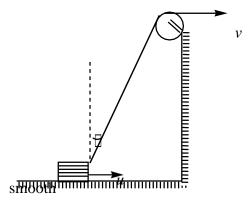
NEET PAPER -2 PHYSICS

Patternof the Entrance Test: -

- 1) The Entrance Test shall consist of one paper containing 180 objective type questions (four options with single correct answer) from Physics, Chemistry and Biology (Botany & Zoology) to be answered on the specially designed machine-gradable sheet using Ball Point Penonly. The duration of paper would be 03 hours
- 2) Each item carries **4 marks**. For each correct response the candidate will get 4 marks. For each

incorrect response one mark will be deducted from the total score.


ħ

- 1. The dimensions of $_{\rho}$ are same as that of (where h = planck's constant and e = charge)
 - 1) Magnetic field induction

2) Magnetic flux

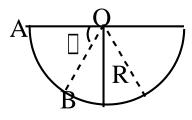
3) Electric field strength

- 4) Elctric flux
- 2. A block A is pulled on a smooth horizontal plane with a rope which moves with velocity
 - $\hfill \square$ as shown in figure. The velocity of the block on the plane 'u' is

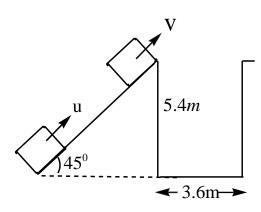
- 1) $\square \cos ec\square$
- $2)\square \sin\square$
- 3) □ cos□
- 4) □ sec □

3.	Find the value of p s	o that $(2\hat{i} - \hat{j} + \hat{k}), (\hat{i} + \hat{j})$	$+2\hat{j}-3\hat{k}$) and $(3\hat{i}+\hat{p}\hat{j}-\hat{k})$	$+5\hat{k}$) may be coplanar
	1) -8	2) -4	3) 2	4) 4

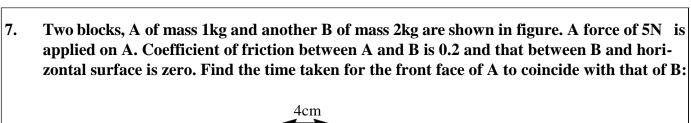
4. A stationary body of mass 3kg explodes into three equal pieces. Two of the pieces fly off at at right angles to each other, one with a velocity 2i ms⁻¹ and the other with a velocity 3 $^{\circ}$ ims⁻¹. If the explosion takes plece in 10^{-5} s, the average force acting on the third piece in newton is

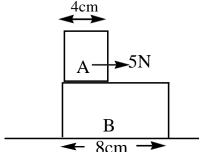

1)
$$(2\hat{i} + 3\hat{j}) \times 10^{-5}$$

1)
$$(2\hat{i} + 3\hat{j}) \times 10^{-5}$$
 2) $-(2\hat{i} + 3\hat{j}) \times 10^{5}$ 3) $(3\hat{j} + 2\hat{i}) \times 10^{5}$ 4) $(2\hat{i} - 3\hat{j}) \times 10^{-5}$


3)
$$(3\hat{j} + 2\hat{i}) \times 10^5$$

4)
$$(2\hat{i} - 3\hat{j}) \times 10^{-5}$$


5. A small particle of mass m is released from rest from point A on frictionless hemispherical bowl as shown in figure. The ratio of magnitude of centripetal force and normal reaciton on the particle at any point B is



A body is projected up a smooth inclined plane with velocity u from the point A as shown in fig. The height of the inclined plane is 5.4m and the top of the inclind plane is conto a well of diameter 3.6m. the body just manages to cross the well. The value of *u* is $(g = 10 \text{ms}^{-2})$

- 1) 20ms⁻¹
- 2) 12ms⁻¹
- 3) 30ms⁻¹
- $4)54 \text{ms}^{-1}$

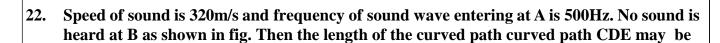
1) 2s

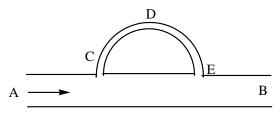
- 2) $\sqrt{\frac{8}{3}}$
- 3) $\sqrt{\frac{3}{8}}s$
- 4) 0.2s
- 8. When a body is moving vertically up with constant velocity, then match the following Column-I Column -II
 - 1) Work done by lifting force is
 - 2) Total work done by all the forces is
 - 3) Work done by gravity

- A) Negative
- **B)** Positive
- C) Zero
- 4) Work done by lifting force + work done by gravity D) Higher positive values
- 1) 1 B, 2 C, 3 A, 4 C

