
 VB.NET

 100

S.N Method Name & Description

1 Public Shared Function Compare (strA As String, strB As String)

As Integer

Compares two specified string objects and returns an integer that

indicates their relative position in the sort order.

2 Public Shared Function Compare (strA As String, strB As String,

ignoreCase As Boolean) As Integer

Compares two specified string objects and returns an integer that

indicates their relative position in the sort order. However, it ignores case

if the Boolean parameter is true.

3 Public Shared Function Concat (str0 As String, str1 As String) As

String

Concatenates two string objects.

4 Public Shared Function Concat (str0 As String, str1 As String, str2

As String) As String

Concatenates three string objects.

5 Public Shared Function Concat (str0 As String, str1 As String, str2

As String, str3 As String) As String

Concatenates four string objects.

6 Public Function Contains (value As String) As Boolean

Returns a value indicating whether the specified string object occurs

within this string.

7 Public Shared Function Copy (str As String) As String

Creates a new String object with the same value as the specified string.

8 pPublic Sub CopyTo (sourceIndex As Integer, destination As

Char(), destinationIndex As Integer, count As Integer)

 VB.NET

 101

Copies a specified number of characters from a specified position of the

string object to a specified position in an array of Unicode characters.

9 Public Function EndsWith (value As String) As Boolean

Determines whether the end of the string object matches the specified

string.

10 Public Function Equals (value As String) As Boolean

Determines whether the current string object and the specified string

object have the same value.

11 Public Shared Function Equals (a As String, b As String) As

Boolean

Determines whether two specified string objects have the same value.

12 Public Shared Function Format (format As String, arg0 As Object)

As String

Replaces one or more format items in a specified string with the string

representation of a specified object.

13 Public Function IndexOf (value As Char) As Integer

Returns the zero-based index of the first occurrence of the specified

Unicode character in the current string.

14 Public Function IndexOf (value As String) As Integer

Returns the zero-based index of the first occurrence of the specified string

in this instance.

15 Public Function IndexOf (value As Char, startIndex As Integer)

As Integer

Returns the zero-based index of the first occurrence of the specified

Unicode character in this string, starting search at the specified character

position.

 VB.NET

 102

16 Public Function IndexOf (value As String, startIndex As Integer)

As Integer

Returns the zero-based index of the first occurrence of the specified string

in this instance, starting search at the specified character position.

17 Public Function IndexOfAny (anyOf As Char()) As Integer

Returns the zero-based index of the first occurrence in this instance of

any character in a specified array of Unicode characters.

18 Public Function IndexOfAny (anyOf As Char(), startIndex As

Integer) As Integer

Returns the zero-based index of the first occurrence in this instance of

any character in a specified array of Unicode characters, starting search

at the specified character position.

19 Public Function Insert (startIndex As Integer, value As String) As

String

Returns a new string in which a specified string is inserted at a specified

index position in the current string object.

20 Public Shared Function IsNullOrEmpty (value As String) As

Boolean

Indicates whether the specified string is null or an Empty string.

21 Public Shared Function Join (separator As String, ParamArray

value As String()) As String

Concatenates all the elements of a string array, using the specified

separator between each element.

22 Public Shared Function Join (separator As String, value As

String(), startIndex As Integer, count As Integer) As String

Concatenates the specified elements of a string array, using the specified

separator between each element.

 VB.NET

 103

23 Public Function LastIndexOf (value As Char) As Integer

Returns the zero-based index position of the last occurrence of the

specified Unicode character within the current string object.

24 Public Function LastIndexOf (value As String) As Integer

Returns the zero-based index position of the last occurrence of a specified

string within the current string object.

25 Public Function Remove (startIndex As Integer) As String

Removes all the characters in the current instance, beginning at a

specified position and continuing through the last position, and returns

the string.

26 Public Function Remove (startIndex As Integer, count As

Integer) As String

Removes the specified number of characters in the current string

beginning at a specified position and returns the string.

27 Public Function Replace (oldChar As Char, newChar As Char) As

String

Replaces all occurrences of a specified Unicode character in the current

string object with the specified Unicode character and returns the new

string.

28 Public Function Replace (oldValue As String, newValue As String)

As String

Replaces all occurrences of a specified string in the current string object

with the specified string and returns the new string.

29 Public Function Split (ParamArray separator As Char()) As

String()

Returns a string array that contains the substrings in the current string

object, delimited by elements of a specified Unicode character array.

