TEST - 2015

		COURSE	DAY: SUNDAY				
	CIVII	ENGINEERING	TIME: 10.00 A.M. TO 1.00 P.M.				
MAXIMUM	MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING				

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
180	200 MINUTES	180 MINUTES

DIPI	LOMA	CET	NUM	BER		SERIAL NUMBER
					A – 1	120945

DOs:

- 1. Check whether the Diploma CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 09.50 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd Bell rings at 10.00 a.m., till then;
 - Do not remove the paper seal of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 180 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- 2. After the 3rd Bell is rung at 10.00 a.m. remove the paper seal of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by acomplete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 180 minutes:
 - Read each question (item) carefully
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completed darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same
- 5. After the **last Bells is rung at 1.00 p.m.** stop marking on the OMR answer sheet and affix your left hand thumb **impression** on the OMR answer sheet as per the instructions.
- 6. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 7. After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 8. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

PART - A APPLIED SCIENCE

				APPLI	ED SC	HEN	CE			
e p	An e	xample of derive	d unit is							
	1.	Meter	2.	Second		3.	Netwon	4.	Candela	
	The	prefix used for 10) ⁻¹⁵ is							
	1.	Femto	2.	Pico		3.	Peta	4.	Nano	
	An e	xample of dimen	sionless	constant is						
	1.	Strain	2.	Efficiency		3.	Force	4.	Pi	
		ain scale is divid	ed into h cm.	alf mm an	d having	g a V	ernier cont	aining 10	divisions ha	as a le
	1.	0.05	2.	0.005		3.	0.02	4.	0.025	
	Acco	rding to Newton'	s second	law of moti	on F = F	Kma.	The value o	of K is		
	1.	0.1	2.	0		3.	10	4.	1	
	The	velocity of a freel	y falling	body is ma	ximum					
	1.	At the beginning	ng			2.	Just before	e it touche	s ground	
	3.	Exactly half way	y			4.	After it tou	ches grou	nd	
	Wet	clothes are dried	in washi	ng machin	e by the	proj	perty of			
	1.	Inertia of rest				2.	Inertia of	direction		
	3.	Inertia of motio	n			4.	Inertia of	time		
1		ce of 1.2 x 10 ⁻² Noody is	Vacts for	3 seconds	on a boo	ly of	mass 0.04k	g at rest. 1	The velocity	gained
	1.	0.9 m/s	2.	9 m/s		3.	0.09 m/s	4.	9.2 m/s	
	An e	xample of vector	quantity	is						
	1.	Volume	2.	Energy		3.	Density	4.	Force	

-		Space 1	For Rough V	Vork		
	4.	Increase in the kinetic energy of r	molecules			
	3.	Increase in the potential energy of	molecules			
	2.	Decrease in the rate of diffusion of	gases			
	1.	Increase in the rate of diffusion of	gases			
16.	In ca	ase of liquids as the temperature incr	reases, the v	viscosity of liquid de	ecreases due to	
	3.	Vary between 5 and 10	4.	More than 10		
	1.	Within 2	2.	Equal to zero		
15.		or of safety of a structure is		TD1 A		
1.5	Б.					
	3.	Shear stress	4.	Shear strain		
	1.	Compressive stress				
14		ck absorber is an example for	^	(D11		
1.4	01					
	3.	Law of parallelogram of forces				
	1.	Lami's theorem		Law of triangle of		
13.		ng of a boat by two forces is an illustr				
		The first section is				
	4.	Lesser than the difference between				
	3.	Lesser than first force				
	2.	Zero				
		Greater than first force				
12.		resultant of two forces acting on a boo	•			
	1.	90°		30°		
11.	Resu	ultant of two equal forces perpendicul				force
	3.	Keep the door firm	4.	Lock it easily		
	1.	Increase the moment of force	2.	Decrease the mon	nent of force	
10.	mann	the of the door is fixed away from the	CITA WHELE	it is inca with imig	03 10	

17. One Pascal is equal to

> 10 dynes/cm² 1.

2. 1 dyne / cm²

100 dynes / cm² 3.

4. 0.1 dyne / cm²

To calm down turbulent sea, sailors use oil to 18.

> 1. Decrease surface tension

2. Increase surface tension

3. Decrease viscosity 4. Increase cohesive force

19. The thrust on the bottom of the container having a base area of 20 m² filled with water to a height of 3 m is _____ (given $g = 10 \text{m/s}^2$)

 $6 \times 10^{5} N$

2. 6 x 10⁴ N

3. $6 \times 10^3 \,\mathrm{N}$ 4. $6 \times 10^2 \,\mathrm{N}$

Amount of heat required to raise the temperature of 1 kg of water through 1°C is 20.