2) 1 - B, 2 - D, 3 - C, 4 - A

3) 1 - B, 2 - A, 3 - C, 4 - D


- 4) 1 A, 2 A, 3 C, 4 D
- 9. A ladder of length 6m and mass 40kg rests with its upper end against a smooth wall and lower end on rough ground. Find the minimum coefficient of friction between the ground and the ladder so that the ladder does not slip if the ladder makes an angel of 60^0 with the horizontal (take g = 10ms^{-2})
 - 1) $\frac{1}{2\sqrt{3}}$
- 2) $\frac{\sqrt{3}}{2}$

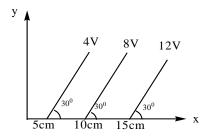

3) $\frac{1}{2}$

- 4) $\frac{1}{\sqrt{3}}$
- 10. During the vapourization of some amount of water at 373K at atmospheric pressure which of the following statements is correct ?
 - a) Work is done by the steam water system on the atmosphere
 - b) Work is done on the steam water system by the atmosphere
 - c) The internal energy of the steam water system increases
 - d) The internal energy of the steam water system decreases
 - 1. a, c only
- 2. b, d only
- 3. b, c only
- 4. a, d only

11.	11. Which of the following is not correct about the centre of mass?					
	1) It depends on t	he frame of reference				
	2) The angular m	omentum of a system a	bout the centre of ma	ss is always zero		
	3) Internal forces	do not affect the motion	on of centre of mass			
	4) Centre of mass	may or may not coinc	ide with centre of gr	avity		
12.	Two billiard ball	s of the same size (ra	adius r) and same	mass are in contact on a billiard		
	table. A third ba	all also of the same si	ze and mass strikes	them symmetrically and remains		
	at rest after the	impact. The coefficient	nt of restitution bety	ween the balls is		
	1) 1/3	2) 2/3	3) 1/2	4) 3/4		
13.	Find the ratio of	f energy required to	raise a satellite upt	to a height R (radius of earth)		
	from the surface	of earth to that requ	iired to put it into a	n orbit at that height.		
		3	4	3		
	1) 2/3	$\frac{3}{2}$	$\frac{4}{3}$	$\frac{3}{4}$		
14.	A wire is suspen	<i>L</i>	3	n a weight W is hanged from its		
	-	•	~	veigth is completely immersed in		
	•	·	•	e density of the material of the		
	weigth is					
	1) 5gcm^{-3}	2) 8gcm^{-3}	3) 4gcm^{-3}	4) 6gcm^{-3}		
15.	A small block of	wood of specific gra	avity 0.4 is submerg	ged at a depth of 1.6m in a con-		
				g		
	tainer containin	g water. The contain	er is accelerated u	pward with an aceleration $\frac{g}{3}$.		
				en released with zero initial		
	velocity is					
	1) 0.4s	2) 0.5s	3) 0.1s	4) 0.2s		
16.	When a liquid	is poured, it insists (to runs down the si	de of the can instead of falling		
	straight down from the tip as shown in fig. This can be explained by					
		R				
		1				
			==/			
		10				
	1) Viscosity		2) Surface tensi	on		
	3) Bernoulli's pri	ncinle	*	d law of motion		
	3) Bemounts pin	петріс	+) Newton's um	d law of motion		

1) 18. T le ar	engths 10cm, 2 and 0 ⁰ C as show	2) 300 ⁰ C and C made of the 0cm and 10cm resp	pectively. Their ends a ature of the junction I	ving the same cross-section are at temperatures 60 ⁰ C, 6		
18. T le an	Three rods A, B engths 10cm, 2 and 0 ⁰ C as show	and C made of the 0cm and 10cm respondent. Then the temperature C	same material and hat pectively. Their ends at the function I 60°C A 10cm B 60°C	ving the same cross-section are at temperatures 60 ⁰ C, 6		
le an 1) 19. T	engths 10cm, 2 and 0 ⁰ C as show	Ocm and 10cm responders. Then the temperature of the company of th	pectively. Their ends a ature of the junction I	are at temperatures $60^{0}\mathrm{C}$, (
19. T) 200G	C 0°C 10cm D	A 10cm B 60°C			
19. T) 200g	0°C 10cm D	$\frac{B}{B}$ 60°C			
19. T) 200G	C 0°C 10cm D	$\frac{B}{B}$ 60°C			
19. T) 200G	$0^{0}C$ 10 cm D	$\frac{B}{B}$ 60°C			
19. T) 200g	0^{0} C 10 cm D	$\frac{B}{20 \text{cm}} = 60^{\circ} \text{C}$			
19. T	\ 200a		200111			
	30^{0} C	2) 36 ⁰ C	3) 50 ⁰ C	4) 40 ⁰ C		
	Three moles of	an ideal monoatomi	ic gas perform on cyc	le as shown. The gas temp		
		_		K & T_4 =1200K. The work d		
b	by the gas during the cycles is approximately.					
		P				
		0	\rightarrow T			
1)) 10kJ	2) 20kJ	3) 30kJ	4) 15kJ		
	Assertion (A): M he gas	Iean free path of the	e molecule of a gas vai	ries inversely as the density o		
	` '	-	nversely as pressure o	f the gas.		
		rue and R is the corre	•			
			correct explanation of A			
21 1	3) A is true but		·	flase but R is true		
21. A particle performs SHM with a period of 16s. At time t=2s, the particle p origin (MP), while at t=4s, its velocity is 4ms ⁻¹ . Its amplitude is				, ,		
1)	$) \left[\frac{32\sqrt{2}}{\Box} \right]$	$\mathbf{2)} \left[\frac{16\sqrt{3}}{\Box} \right]$	$3) \left[\frac{24\sqrt{2}}{\Box^2} \right]$	$4) \begin{bmatrix} 16 \\ \hline 2 \end{bmatrix}$		

