B.E.EXTC VII (Rev).

15/5/15

QP Code: 8416

[Total Marks: 100

Instruction: 1. Question No. 1 is cumpolsory

2. Out of remaining question attempt any four questions.

(3 Hours)

- 3. In all five question to be attempted.
- 4. Figures to the right indicate full marks.
- Q.1. a) One of zeros of a causal linear phase FIR filter is at $0.5 e^{-i\pi/3}$. Show the locations of the zeros and hence find the transfer function and impulse response of the filter 0.5
- b) Determine Zeros of the following FIR systems and indicate when the system is minimum ρ has emaximum phase and mixed phase.

1.
$$H[z] = 6 + Z^{-1} + Z^{-2}$$
 2. $H[z] = 1 - Z^{-1} - 6Z^{-2}$ 05

- c) Find the number of complex multiplications and complex additions required to find DFT for 32 point sequence. Compare them with number of computation required if FFT algorithm is used. 05
 - d) What is linear phase filters. Define group delay and phase delay.
- Q. 2. A) Derive Radix 2 Decimation in Time Fast Fourier Transion and draw its signal flow graph, [10]
 - B) $X[k] = \{36, -4 + j, 9.656, -4 + j, -4 + j, 1.656, -4, -4 j, 1.656, -4 j, -4 j, 9.656\}$

Find x[n] using IFFT algorithm (use DIT IFFT)

Q. 3 a) An 8 point sequence x[n] = {1, 2, 3, 4, 5, 6, 7, 8}

i) Find X[k] using DIF-FFT algoriting

ii) Let $x_1[n] = \{5, 6, 7, 8, 1, 2, 3, 4\}$ using appropriate DFT property and result of part (i) determine $X_1[k]$

b) Explain up sampling by nor.-integer factor, with a neat diagram and waveforms.

[10]

[10]

05

Q.4 a) Design a Chebyshev I bandstop digital filter with the following specifications:

Passsband rango: 0 to 275Hz and 2KHz to ∞

Stopband range: 550 to 1000Hz.

Sampling frequency: 8KHz

Passband attenuation: 1dB

Stopband attenuation: 15dB

QP Code: 8416

Use BLT and assume T= 1sec. [10] b) Design a Butterworth filter satisfying the following constraints: $0.75 \le |H(w)| \le 1$ for0≤w≤π/2 |H(w)|≤0.2 for 3π/4≤w≤π Use Bilinear Transformation Method [10] Q. 5 a) Design FIR digital highpass filter with a frequency response H(w) = 1 $\pi/4 \le |w| \le \pi$ lwl ≤π/4 Use Hamming window. N = 7. [10]

Q. 6 a) An FIR filter is given by the difference equation

$$y[n] = 2x[n] + \frac{4}{5}x[n-1] + \frac{3}{2}x[n-2] + \frac{2}{5}x[n-3]$$

b) With a neat diagram describe frequency sampling realization of FIR filters.

Determine the lattice form

- b) Using linear convolution find y[n] for the sequence $x[n] = \{1,2,-1,2,3,-2,-3,-1,1,2,-1\}$ and h[n] = {1, 2}. Compare the result by solving the problem using overlap save method [10]
- Q. 7 Write Short Notes on

[20]

[10]

- 1. Digital Resonator
- 2. Parseval's Energy theorem and its significance
- 3. Goertzel Algorithm
- 4. Application of signal processing in RADAR

RJ-Con. 9105-15.