One calorie

2. One joule 3. One kilo-calorie 4. One kilojoule

21. Absolute scale of temperature has its zero at

> 1. $0^{\circ}C$

2. -100°C

273°C

22. In case of an ideal gas, the value of pressure or volume co-efficient is

3. 273

23. The distance travelled by the disturbance per unit time in a given direction is

1. Wave amplitude 2. Wave velocity

3. Wave frequency 4. Wavelength

The speed of the transverse wave along the stretched string is given by

- 25. Absorption co-efficient of sound wave is given by _____. Where E_m is energy absorbed by the given medium E_{aw} is the energy absorbed by open window.
 - $a = \frac{E_m}{E_{ow}}$
- $a = \frac{E_{ow}}{E_{m}}$
- 3. $a = E_m \times E_{ow}$ 4. $a = E_m + E_{ow}$

- The rich quality of a musical note depends on 26.
 - 1. Fundamental frequency

- 2. Loudness
- Larger number of over tones 3.
- Pitch
- Waxing and waning are the characteristics of the statement of the statemen 27.
 - Periodic motion 2. Oscillations
- 3. Beats
- 4. Frequency

- Velocity of sound in air varies 28.
 - Inversely as the square root of the density of the medium 1.
 - Directly as the square root of the density of the medium 2.
 - 3. Directly as the density of medium
 - 4. Inversely as the density of medium
- The vibrations of a body of decreasing amplitude are called 29.
 - Undamped free vibrations
- 2. Damped free vibrations
- Resonant vibrations 3.
- Forced vibrations 4.
- Another name for field emission is 30.
 - Cold cathode emission
- 2. Thermionic emission

Photoelectric emission 3.

- 4. Secondary emission
- In case of photoelectric emission, the rate of emission of electron is
 - Independent of frequency of radiation 1.
 - 2. Dependent on frequency of radiation
 - Dependent on wavelength of incident radiation 3.
 - Independent of intensity of radiation 4.
- Emission of radiation from radioactive element is 32.
- Slow 2. Fast
- Spontaneous 4. Very slow

33.		he spectrum of scat lent light are called		ne lines c	correspe	onding to waveler	ngth greater than that	of
	1.	Stokes lines			2.	Antistokes lines		
	3.	Fluorescent lines			4.	Incident lines		
34.	Resc	olving power of teles	cope is given	by				
	1.	$\frac{d}{1.22\lambda}$	$2. \frac{1.22\lambda}{d}$		3.	$\frac{1.22d}{\lambda}$	4. $\frac{\lambda}{1.22d}$	
35.	Тоо	bserve diffraction pa	attern the obs	tacle sho	uld be			
	1.	Very big			2.	Dark		
	3.	Absent			4.	Comparable with	the wavelength of light	t m k
36.		en double refraction		ordinary	ray an	d ordinary rays w	rill have vibrations in th	1е
	1.	Parallel	2. Indepe	endent	3.	Perpendicular	4. At 45°	
37.	Max	well's electromagnet	ic theory cou	ld explai	n			
	1.	Photo electric effe	ct		2.	Interference of 1		
	3.	Compton effect			4.	Black body radia	tion	
38.	The	contrast between br	ight and darl	c bands o	of an in	terference pattern	is is	
	1.	Low	2. High		3.		4. Gradually decreas	es
39.	A no	on-electrolyte solutio	on is					
	1.	Sugar solution			2.	Salt solution		
	3.	Water			4.	Copper sulphate	solution	
40.	In a	lkalies the concentra	ation of OH^{-1}	ions is				

2.

4.

Less than 10⁻⁷g ions / litre

More than 10⁷g ions / litre

More than 10⁻⁷g ions / litre

Equal to 10^{-7} g ions / litre

1.

3.

APPLIED MATHEMATICS

41. If
$$\begin{vmatrix} 2x+1 & -5x \\ 1 & 3 \end{vmatrix} = 0$$
, then x is

 $1_3 \frac{3}{11}$

- $2, \frac{-3}{11}$ 3. $\frac{11}{3}$ 4. $\frac{11}{3}$
- For the simultaneous linear equations 2x + y + z = 1, x + y + 2z = 0 and 3x + 2y z = 2, the value of Δx is
 - 1. 3

- 43. If $A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 7 \\ -4 & 1 \end{bmatrix}$ then $(A+B)^T$ is

- 1. $\begin{bmatrix} 1 & 1 \\ 10 & 5 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 10 \\ 1 & 5 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & 10 \\ -1 & 5 \end{bmatrix}$ 4. $\begin{bmatrix} -1 & -1 \\ 10 & 5 \end{bmatrix}$
- 44. If $A = \begin{bmatrix} 1 & -3 \\ -5 & 7 \end{bmatrix}$, then adj A is
 - 1. $\begin{bmatrix} 1 & -5 \\ -3 & 7 \end{bmatrix}$ 2. $\begin{bmatrix} 7 & -5 \\ -3 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & -5 \\ -3 & -7 \end{bmatrix}$ 4. $\begin{bmatrix} 7 & 3 \\ 5 & 1 \end{bmatrix}$