- 1) 16cm
- 2) 32cm
- 3) 48cm
- 4) 88cm
- A radar sends a radio signal of frequency 9×10^9 Hz towards an aircraft approaching the 23. radar. If the reflected wave shows a frequency shift of 3×10^3 Hz, the speed with which the aircraft is approaching the radar in ms⁻¹ [Velocity of the radio signal = 3X10⁸ms⁻¹]
 - 1) 150


- 2) 100
- 3) 50

- 4) 25
- Two similar charged spheres are suspended by strings of equal lengths. The strings make 24. an angle of 30° with each other. When suspended in a liquid of density 0.8gm/cc, the angle remains the same. What is the dielectric constant of the liquid? Given density of material of the spheres =1.6gm/cc.
 - 1) 3

2) 4

3) 2

- 4) 5
- The equipotential lines and their positions in x –y plane are shown in figure. Find electric **25.** field internsity in this region

- 1) 140 V/m
- 2) 160 V/m
- 3) 120 V/m
- 4) 180 V/m
- An electrical dipole is placed at the origin and is directed along the x-axis At a point P, **26.** far away from the dipole, the electric field is parallel to the y- axis. OP makes an angle \Box with the x- axis then

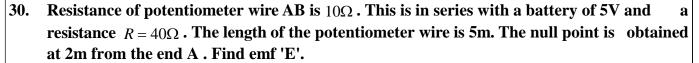
- 1) $\tan \Box = \sqrt{3}$ 2) $\tan \Box = \sqrt{2}$ 3) $\Box = 45^{\circ}$ 4) $\tan \Box = \frac{1}{\sqrt{2}}$

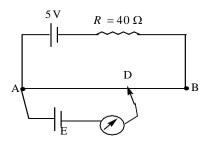
27 .	The	LED.	i.e	light	emitting	diode
<i>4</i>	1110	nin,	1.0.,	ngni	cimiling	uiouc

- a) is made from Ge or Si
- c) is forward biased
- 1) a and b are correct
- 3) a, b and c are correct

- b) is made from Ga As P
- d) is reverse biased
- 2) b and c are correct
- 4) a, b and d are correct

28. Two radioactive materials X_1 and X_2 have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_1 to that of X_2 , will be 1/2 after a time of

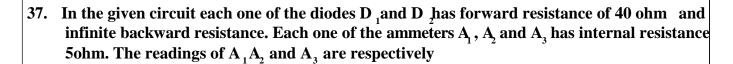

- 1) $\frac{1}{10\lambda}$
- $2) \frac{1}{11\lambda}$
- 3) $\frac{11}{10\lambda}$
- 4) $\frac{1}{9\lambda}$

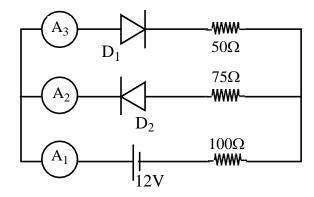

infinite time though acceleration is $a = \frac{eE}{m}$

Reason (R): The velocity acquired by them becomes zero after every collision with the lattice sites

- 1) A and R are true and R is the correct explanation of A
- 2) A and R are true but R is not the correct explanation of A
- 3) A is true but R is false

4) A is flase but R is true




1) 2V

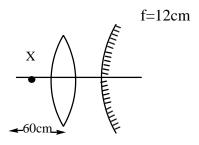
- 2) 0.2V
- 3) 20mV
- 4) 0.4V

- 1) $\frac{\prod_{0} nqri}{m}$
- 2) $\frac{\Box_0 nqri}{4m}$
- 3) $\square_0 mnri$
- 4) $\frac{\Box_0 riq}{2mn}$