 VB.NET

 104

30 Public Function Split (separator As Char(), count As Integer) As

String()

Returns a string array that contains the substrings in the current string

object, delimited by elements of a specified Unicode character array. The

int parameter specifies the maximum number of substrings to return.

31 Public Function StartsWith (value As String) As Boolean

Determines whether the beginning of this string instance matches the

specified string.

32 Public Function ToCharArray As Char()

Returns a Unicode character array with all the characters in the current

string object.

33 Public Function ToCharArray (startIndex As Integer, length As

Integer) As Char()

Returns a Unicode character array with all the characters in the current

string object, starting from the specified index and up to the specified

length.

34 Public Function ToLower As String

Returns a copy of this string converted to lowercase.

35 Public Function ToUpper As String

Returns a copy of this string converted to uppercase.

36 Public Function Trim As String

Removes all leading and trailing white-space characters from the current

String object.

The above list of methods is not exhaustive, please visit MSDN library for the

complete list of methods and String class constructors.

 VB.NET

 105

Examples

The following example demonstrates some of the methods mentioned above:

Comparing Strings

#include <include.h>

Module strings

 Sub Main()

 Dim str1, str2 As String

 str1 = "This is test"

 str2 = "This is text"

 If (String.Compare(str1, str2) = 0) Then

 Console.WriteLine(str1 + " and " + str2 +

 " are equal.")

 Else

 Console.WriteLine(str1 + " and " + str2 +

 " are not equal.")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

This is test and This is text are not equal.

String Contains String

Module strings

 Sub Main()

 Dim str1 As String

 str1 = "This is test"

 If (str1.Contains("test")) Then

 Console.WriteLine("The sequence 'test' was found.")

 End If

 Console.ReadLine()

 End Sub

 VB.NET

 106

End Module

When the above code is compiled and executed, it produces the following result:

The sequence 'test' was found.

Getting a Substring

Module strings

 Sub Main()

 Dim str As String

 str = "Last night I dreamt of San Pedro"

 Console.WriteLine(str)

 Dim substr As String = str.Substring(23)

 Console.WriteLine(substr)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Last night I dreamt of San Pedro

San Pedro.

Joining Strings

Module strings

 Sub Main()

 Dim strarray As String() = {"Down the way where the nights are

gay",

 "And the sun shines daily on the mountain

top",

 "I took a trip on a sailing ship",

 "And when I reached Jamaica",

 "I made a stop"}

 Dim str As String = String.Join(vbCrLf, strarray)

 Console.WriteLine(str)

 Console.ReadLine()

 VB.NET

 107

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

 VB.NET

 108

Most of the softwares you write need implementing some form of date functions

returning current date and time. Dates are so much part of everyday life that it

becomes easy to work with them without thinking. VB.Net also provides powerful

tools for date arithmetic that makes manipulating dates easy.

The Date data type contains date values, time values, or date and time values.

The default value of Date is 0:00:00 (midnight) on January 1, 0001. The

equivalent .NET data type is System.DateTime.

The DateTime structure represents an instant in time, typically expressed as a

date and time of day

'Declaration

<SerializableAttribute> _

Public Structure DateTime _

 Implements IComparable, IFormattable, IConvertible, ISerializable,

 IComparable(Of DateTime), IEquatable(Of DateTime)

You can also get the current date and time from the DateAndTime class.

The DateAndTime module contains the procedures and properties used in date

and time operations.

'Declaration

<StandardModuleAttribute> _

Public NotInheritable Class DateAndTime

Note:

Both the DateTime structure and the DateAndTime module contain properties

like Now and Today, so often beginners find it confusing. The DateAndTime

class belongs to the Microsoft.VisualBasic namespace and the DateTime

structure belongs to the System namespace.

Therefore, using the later would help you in porting your code to another .Net

language like C#. However, the DateAndTime class/module contains all the

legacy date functions available in Visual Basic.

15. Date & Time

 VB.NET

 109

Properties and Methods of the DateTime Structure

The following table lists some of the commonly used properties of the DateTime

Structure:

S.N Property Description

1 Date Gets the date component of this instance.

2 Day
Gets the day of the month represented by this

instance.

3 DayOfWeek
Gets the day of the week represented by this

instance.

4 DayOfYear Gets the day of the year represented by this instance.

5 Hour
Gets the hour component of the date represented by

this instance.

6 Kind

Gets a value that indicates whether the time

represented by this instance is based on local time,

Coordinated Universal Time (UTC), or neither.