- The cofactor of O in $A = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 6 & 0 \\ 2 & 7 & -4 \end{bmatrix}$ is
 - -25 1.
- 2. 25 3. -17

- 46. If $(\sqrt{3}+1)^3 = 10+6\sqrt{3}$, then the value of $(\sqrt{3}+1)^3-(\sqrt{3}-1)^3$ is
 - $12\sqrt{3}$ 1.
- 2. 0

- 20
- 4. $20 + \sqrt{3}$
- The middle term in the expansion of $\left(x^3 + \frac{1}{x^2}\right)^6$
- 1. $10 x^3$ 2. $20 x^3$ 3. $\frac{20}{x^3}$ 4. 20

- If $\vec{a} = i + 3j 2k$ and $\vec{b} = 2i j + 3k$, then $\vec{a} \cdot \vec{b}$ is

- 3. 7 4. -7
- The work done by the force 2i j + 6k when it displaces the particle from (5, 3, -2) to (7, -4, 8) is
 - 1.

- 2. 48
- 3. -71 4. 71
- The sine of the angle between the vectors $\vec{a} = i + j + k$ and $\vec{b} = 2i 3j 4k$ is 50.
 - 1. $\sqrt{\frac{62}{87}}$ 2. $\sqrt{\frac{87}{62}}$ 3. $\frac{-5}{\sqrt{87}}$ 4. $\sqrt{\frac{10}{63}}$

- 51. If $\cos \theta = \frac{5}{13}$ and θ is acute angle, then the value of $3\cos \theta 2\sin \theta$ is
 - $1 = \frac{9}{13}$ 2. 3

- 3. $\frac{-9}{13}$ 4. -3

- 52. If $x \sin 30^\circ Sec 30^\circ \tan 30^\circ = \tan^2 60^\circ$, then the value of x is
 - 1. $\frac{22}{3}$ 3. $\frac{-22}{3}$ 4. $\frac{3}{22}$

- The value of $\sin 225^{\circ} + \cos(-135^{\circ})$ is

- $\sqrt{2}$ 2. $-\sqrt{2}$ 3. $\frac{1}{\sqrt{2}}$ 4. $\frac{-1}{\sqrt{2}}$
- 54. The simplified value of $\frac{\sin(180^{\circ} A)\cot(90^{\circ} A)\cos(360^{\circ} A)}{\tan(180^{\circ} + A)\tan(90^{\circ} + A)\sin(-A)}$ is
 - 1. sin A

- 2. -sin A 3. 1 4. cosec A
- The simplified value of $\frac{\sin 2A}{1+\cos 2A}$ is $\frac{\sin 2A}{1+\cos 2A}$ is $\frac{\sin 2A}{1+\cos 2A}$.
 - 1. 2tan A 2. sin A 3. cot A 4. tan A

- 56. If $tan A = \frac{3}{4}$ and $tan B = \frac{1}{7}$, then the value of (A+B) is

- 1. $\frac{\pi}{6}$ 2. $\frac{25}{23}$ 3. $\frac{\pi}{4}$ 4. $\frac{23}{25}$
- The value of $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$ is
 - 1. 0
- $2. \cos 50^{\circ}$
- 4, $\sin 50^{\circ}$

58.	The value of	cos ⁻¹	tan 135°	is							
-----	--------------	-------------------	----------	----	--	--	--	--	--	--	--

- 1.
- 2. 180° 3. 45° 4. 90°

59. The centroid of the triangle formed by the vertices
$$(-10, 6)$$
, $(2, -2)$ and $(2, 5)$ is

- (-2, 3)
- 2. (2, 3)
- 3. $\left(-3, \frac{9}{2}\right)$ 4. (-6, 9)

60. A point
$$(-4, 3)$$
 divides the line AB externally in the ratio of 1:2. Given A $(-1, -3)$ then the point B is

- (6, -3)1.
- 2. (-10, 15)
- 4. (2, -9)

61. The area of triangle formed by the point,
$$(3, -1)$$
, $(2, 0)$ and $(K, 4)$ is 10 Sq. Units, then the value of K is

12 1.

2. 7

- 22

62. The slope of the line joining the points
$$(-2, 3)$$
 and $(4, -6)$ is

- $1_{\circ} \quad \frac{3}{2} \quad \text{In this case} \qquad \qquad 2_{\circ} \quad \frac{-3}{2} \quad \text{The sum of } \qquad \qquad 3_{\circ} \quad \frac{2}{3} \quad \text{The sum of } \qquad \qquad 4_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \text{The sum of } \qquad 1_{\circ} \quad \frac{-2}{3} \quad \frac{-2$

63. The equation of straight line passing through
$$(4, -1)$$
 and having equal intercepts is

- 1. x + y - 1 = 0
- 2. x+y-5=0 3. x+y-3=0 4. x+y+3=0

64. The equation of the line passing through (5,
$$-2$$
) and parallel to the line $3x+2y+7=0$ is

1. 3x + 2y - 11 = 0 3x - 2y + 11 = 0

3x - 2y - 19 = 03.

