 51. if $y = \begin{vmatrix} f(x) & g(x) & h(x) \\ 1 & m & n \\ a & b & c \end{vmatrix}$, then $\frac{dy}{dx}$ is equal to 1) $\begin{vmatrix} f(x) & g'(x) & h'(x) \\ 1 & m & n \\ a & b & c \end{vmatrix}$ $\begin{array}{c|cccc} 1 & m & n \\ r'(x) & g'(x) & h'(x) \\ a & b & c \\ \end{array} \\ \begin{array}{c|ccccc} 1 & m & n \\ a & b & c \\ r'(x) & g'(x) & h'(x) \end{array}$ 3) f'(x) = 1 a g'(x) = m b h'(x) = n c Ans: (1, 3, 4) 52. The area of the region bounded by the curve $y = x^2$ and the line y = 16 is 1) $\frac{128}{3}$ sq. units 2) $\frac{64}{3}$ sq. units 3) $\frac{32}{3}$ sq. units 4) $\frac{256}{3}$ sq. units Ans: (1) 53. If sin x = $\frac{2t}{1+t^2}$, tan y = $\frac{2t}{1-t^2}$, then $\frac{dy}{dx}$ is equal to 2) 2 3) 0 1) -1 4) 1 Ans: (4) 54. Let $f : R \to R$ be defined by $f(x) = x^{4}$, then 1) f may be one-one and onto 2) f is one-one and onto 3) f is one-one but not onto 4) f is neither one-one nor onto Ans: (4) 55. If y = log (log x) then $\frac{d^2y}{dx^2}$ is equal to 1) $\frac{-(1 + \log x)}{x^2 \log x}$ 2) $\frac{(1 + \log x)}{x^2 \log x}$ 3) $\frac{-(1 + \log x)}{(x \log x)^2}$ 4) $\frac{(1 + \log x)}{(x^2 \log x)^2}$ Ans: (3)

56. Area of the region bounded by the curve $y = \cos x$, x = 0 and $x = \pi$ is 1) 3 sq. units 2) 1 sq. unit 3) 4 sq. units 4) 2 sq. units Ans: (4) 57. If $y = \tan^{-1}\left(\frac{\sin x + \cos x}{\cos x - \sin x}\right)$, then $\frac{dy}{dx}$ is equal to 2) 1/2 3) 0 4) π/4 1) 1 Ans: (1) 58. The eccentricity of the ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ is 1) $\frac{2\sqrt{5}}{4}$ 2) $\frac{2\sqrt{13}}{6}$ 3) $\frac{2\sqrt{5}}{6}$ 4) $\frac{2\sqrt{13}}{14}$ Ans: (3) 59. $\int \frac{\cos 2x - \cos 2\theta}{\cos x - \cos \theta} dx$ is equal to 2) $2(\sin x - x \cos \theta) + C$ 1) $2(\sin x + x \cos \theta) + C$ 3) $2(\sin x + 2x \cos \theta) + C$ 4) $2(\sin x - 2x \cos \theta) + C$ Ans: (1) 60. The value of $\lim_{\theta \to 0} \frac{1 - \cos 4\theta}{1 - \cos 6\theta}$ is 1) 9/4 2) 3/4 3) 4/9 4) 9/3 Ans: (3) 7