7 Millisecond
Gets the milliseconds component of the date

represented by this instance.

8 Minute
Gets the minute component of the date represented

by this instance.

9 Month
Gets the month component of the date represented

by this instance.

10 Now

Gets a DateTime object that is set to the current

date and time on this computer, expressed as the

local time.

 VB.NET

 110

11 Second
Gets the seconds component of the date represented

by this instance.

12 Ticks
Gets the number of ticks that represent the date and

time of this instance.

13 TimeOfDay Gets the time of day for this instance.

14 Today Gets the current date.

15 UtcNow

Gets a DateTime object that is set to the current

date and time on this computer, expressed as the

Coordinated Universal Time (UTC).

16 Year
Gets the year component of the date represented by

this instance.

The following table lists some of the commonly used methods of

the DateTime structure:

S.N Method Name & Description

1 Public Function Add (value As TimeSpan) As DateTime

Returns a new DateTime that adds the value of the specified TimeSpan

to the value of this instance.

2 Public Function AddDays (value As Double) As DateTime

Returns a new DateTime that adds the specified number of days to the

value of this instance.

3 Public Function AddHours (value As Double) As DateTime

Returns a new DateTime that adds the specified number of hours to the

value of this instance.

 VB.NET

 111

4 Public Function AddMinutes (value As Double) As DateTime

Returns a new DateTime that adds the specified number of minutes to

the value of this instance.

5 Public Function AddMonths (months As Integer) As DateTime

Returns a new DateTime that adds the specified number of months to the

value of this instance.

6 Public Function AddSeconds (value As Double) As DateTime

Returns a new DateTime that adds the specified number of seconds to

the value of this instance.

7 Public Function AddYears (value As Integer) As DateTime

Returns a new DateTime that adds the specified number of years to the

value of this instance.

8 Public Shared Function Compare (t1 As DateTime,t2 As DateTime)

As Integer

Compares two instances of DateTime and returns an integer that

indicates whether the first instance is earlier than, the same as, or later

than the second instance.

9 Public Function CompareTo (value As DateTime) As Integer

Compares the value of this instance to a specified DateTime value and

returns an integer that indicates whether this instance is earlier than, the

same as, or later than the specified DateTime value.

10 Public Function Equals (value As DateTime) As Boolean

Returns a value indicating whether the value of this instance is equal to

the value of the specified DateTime instance.

11 Public Shared Function Equals (t1 As DateTime, t2 As DateTime)

As Boolean

 VB.NET

 112

Returns a value indicating whether two DateTime instances have the

same date and time value.

12 Public Overrides Function ToString As String

Converts the value of the current DateTime object to its equivalent string

representation.

The above list of methods is not exhaustive, please visit Microsoft documentation for

the complete list of methods and properties of the DateTime structure.

Creating a DateTime Object

You can create a DateTime object in one of the following ways:

 By calling a DateTime constructor from any of the overloaded DateTime

constructors.

 By assigning the DateTime object a date and time value returned by a

property or method.

 By parsing the string representation of a date and time value.

 By calling the DateTime structure's implicit default constructor.

The following example demonstrates this:

Module Module1

 Sub Main()

 'DateTime constructor: parameters year, month, day, hour, min, sec

 Dim date1 As New Date(2012, 12, 16, 12, 0, 0)

 'initializes a new DateTime value

 Dim date2 As Date = #12/16/2012 12:00:52 AM#

 'using properties

 Dim date3 As Date = Date.Now

 Dim date4 As Date = Date.UtcNow

 Dim date5 As Date = Date.Today

 Console.WriteLine(date1)

 Console.WriteLine(date2)

 Console.WriteLine(date3)

http://msdn.microsoft.com/en-us/library/system.datetime.aspx

 VB.NET

 113

 Console.WriteLine(date4)

 Console.WriteLine(date5)

 Console.ReadKey()

 End Sub

End Module

When the above code was compiled and executed, it produces the following result:

12/16/2012 12:00:00 PM

12/16/2012 12:00:52 PM

12/12/2012 10:22:50 PM

12/12/2012 12:00:00 PM

Getting the Current Date and Time

The following programs demonstrate how to get the current date and time in

VB.Net:

Current Time

Module dateNtime

 Sub Main()

 Console.Write("Current Time: ")

 Console.WriteLine(Now.ToLongTimeString)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current Time: 11 :05 :32 AM

Current Date

Module dateNtime

 Sub Main()

 Console.WriteLine("Current Date: ")

 Dim dt As Date = Today

 Console.WriteLine("Today is: {0}", dt)

 VB.NET

 114

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Today is: 12/11/2012 12:00:00 AM

Formatting Date

A Date literal should be enclosed within hash signs (# #), and specified in the

format M/d/yyyy, for example #12/16/2012#. Otherwise, your code may change

depending on the locale in which your application is running.