2x - 3y - 16 = 0

- 65. The value of $\lim_{x \to -2} \frac{x+2}{x^5+32}$ is

- 2. 80 3. $\frac{-1}{80}$

- 66. The value of $\lim_{x \to 0} \frac{2x tan 3x}{\sin 2x + 3x^2}$ is
 - $1, \frac{-1}{5}$ 2. 0 3. $\frac{1}{2}$ 4. $\frac{1}{2}$

- 67. If $y = e^x \log x$, then $\frac{dy}{dx}$ at x = 1 is
 - 1. e^x 2. e^x 4. 0

- 68. If $y = tan^{-1}\sqrt{\frac{1+\cos x}{1-\cos x}}$, then $\frac{dy}{dx}$ is

- 1. 2 2. -2 3. $\frac{-1}{2}$ 4. $\frac{1}{2}$

- 69. If $\sqrt{x^3} + \sqrt{y^3} = \sqrt{a^3}$, then $\frac{dy}{dx}$ is
 - 1. $\sqrt{\frac{x}{y}}$ 2. $-\sqrt{\frac{x}{y}}$
- 3. $\sqrt{\frac{y}{x}}$ 4. $-\sqrt{\frac{y}{x}}$
- 70. The second derivative of y = log(sec x tan x) is
 - 1. $-\sec x \tan x$ 2. $\sec x \tan x$
- 4. sec x

- Water flows into the cylindrical tank of radius 7mt at the rate of 294 cubic mt/sec, then the rate of height of water rising in the tank is
 - 1. $\frac{\pi}{6}$ mt / sec
- $2. \quad \frac{6}{\pi} mt / sec$
- 3. 14406 mt / sec

- 4. $\frac{21}{\pi}$ mt / sec
- The maximum value of the function $y = x + \frac{1}{x}$ is

- 0 2. 2 3. 1 4. -2
- 73. The value of $\int tan^2x \ dx$ is
- 1. $\tan x x + c$ 2. $x \tan x + c$ 3. $\left(\sec^2 x\right)^2 + c$ 4. $-\cot x x + c$

- 74. The value of $\int \frac{\cos x}{1+\sin x} dx$ is
 - 1. $log(sec^2x + sec x tan x) + c$
- $2. \quad \log(\sin x) + c$
 - log(1+sin x)+c3.