32.	A galvanometer of 25Ω resistance can read a maximum currect of 6mA. It can be used a voltmeter to measure maximum of 6V by connecting a resistance to the galvanometer. Identify the correct choice in the given answers.			
	1) 1025Ω in series	2)1025 Ω in parallel	3) 975Ω in series	4) 975 Ω in parallel
33.	When a current is pa	nssed in a circular co	oil, neutral point is fo	und to be at its centre and
	${\bf B}_{\rm H}$ at that place is 0 when the plane of the		l be the resultant mag h 90°?	netic field at the centre
	1) $0.32 \times 10^{-4} T$	2) $0.64 \times 10^{-4} T$	3) $0.45 \times 10^{-4} T$	4) $0.16 \times 10^{-4} T$
34. 35.	 High retentivity and High retentivity and 	high coercivity low coercivity	omagnets should have 2) Low retentivity and 4) Low retentivity and th a velocity . Both	l high coercivity
	plane of paper and a directed inward. Find			rpendicular to plane and
		x x x x x	x x	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		x x x x x x	x x	
		r	\	
		x A x	X X	
		$\begin{bmatrix} a & A \\ x & x & x & x & x \end{bmatrix}$	$C \xrightarrow{b} Q$	
	1) B□2r	2) $B(a+b+2r)\square$	3) $B(a+b+\Box r)\Box$	4) <i>B</i> □ <i>r</i> □
36.	In ac a.c circuit, the c	urrent flowing $is i = i$	$=5\sin(100t-\Box/2)$ A a	nd the potential difference
	is $V = 200 \sin(100t)V$. The power consum	ption is equal to	
	1) 100W	2) 40W	3) 20W	4) 0W
	-,		· , _ · · ·	

1) 0.06A, Zero, 0.04A

2) Zero, 0.08A, 0.03A


3) 0.06A, Zero, 0.06A

4) 0.03A, 0.08A, Zero

38. The electric field of an electromagnetic wave in a medium is given by
$$E = {}_{x}$$
 0, $E_{y} = 2.5 \frac{V}{m}$

$$[\cos(2\Box \times 10^6 \, rads^{-1})t - (\Box \times 10^{-2} \, m^{-1})x]_x$$
, **E** = **0**, The wave is

- 1) Moving along x-direction with frequency 106 Hz and wavelength 100m
- 2) Moving along x-direction with frequency 106 Hz and wavelength 200m
- 3) Moving along -x-direction with frequency 106 Hz and wavelength 200m
- 4) Moving along y-direction with frequency 106 Hz and wavelength 200m
- 39. An object is placed at a distance of 60cm from the lens. A convex mirror is placed as shown. The image thus formed coincides with the object. The focal length of the lens and mirror are 20cm and 12cm respectively. Find the distance between the lens and the convex mirror

- 1) 6cm
- 2) 12cm
- 3) 24cm
- 4) 30cm
- 40. A driver uses a lens of power –1.25D for driving a car. The distance of far point of his eye is:
 - 1) 125cm
- 2) 62.5cm
- 3) 80cm
- 4) 150cm

41.	Modulation is red	quired to				
	a) Distinguish different transmissions					
	b) Ensure that the information may be transmitted over long distances					
	c) Allow the infor	mation accessible for	r different people			
	1) a and b are true	2) b and c are true	3) c and a are true	e 4) a, b and c are true		
42.	directly and other	er after reflection from reduced to 1/4 as consity will be	m a water surface, mpared to intensity	One beam reaches the observer travelling 1.5m extra distance due to the direct beam alone.		
	1) (1/4) fold		3) (5/4) fold			
43.	A particle of mass	m at rest decays into	two particles of mas	ses m and m having non-		
	zero velocities. The	e ratio of de broglie w	vavelengths of the	particles $\frac{\square_1}{\square_2}$ is		
	1) $\frac{m_1}{m_2}$	2) $\frac{m_2}{m_1}$	3) 1	4) $\sqrt{\frac{m_2}{m_1}}$		
44.	What is the force of radius 2 metre		intensity 1.4kWm ⁻² ,	, if it falls on a perfect absorber		
	1) $5.88 \times 10^{-5} N$	2) $10^8 N$	3) $8.35 \times 10^4 N$	4) 8.8×10 ⁻⁸ <i>N</i>		
45.	If the series limit o	f lymen series for hydi	rogen atom is equal	to the series limit of Balmer s hydrogen like atom is		
	1) 1	2) 2	3) 4	4) 8		