For example, you specified Date literal of #2/6/2012# for the date February 6,

2012. It is alright for the locale that uses mm/dd/yyyy format. However, in a locale

that uses dd/mm/yyyy format, your literal would compile to June 2, 2012. If a

locale uses another format say, yyyy/mm/dd, the literal would be invalid and

cause a compiler error.

To convert a Date literal to the format of your locale or to a custom format, use

the Format function of String class, specifying either a predefined or user-defined

date format.

The following example demonstrates this.

Module dateNtime

 Sub Main()

 Console.WriteLine("India Wins Freedom: ")

 Dim independenceDay As New Date(1947, 8, 15, 0, 0, 0)

 ' Use format specifiers to control the date display.

 Console.WriteLine(" Format 'd:' " & independenceDay.ToString("d"))

 Console.WriteLine(" Format 'D:' " & independenceDay.ToString("D"))

 Console.WriteLine(" Format 't:' " & independenceDay.ToString("t"))

 Console.WriteLine(" Format 'T:' " & independenceDay.ToString("T"))

 Console.WriteLine(" Format 'f:' " & independenceDay.ToString("f"))

 Console.WriteLine(" Format 'F:' " & independenceDay.ToString("F"))

 Console.WriteLine(" Format 'g:' " & independenceDay.ToString("g"))

 Console.WriteLine(" Format 'G:' " & independenceDay.ToString("G"))

 Console.WriteLine(" Format 'M:' " & independenceDay.ToString("M"))

 Console.WriteLine(" Format 'R:' " & independenceDay.ToString("R"))

 VB.NET

 115

 Console.WriteLine(" Format 'y:' " & independenceDay.ToString("y"))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

India Wins Freedom:

Format 'd:' 8/15/1947

Format 'D:' Friday, August 15, 1947

Format 't:' 12:00 AM

Format 'T:' 12:00:00 AM

Format 'f:' Friday, August 15, 1947 12:00 AM

Format 'F:' Friday, August 15, 1947 12:00:00 AM

Format 'g:' 8/15/1947 12:00 AM

Format 'G:' 8/15/1947 12:00:00 AM

Format 'M:' 8/15/1947 August 15

Format 'R:' Fri, 15 August 1947 00:00:00 GMT

Format 'y:' August, 1947

Predefined Date/Time Formats

The following table identifies the predefined date and time format names. These

may be used by name as the style argument for the Format function:

Format Description

General Date, or G
Displays a date and/or time. For example,

1/12/2012 07:07:30 AM.

Long Date, Medium Date, or D

Displays a date according to your current

culture's long date format. For example,

Sunday, December 16, 2012.

Short Date, or d

Displays a date using your current culture's

short date format. For example,

12/12/2012.

 VB.NET

 116

Long Time, Medium Time, or T

Displays a time using your current culture's

long time format; typically includes hours,

minutes, seconds. For example, 01:07:30

AM.

Short Time or t
Displays a time using your current culture's

short time format. For example, 11:07 AM.

F

Displays the long date and short time

according to your current culture's format.

For example, Sunday, December 16, 2012

12:15 AM.

F

Displays the long date and long time

according to your current culture's format.

For example, Sunday, December 16, 2012

12:15:31 AM.

G

Displays the short date and short time

according to your current culture's format.

For example, 12/16/2012 12:15 AM.

M, m
Displays the month and the day of a date.

For example, December 16.

R, r
Formats the date according to the

RFC1123Pattern property.

S
Formats the date and time as a sortable

index. For example, 2012-12-16T12:07:31.

U

Formats the date and time as a GMT

sortable index. For example, 2012-12-16

12:15:31Z.

 VB.NET

 117

U

Formats the date and time with the long

date and long time as GMT. For example,

Sunday, December 16, 2012 6:07:31 PM.

Y, y
Formats the date as the year and month.

For example, December, 2012.

For other formats like user-defined formats, please consult Microsoft Documentation.