4. $\frac{(1+\sin x)^2}{2} + c$

- 75. $\int \sin^2 x \sin 2x \, dx$ is
 - 1. $\frac{\sin^2 x}{2} + c$

- 3. $\sin^2 x + c$ 4. $\frac{-\sin^4 x}{2} + c$

76.
$$\int_{-1}^{1} (2x+1)(5-x) dx$$
 is

- 1. 10 2. $\frac{26}{3}$
- $\frac{-26}{3}$
- 4. $\frac{11}{3}$

77.
$$\int_{0}^{\pi/4} \tan^2 x \ \sec^2 x \ dx$$
 is

- $2, \frac{4}{3}$
- 3. $\frac{1}{2}$ 4. $\frac{-1}{3}$

78. The RMS value of
$$y^2 = x^2 - 2x$$
 over the interval [1, 3] is

- $2 \sqrt{\frac{2}{3}}$
- 3. $\frac{1}{3}$

79. The differential equation of
$$y^3 = 5 ax$$
 by eliminating arbitrary constant a is

1. $\frac{dy}{dx} - \frac{y}{3x} = 0$

 $2, \quad \frac{dy}{dx} + \frac{y}{3x} = 0$

- 3. $\frac{dy}{dx} \frac{3y}{x} = 0$
- $4 = \frac{dy}{dx} \frac{5y}{3x} = 0$

80. The integrating factor of the differential equation
$$x \frac{dy}{dx} - (1-x)y = x^3$$
 is

- 1. $\frac{e^x}{x}$ 2. xe^x 3. $e^{\frac{x^2-2x}{2}}$ 4. $e^{\frac{2x-x^2}{2}}$

Space For Rough Work

PART - C

CIVIL ENGINEERING

81	An example for meta	morphic	rock is					
	1. Granite	2.	Marble	3.	Sand stone	4.	Lime stone	
82.	The function of Iron	oxide in b	orick earth is to					
	1. Impart uniform s	hape		2.	Prevent shrink	age of	raw bricks	
	3. Impart colour			4.	Impart plastici	ty to tl	ne earth	
83	The vicat's apparatus	s is used	to determine					
	1. Fineness	2.	Consistency	3.	Slump	4.	Strength	
84,	The process of cutting	g and sav	ving timber into	suitabl	e sizes required	by the	users is called	d
	1. Seasoning	2.	Conversion	3.	Slaking	4.	Tempering	
85.	The ore of copper is							
	1. Magnetite	2.	Limonite	3.	Haematite	4.	Cuprite	
86.	The ease with which	one can	work with concr	ete is k	nown as			
	1. Workability	2.	Compaction	3.	Segregation	4.	Blending	
87	White lead in paint is							
	1. Base	2.	Thinner	3.	Carrier	4.	Pigment	
88.	The ingredients added	l to plas	tic to improve st	rength :	and hardness ar	e calle	d	
	1. Fillers	2.	Plasticizers	3.	Pigments	4.	Solvents	
89.	The lowest part of a s	tructure	which transmits	the loa	d to the soil is k	nown	as	
	1. Super structure		Plinth	3.	Foundation	4.		

Space For Rough Work

A-1 14 E

90.		nen heavy structural lopacity the type of footin			quire	d to be transferre	d to	a soil of low bearing
	1.	Isolated	2.	Combined	3.	Raft	4.	Grillage
91:	Th	e most important purp	ose (of frog in a brick is	to			
	1.	Emboss manufacture	r's n	ame				
	2.	Reduce the weight of	bricl	ς				
	3.	From keyed joint betw	veen	brick and mortar				
	4.	Improve ventilation						
92.	A s	series of steps without	any p	platform, break or	landi	ng in one direction	n is c	called
	1.	Riser	2.	Tread	3.	Flight	4.	Nosing
93.	Th	e horizontal member of	wood	l or steel used to su	ıppor	t the roof material	of a	sloping roof are called
	1.	Purlins	2.	Cleats	3.	Rafters	4.	Eaves
94.	Th	e pointing which is mo	st co	mmonly used in b	rick a	and stone masonry	y is	
	1.	Flush pointing			2.	Stuck pointing		
	3.	V- groved pointing			4.	Truck pointing		
95.	The	e horizontal member of	the	door or window sh	utter	are called		
	1.	Rails	2.	Styles	3.	Jambs	4.	Reveals
96.	In 1	building construction, t	he d	amp proof course	will b	e provided at		
		Sill level	2.	Lintel level	3.	Basement level		4. Roof level
97.	The	e highest point on the	extra	dos of an arch is o	called			
	1.	Skewback	2.	Crown	3.	Voussoir	4.	Key stone

A-1 15 CE

- 98. The vertical members of a scaffolding which ultimately bear all loads are called
 - 1. Standards
- 2. Ledgers
- 3. Putlog
- 4. Bracers
- 99. The length of a line measured with a 20 m chain was found to be 200m. If the chain was 10cm too long, the true length of the line is
 - 1. 199 m

- 2. 200 m
- 3. 201 m
- 4. 202 m

- 100. The Quadrantal bearing of a line varies from
 - 1. 0^0 to 90^0
- 2. 0° to 180°
- 3. 0° to 270°
- 4. 0° to 360°
- 101. The very first sight taken on a point of known elevation in levelling operation is known as
 - 1. Fore sight
- 2. Fore bearing
- 3. Back sight
- 4. Back bearing
- 102. The instrument used to measure the area of an irregular figure is
 - 1. Pantagraph
- 2. Planimeter
- 3. Ceylon ghat tracer
- 4. Clinometer
- 103. If L = Latitude, D = Departure, the closing erros (e) in case of a closed traverse is given by

$$1. \quad e = \sum L^2 + \sum D^2$$

$$2. \qquad e = \sqrt{\sum L^2 + \sum D^2}$$

$$3. \quad e = \sum L^2 - \sum D^2$$

$$4. \qquad e = \sqrt{\sum L^2 - \sum D^2}$$

- 104. The process of levelling in which the elevation of points are computed from measured vertical angles and horizontal distances is called
 - 1. Reciprocal levelling

2. Profile levelling

3. Barometric levelling

- 4. Trignometric levelling
- 105. A theodolite is called transit theodolite if the line of sight can be reversed by revolving the telescope through
 - 1. 180° in vertical plane
- 2. 180° in horizontal plane
- 3. 90° in vertical plane

4. 90° in horizontal plane

106.	The	tangent length of a simp	le cir	cular curve of radi	us R a	nd deflection angle	Δisg	iven by
	1,	$\frac{\pi R \Delta}{180}$	2.	$R \tan \frac{\Delta}{2}$	3.	$R \operatorname{versin} \frac{\Delta}{2}$	4.	$2R\sin\frac{\Delta}{2}$

- 107. The angle between the reflecting surface of a prism square is

- 1. 30° 2. 45° 3. 60° 4. 75°
- 108. For indirect ranging, minimum number of ranging rods required is
 - 1. 1

2. 2

- 3. 3
- 109. If the long chord and tangent length of a circular curve of radius R are equal, then the deflection angle is
 - 1. 30°

- $2. 60^{\circ}$
- 90^{0}
- 4. 120°
- 110. The back sight reading on a bench mark of reduced level 100.00m is 1.845m. If the fore sight reading on a point is 1.345m, then the reduced level of that point is
 - 1. 100.500m
- 2. 103.190m
- 100.050m
- 4. 103.910m

- 111. The ratio of direct stress to volumetric strain is called
 - 1. Elastic modulus

2. Rigidity modulus

3. Bulk modulus

- Shear modulus 4.
- 112. The resultant of two forces P and Q (such that P > Q) acting along the same straight line but in opposite direction is given by
 - 1. P+O

- 2. P-O
- 3. P/Q
- 4. Q/P
- 113. The point through which whole weight of body acts, irrespective of its position is known as
 - 1. Moment of inertia

Centre of gravity

3. Centroid

Radius of gyration

- 114. Moment of inertia of a rectangular section having width (b) and depth (d) about an axis passing through its Centre of gravity and parallel to the depth (d) is

- 115. Moment of inertia of a circular section about an axis perpendicular to the section is

- 116. The unit of strain is
 - 1. N-mm

- 2. N/mm

- 4. No unit
- 117. The relationship between Young's modulus (E) bulk modulus (K) and Poisson's ratio $\left(\frac{1}{m}\right)$ is given by
 - $_{1,} \quad K = \frac{3m-2}{mF}$

- 2. $K = \frac{mE}{3m-2}$ 3. $K = \frac{3(m-2)}{mE}$ 4. $K = \frac{mE}{3(m-2)}$
- 118. A beam supported on more than two supports is called as
 - 1. Simply supported beam

2. Fixed beam

3. Over hanging beam

- Continuous beam
- 119. The section modulus of a rectangular section of breadth (b), depth (d) about an axis through its centre of gravity is

120.	The maximum	deflection of a	cantilever	beam o	of length	(l) with a	point load	w) at 1	the	free	end	is
120.	THE IHAMIHUH	dettection of a	Callulevel	ocam (JI ICIIKUI	(1) AATELY CT	ponit load	f a a	, ac	LIIC	TICC	UIIU .	10

1. $\frac{W\ell^3}{3EI}$

- $2. \quad \frac{W\ell^3}{8EI}$
- 3. $\frac{W\ell^3}{16EI}$
- 4. $\frac{W\ell^3}{48EI}$

121. The shear stress at the centre of solid circular shaft under torsion is

- 1. Maximum
- 2. Minimum
- 3. Zero
- 4. Infinity

122. Euler's formula holds good for

1. Short columns

- 2. Long columns
- 3. Both short and long columns
- 4. Pedestals
- 123. The ratio of specific weight of liquid to the specific weight of pure water at standard temperature is called as
 - 1. Density of liquid

2. Specific gravity of liquid

3. Compressibility of liquid

- 4. Surface tension of liquid
- 124. When a vertical wall is subjected to pressure due to liquid on both sides, the resultant pressure is _____ of the two pressures
 - 1. Sum

2. Difference

3. Arithmetic mean

- 4. Geometric mean
- 125. For a perfect incompressible liquid flowing in a continuous stream, the total energy of a liquid particle remains the same, while the particle moves from one point to another. This statement is called as
 - 1. Continuity equation

2. Bernoulli's theorem

3. Pascal's law

4. Archimedi's principle

126. The pressure of a liquid measured with the help of piezometer is

1. Vacuum pressure

2. Atmospheric pressure

3. Absolute pressure

4. Gauge pressure

127. According to Chezy's formula, the discharge through an open channel, if A is Area of flow, m is hydraulic mean depth and i is constant bed slope is

- 1. $A\sqrt{mi}$
- 2. $C\sqrt{mi}$ 3. $AC\sqrt{mi}$ 4. $mi\sqrt{AC}$

128. According to Darcy's formula the loss of head due to friction in the pipe with usual notations is

- 2. $\frac{f\ell v^2}{gd}$ 3. $\frac{3f\ell v^2}{2gd}$ 4. $\frac{4f\ell v^2}{2gd}$

129. An orifice is known as large orifice when the head of liquid from the centre of orifice is

- 1. More than 10 times the depth of water
- 2. Less than 5 times the depth of water
- 3. Equal to 10 times the depth of water
- 4. More than 5 times the depth of orifice

130. The pump used to lift sewage and storm water is

1. Centrifugal pump

Reciprocating pump

3. Air lift pump

Deepwell pump

131. The amount of precipitation is measured by

Rain gauge 1.