Properties and Methods of the DateAndTime Class

The following table lists some of the commonly used properties of

the DateAndTime Class:

S.N Property Description

1 Date Returns or sets a String value representing the

current date according to your system.

2 Now Returns a Date value containing the current date and

time according to your system.

3 TimeOfDay Returns or sets a Date value containing the current

time of day according to your system.

4 Timer Returns a Double value representing the number of

seconds elapsed since midnight.

5 TimeString Returns or sets a String value representing the

current time of day according to your system.

6 Today Gets the current date.

The following table lists some of the commonly used methods of

the DateAndTime class:

S.N Method Name & Description

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.strings.format.aspx

 VB.NET

 118

1 Public Shared Function DateAdd (Interval As DateInterval,

Number As Double, DateValue As DateTime) As DateTime

Returns a Date value containing a date and time value to which a

specified time interval has been added.

2 Public Shared Function DateAdd (Interval As String,Number As

Double,DateValue As Object) As DateTime

Returns a Date value containing a date and time value to which a

specified time interval has been added.

3 Public Shared Function DateDiff (Interval As DateInterval, Date1

As DateTime, Date2 As DateTime, DayOfWeek As

FirstDayOfWeek, WeekOfYear As FirstWeekOfYear) As Long

Returns a Long value specifying the number of time intervals between

two Date values.

4 Public Shared Function DatePart (Interval As DateInterval,

DateValue As DateTime, FirstDayOfWeekValue As

FirstDayOfWeek, FirstWeekOfYearValue As FirstWeekOfYear) As

Integer

Returns an Integer value containing the specified component of a given

Date value.

5 Public Shared Function Day (DateValue As DateTime) As Integer

Returns an Integer value from 1 through 31 representing the day of the

month.

6 Public Shared Function Hour (TimeValue As DateTime) As Integer

Returns an Integer value from 0 through 23 representing the hour of the

day.

7 Public Shared Function Minute (TimeValue As DateTime) As

Integer

Returns an Integer value from 0 through 59 representing the minute of

the hour.

 VB.NET

 119

8 Public Shared Function Month (DateValue As DateTime) As

Integer

Returns an Integer value from 1 through 12 representing the month of

the year.

9 Public Shared Function MonthName (Month As Integer,

Abbreviate As Boolean) As String

Returns a String value containing the name of the specified month.

10 Public Shared Function Second (TimeValue As DateTime) As

Integer

Returns an Integer value from 0 through 59 representing the second of

the minute.

11 Public Overridable Function ToString As String

Returns a string that represents the current object.

12 Public Shared Function Weekday (DateValue As DateTime,

DayOfWeek As FirstDayOfWeek) As Integer

Returns an Integer value containing a number representing the day of

the week.

13 Public Shared Function WeekdayName (Weekday As Integer,

Abbreviate As Boolean, FirstDayOfWeekValue As

FirstDayOfWeek) As String

Returns a String value containing the name of the specified weekday.

14 Public Shared Function Year (DateValue As DateTime) As Integer

Returns an Integer value from 1 through 9999 representing the year.

The above list is not exhaustive. For complete list of properties and methods of

the DateAndTime class, please consult Microsoft Documentation.

The following program demonstrates some of these and methods:

http://msdn.microsoft.com/en-us/library/microsoft.visualbasic.dateandtime.aspx

 VB.NET

 120

Module Module1

 Sub Main()

 Dim birthday As Date

 Dim bday As Integer

 Dim month As Integer

 Dim monthname As String

 ' Assign a date using standard short format.

 birthday = #7/27/1998#

 bday = Microsoft.VisualBasic.DateAndTime.Day(birthday)

 month = Microsoft.VisualBasic.DateAndTime.Month(birthday)

 monthname = Microsoft.VisualBasic.DateAndTime.MonthName(month)

 Console.WriteLine(birthday)

 Console.WriteLine(bday)

 Console.WriteLine(month)

 Console.WriteLine(monthname)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

7/27/1998 12:00:00 AM

27

7

July

 VB.NET

 121

An array stores a fixed-size sequential collection of elements of the same type. An

array is used to store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds

to the first element and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

The elements in an array can be stored and accessed by using the index of the

array. The following program demonstrates this:

Module arrayApl

 Sub Main()

 Dim n(10) As Integer ' n is an array of 11 integers '

 Dim i, j As Integer

 ' initialize elements of array n '

 For i = 0 To 10

16. Arrays

 VB.NET

 122

 n(i) = i + 100 ' set element at location i to i + 100

 Next i

 ' output each array element's value '

 For j = 0 To 10

 Console.WriteLine("Element({0}) = {1}", j, n(j))

 Next j

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par

the need of the program. You can declare a dynamic array using

the ReDim statement.