2. Osmoscope

3. Turbidometer

4. Barometer

132.	The graphical representation o	f discharge with t	time, a	t a particular point of a	stream is known as
	1. Mass flow curve		2.	Hydrograph	
	3. Hyetograph		4.	Infiltration curve	
133.	requirements is called	oil below which p	olants	cannot extract sufficient	water for their
	1. Field capacity		2.	Saturation capacity	
	3. Temporary wilting point		4.	Permanent wilting poir	
134.	The time interval between the before harvesting is known a	_	a cro	o at the time of sowing to	o its last watering
	1. Effective period		2.	Total period	
	3. Base period		4.	Crop period	
135.	The duct provided in the body	of dam which run	ıs long	itudinally is called	
	1. Infiltration well		2.	Infiltration gallery	
	3. Passage		4.	Weir	
136.	The canal where in its alignme	ent, cross draina		orks are completely elimi	nated is
	1. Contour canal		2.	Ridge canal	
	3. Furrow canal		4.	Side slope canal Im J	
137.	When full supply level (F.S.L) of that canal water flows freely un	of the canal is mu	ach be		drainage trough, so
	1. Aquadect		2.	Syphon aquaduct	
	3. Super passage	11.2	4.	Canal syphon	

A-1 21 CE

138. Guide bank is also known as

- 1. Groyne
- 2. Spur
- 3.
- Marginal bund 4. | Bell's bund

139. The characteristic strength of mild steel is

- 1. 250 mpa 2. 415 mpa
- 3. 500 mpa

4. 550 mpa

140. The creation of conditions for promotion of interrupted and progressive hydration is

1. Curing

2. Compaction

3. Water proofing

Batching

141. The strength of material below which not more than 5% of the test results are expected to fall is

1. Characteristic strength

- 2. Ultimate strength
- 3. Yield strength 4. Elastic limit of the strength 4.

142. The maximum strain in tension reinforcement at the section should not be less than

- 1. $\frac{fy}{1.15E} + 0.002$ 2. $\frac{fy}{E} + 0.002$ 3. $\frac{1.15fy}{E} + 0.002$ 4. $\frac{fy}{1.15E}$

143. The minimum diameter of longitudinal bars in columns as stipulated in IS 456-2000 shall not be less than

1. 6 mm

- 8 mm
- 10 mm
- 4. 12 mm

144. The maximum percentage of longitudinal reinforcement in column is limited to

- 1. 0.8
- 2. 1.0
- 3. 2.0
- 4. 6.0

145.	5. The area of concrete stress block in flexure for a rectangular beam as per IS 456-2000 is										
	1.	0.36 fck ^{xu}	2.	0.45 fck**u	3.	0.67 fck*u	4.	0.446 fck ^{xu}			
146.		a column of size 2 acing of lateral ties		mm, reinforced	l with 4r	nos of 20 mm o	diameter i	longitudinal l	oars the		
	1.	200 mm	2.	230 mm	3.	320 mm	4.	300 mm			
147.		a masonry retainir 30 KN/ m^2 at the b					ure varies	s from zero at	the top		
	1.	30 KN/m	2.	40 KN/m	3.	50 KN/m	4.	60 KN/m			
148.		e effective length nnected by a single		oression memb		ngth 2 m betw					
	1.	1.6 m	2.	2 m	3.	1.7 m		4. 4 m			
149.	In ten	a double U butt wasion when $f_y = 250$	elded con) MPa is	nection of plate		10 mm, the s					
	1.	150 KN	2.	15 KN	3.	250 KN		4. 25 KN			
		per plasticizer is u				e mainly to					
	1.	Increase the stre	ngth of co	oncrete							
	2.	Increase the work	kability of	the mix							
	3. Reduce the heat of hydration										
	4.	Decrease the wor	_	f the mix							
151.		e vertical wells pro colated water in th	he remain	ing season are			and water	r in dry seas	on and		
	1.	Infiltration wells			2.	Infiltration g	allaries				
	3.	Tube well			4.	Springs					
				Space For	Rough V	Work					

	1.	Oxidation			2.	Carbonation							
	3.	Aeration			4.	Chlorination							
153.	Bio	ochemical Oxygen Den	nand (BOD) of drink	ing water	should be							
	1.	Zero	2.	5 ppm	3.	7 ppm	4.	10 ppm					
154.	Th	ne pipe installed in a l	nouse	drainage to p	ressure wa	ater seal of traps	is cal	led					
	1.	Soil pipe			2.	Rain water pipe							
	3.	Waste pipe			4.	Anti-siphonage	pipe						
155.	Th	e effluent of septic tar	nk is g	generally discl	harged int	0.0							
	1.	Sewer			2.	Soak pit							
	3.	Imhoff tank			4.	Skimming tank							
156.	The trap which disconnects the house drain from street sewer is called												
	1.	Grease trap			2.	Gulley trap							
	3.	Intercepting trap			4.	Floor trap							
157.		he polluting gas which rming is	h is p	rimarily respo	onsible for	causing the gree	en ho	use effect and globa					
	1.	Hydrogen sulphide			2.	Carbon-dioxide							
	3.	Sulphur – dioxide			4.	Ammonia							
150	The width of highway in cutting excluding side drains is called												
158.	_		cuttir	ig excluding s									
	1.	Land width			2.	Right of way							
	3.	Formation width			4.								
159.	Th	e value of camber rec	omme	nded by IRC f		tuminous road in							
	1.	1 in 33	2.	1 in 40	3.	1 in 50		4. 1 in 60					

160.	A cement concrete road is an example for		pavement
	1. Flexible 2. Rigid	3.	Semi rigid 4. Pervious
161.	The device used for changing the direction of re-	ailway	y engine is called
	1. Turnout	2.	Turn table
	3. Triangle	4.	Crossing track
162.	Disc signals are used on a track		
	1. When a train arrives at a station	2.	When a train leaves the station
	3. During shunting operation	4.	During emergency
163.	The type of rail section used presently in India	railwa	ays is
	1. Bull headed	2.	Flat headed
	3. Flat footed	4.	Double headed
164.	Structures built perpendicular to the shore line	for b	erthing of vessels are known as
	1. Docks 2. Jetties	3.	Groynes 4. Wharves
165.	The area in which air craft are parked is known	n as	
	1. Runway 2. Taxiway	3.	Apron 4. Terminal
166.	A bridge that is raised to permit passage of boar bridge	ts wh	ich fail to clear the closed span is termed as
	1 Transverse	2.	Transporter
	3. Bascule	4.	Suspension
167.	occurs when the velocity of a stream	excee	ds the limiting velocity which causes erosion
	1. Afflux 2. Scour	3.	Runoff 4. Flood

A-1 25 CE

168.	The	e berthing faci	ilities prov	ided	on one	side only	is				
	1.	Jetties -		2.	Wharve	es	3.	Docks	4.	Fenders	
169.	Nec	edle beam met	hod is add	pted	for tun	neling thr	ough				
	1.	Hard rock					2.	Soft rock			
	3.	Soft soil					4.	Water bearing	r soil		
	0.	DOIL GOIL						Water Source	, 0011		
1770	/TD1	1 .:		1.	1		., .	. 1			
170.	The	e estimated tii	~			te an activ	vity i	s known as			
	1.	Duration		2.	Float		3.	Restraint	4.	Critical time	
171.	Iss	ues of materia	ls from sto	ock s	hould b	e made or	nly or	receipt of			
	1.	An indent					2.	An invoice			
	3.	Bin card					4.	Measurement	book		
172.		e type of contrecified amount				-	to ex	ecute complete	works	in all respects for	or a
	1.	Item rate cor	ntract				2.	Cost plus pero	cent con	itract	
	3.	Labour contr	ract				4.	Lumpsum cor	ntract		
173.	The	e first stage in	construc	tion	plannin	g is					
	1.	Technical pla	anning				2.	Job planning			
	3.	Pretender pla	anning				4.	Post tender pl	anning		
174.	We	ight of one ba	g of cemer	nt is							
	1.	35 kg		2.	50 kg		3.	100 kg	4.	150 kg	

A-1 26 CE

175.	For 10 m³ of brick masonry, number of standard modular bricks required is							
	1.	400	2.	2000	3.	5000	4.	1000
176.	Th	e ornamental cornice is	s es	imated in				
	1.	Cubic meter			2.	Square meter		
	3.	Running meter			4	Lumpsum quanti	ty	
177.	W as	hen the value of propert	y be	comes less by its I	pecom	ning out of date in	style	, in design is termed
	1.	Book value			2.	Market value		
	3.	Scrap value			4	Obsolescence		
178.	Wł	nen representative fract	ion (of the scale is 3:1.	The	scale of the drawir	ng is	
	1.	Full scale drawing			2.	Reduced scale dra	awin	g
	3.	Enlarging scale drawing	ng		4.	Vernier scale dra	wing	3
179.	Th	e standard distance bet	wee	n finish floor level	to lir	ntel level in a resid	lenti	al buildings is
	1.	+ 900 mm			2.	+ 1100 mm		
	3.	+ 2100 mm			4.	+ 3000 mm		
180.	Ea	se water of an intermed	iate	pier in a DECK sla	ab bri	dge shall be		
	1.	Semi circular			2.	Rectangular		
	3.	Hexagonal			4.	Pentagonal		
-				Space For Ro	ugh V	Vork		
				~	_			