Syntax for ReDim statement:

ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array,

when you resize it.

 arrayname is the name of the array to re-dimension.

 VB.NET

 123

 subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

0 85

1 75

2 90

3 80

4 76

5 92

6 99

7 79

8 75

9 0

10 0

 VB.NET

 124

Multi-Dimensional Arrays

VB.Net allows multidimensional arrays. Multidimensional arrays are also called

rectangular arrays.

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

 VB.NET

 125

a[4,0]: 4

a[4,1]: 8

Jagged Array

A Jagged array is an array of arrays. The following code shows declaring a jagged

array named scores of Integers:

Dim scores As Integer()() = New Integer(5)(){}

The following example illustrates using a jagged array:

Module arrayApl

 Sub Main()

 'a jagged array of 5 array of integers

 Dim a As Integer()() = New Integer(4)() {}

 a(0) = New Integer() {0, 0}

 a(1) = New Integer() {1, 2}

 a(2) = New Integer() {2, 4}

 a(3) = New Integer() {3, 6}

 a(4) = New Integer() {4, 8}

 Dim i, j As Integer

 ' output each array element's value

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i)(j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

 VB.NET

 126

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

The Array Class

The Array class is the base class for all the arrays in VB.Net. It is defined in the

System namespace. The Array class provides various properties and methods to

work with arrays.

Properties of the Array Class

The following table provides some of the most commonly used properties of

the Array class:

S.N Property Name & Description

1 IsFixedSize

Gets a value indicating whether the Array has a fixed size.

2 IsReadOnly

Gets a value indicating whether the Array is read-only.

3 Length

Gets a 32-bit integer that represents the total number of elements in all

the dimensions of the Array.

4 LongLength

Gets a 64-bit integer that represents the total number of elements in all

the dimensions of the Array.

5 Rank

Gets the rank (number of dimensions) of the Array.

 VB.NET

 127

Methods of the Array Class

The following table provides some of the most commonly used methods of

the Array class:

S.N Method Name & Description

1 Public Shared Sub Clear (array As Array, index As Integer, length

As Integer)

Sets a range of elements in the Array to zero, to false, or to null,

depending on the element type.

2 Public Shared Sub Copy (sourceArray As Array, destinationArray

As Array, length As Integer)

Copies a range of elements from an Array starting at the first element

and pastes them into another Array starting at the first element. The

length is specified as a 32-bit integer.

3 Public Sub CopyTo (array As Array, index As Integer)

Copies all the elements of the current one-dimensional Array to the

specified one-dimensional Array starting at the specified destination

Array index. The index is specified as a 32-bit integer.

4 Public Function GetLength (dimension As Integer) As Integer

Gets a 32-bit integer that represents the number of elements in the

specified dimension of the Array.

5 Public Function GetLongLength (dimension As Integer) As Long

Gets a 64-bit integer that represents the number of elements in the

specified dimension of the Array.

6 Public Function GetLowerBound (dimension As Integer) As

Integer

Gets the lower bound of the specified dimension in the Array.

7 Public Function GetType As Type

 VB.NET

 128

Gets the Type of the current instance (Inherited from Object).

8 Public Function GetUpperBound (dimension As Integer) As

Integer

Gets the upper bound of the specified dimension in the Array.

9 Public Function GetValue (index As Integer) As Object

Gets the value at the specified position in the one-dimensional Array.

The index is specified as a 32-bit integer.

10 Public Shared Function IndexOf (array As Array,value As Object)

As Integer

Searches for the specified object and returns the index of the first

occurrence within the entire one-dimensional Array.

11 Public Shared Sub Reverse (array As Array)

Reverses the sequence of the elements in the entire one-dimensional

Array.

12 Public Sub SetValue (value As Object, index As Integer)

Sets a value to the element at the specified position in the one-

dimensional Array. The index is specified as a 32-bit integer.

13 Public Shared Sub Sort (array As Array)

Sorts the elements in an entire one-dimensional Array using the

IComparable implementation of each element of the Array.

14 Public Overridable Function ToString As String

Returns a string that represents the current object (Inherited from

Object).

For a complete list of Array class properties and methods, please refer the

Microsoft documentation.

 VB.NET

 129

Example

The following program demonstrates use of some of the methods of the Array

class:

Module arrayApl

 Sub Main()

 Dim list As Integer() = {34, 72, 13, 44, 25, 30, 10}

 Dim temp As Integer() = list

 Dim i As Integer

 Console.Write("Original Array: ")

 For Each i In list

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 ' reverse the array

 Array.Reverse(temp)

 Console.Write("Reversed Array: ")

 For Each i In temp

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 'sort the array

 Array.Sort(list)

 Console.Write("Sorted Array: ")

 For Each i In list

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

End Module

 VB.NET

 130

When the above code is compiled and executed, it produces the following result:

Original Array: 34 72 13 44 25 30 10

Reversed Array: 10 30 25 44 13 72 34

Sorted Array: 10 13 25 30 34 44 72

 VB.NET

 131

Collection classes are specialized classes for data storage and retrieval. These

classes provide support for stacks, queues, lists, and hash tables. Most collection

classes implement the same interfaces.

Collection classes serve various purposes, such as allocating memory dynamically

to elements and accessing a list of items on the basis of an index, etc. These

classes create collections of objects of the Object class, which is the base class for

all data types in VB.Net.

Various Collection Classes and Their Usage

The following are the various commonly used classes of the System.Collection

namespace. Click the following links to check their details.

Class Description and Usage

ArrayList

It represents ordered collection of an object that can

be indexed individually.

It is basically an alternative to an array. However, unlike

array, you can add and remove items from a list at a

specified position using an index and the array resizes itself

automatically. It also allows dynamic memory allocation,

add, search and sort items in the list.

Hashtable

It uses a key to access the elements in the collection.

A hash table is used when you need to access elements by

using key, and you can identify a useful key value. Each item

in the hash table has a key/value pair. The key is used to

access the items in the collection.

SortedList
It uses a key as well as an index to access the items in a

list.

17. Collections

 VB.NET

 132

A sorted list is a combination of an array and a hash table.

It contains a list of items that can be accessed using a key

or an index. If you access items using an index, it is an

ArrayList, and if you access items using a key, it is a

Hashtable. The collection of items is always sorted by the

key value.

Stack

It represents a last-in, first out collection of object.

It is used when you need a last-in, first-out access of items.

When you add an item in the list, it is called pushing the

item, and when you remove it, it is called popping the item.

Queue

It represents a first-in, first out collection of object.

It is used when you need a first-in, first-out access of items.

When you add an item in the list, it is called enqueue, and

when you remove an item, it is called deque.

BitArray

It represents an array of the binary representation using

the values 1 and 0.

It is used when you need to store the bits but do not know

the number of bits in advance. You can access items from

the BitArray collection by using an integer index, which

starts from zero.

ArrayList

It represents an ordered collection of an object that can be indexed individually.

It is basically an alternative to an array. However, unlike array, you can add and

remove items from a list at a specified position using an index and the array

resizes itself automatically. It also allows dynamic memory allocation, adding,

searching and sorting items in the list.

Properties and Methods of the ArrayList Class

The following table lists some of the commonly used properties of

the ArrayList class:

 VB.NET

 133

Property Description

Capacity Gets or sets the number of elements that the ArrayList can

contain.

Count Gets the number of elements actually contained in the

ArrayList.

IsFixedSize Gets a value indicating whether the ArrayList has a fixed

size.

IsReadOnly Gets a value indicating whether the ArrayList is read-only.

Item Gets or sets the element at the specified index.

The following table lists some of the commonly used methods of

the ArrayList class:

S.N. Method Name & Purpose

1 Public Overridable Function Add (value As Object) As Integer

Adds an object to the end of the ArrayList.

2 Public Overridable Sub AddRange (c As ICollection)

Adds the elements of an ICollection to the end of the ArrayList.

3 Public Overridable Sub Clear

Removes all elements from the ArrayList.

4 Public Overridable Function Contains (item As Object) As

Boolean

Determines whether an element is in the ArrayList.

 VB.NET

 134

5 Public Overridable Function GetRange (index As Integer, count

As Integer) As ArrayList

Returns an ArrayList, which represents a subset of the elements in the

source ArrayList.

6 Public Overridable Function IndexOf (value As Object) As Integer

Returns the zero-based index of the first occurrence of a value in the

ArrayList or in a portion of it.

7 Public Overridable Sub Insert (index As Integer, value As Object)

Inserts an element into the ArrayList at the specified index.

8 Public Overridable Sub InsertRange (index As Integer, c As

ICollection)

Inserts the elements of a collection into the ArrayList at the specified

index.

9 Public Overridable Sub Remove (obj As Object)

Removes the first occurrence of a specific object from the ArrayList.

10 Public Overridable Sub RemoveAt (index As Integer)

Removes the element at the specified index of the ArrayList.

11 Public Overridable Sub RemoveRange (index As Integer, count

As Integer)

Removes a range of elements from the ArrayList.

12 Public Overridable Sub Reverse

Reverses the order of the elements in the ArrayList.

13 Public Overridable Sub SetRange (index As Integer, c As

ICollection)

Copies the elements of a collection over a range of elements in the

ArrayList.

 VB.NET

 135

14 Public Overridable Sub Sort

Sorts the elements in the ArrayList.

15 Public Overridable Sub TrimToSize

Sets the capacity to the actual number of elements in the ArrayList.

Example

The following example demonstrates the concept:

 Sub Main()

 Dim al As ArrayList = New ArrayList()

 Dim i As Integer

 Console.WriteLine("Adding some numbers:")

 al.Add(45)

 al.Add(78)

 al.Add(33)

 al.Add(56)

 al.Add(12)

 al.Add(23)

 al.Add(9)

 Console.WriteLine("Capacity: {0} ", al.Capacity)

 Console.WriteLine("Count: {0}", al.Count)

 Console.Write("Content: ")

 For Each i In al

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.Write("Sorted Content: ")

 al.Sort()

 For Each i In al

 Console.Write("{0} ", i)

 Next i

 Console.WriteLine()

 Console.ReadKey()

 VB.NET

 136

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Adding some numbers:

Capacity: 8

Count: 7

Content: 45 78 33 56 12 23 9

Content: 9 12 23 33 45 56 78

Hashtable

The Hashtable class represents a collection of key-and-value pairs that are

organized based on the hash code of the key. It uses the key to access the

elements in the collection.

A hashtable is used when you need to access elements by using key, and you can

identify a useful key value. Each item in the hashtable has a key/value pair. The

key is used to access the items in the collection.

Properties and Methods of the Hashtable Class

The following table lists some of the commonly used properties of

the Hashtable class:

Property Description

Count Gets the number of key-and-value pairs contained in the

Hashtable.

IsFixedSize Gets a value indicating whether the Hashtable has a fixed

size.

IsReadOnly Gets a value indicating whether the Hashtable is read-only.

Item Gets or sets the value associated with the specified key.

Keys Gets an ICollection containing the keys in the Hashtable.

Values Gets an ICollection containing the values in the Hashtable.

 VB.NET

 137

The following table lists some of the commonly used methods of

the Hashtable class:

S.N Method Name & Purpose

1 Public Overridable Sub Add (key As Object, value As Object)

Adds an element with the specified key and value into the Hashtable.

2 Public Overridable Sub Clear

Removes all elements from the Hashtable.

3 Public Overridable Function ContainsKey (key As Object) As

Boolean

Determines whether the Hashtable contains a specific key.

4 Public Overridable Function ContainsValue (value As Object) As

Boolean

Determines whether the Hashtable contains a specific value.

5 Public Overridable Sub Remove (key As Object)

Removes the element with the specified key from the Hashtable.

Example

The following example demonstrates the concept:

Module collections

 Sub Main()

 Dim ht As Hashtable = New Hashtable()

 Dim k As String

 ht.Add("001", "Zara Ali")

 ht.Add("002", "Abida Rehman")

 ht.Add("003", "Joe Holzner")

 ht.Add("004", "Mausam Benazir Nur")

 ht.Add("005", "M. Amlan")

 ht.Add("006", "M. Arif")

 ht.Add("007", "Ritesh Saikia")

 If (ht.ContainsValue("Nuha Ali")) Then

 Console.WriteLine("This student name is already in the list")

 VB.NET

 138

 Else

 ht.Add("008", "Nuha Ali")

 End If

 ' Get a collection of the keys.

 Dim key As ICollection = ht.Keys

 For Each k In key

 Console.WriteLine(" {0} : {1}", k, ht(k))

 Next k

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

006: M. Arif

007: Ritesh Saikia

008: Nuha Ali

003: Joe Holzner

002: Abida Rehman

004: Mausam Banazir Nur

001: Zara Ali

005: M. Amlan

SortedList

The SortedList class represents a collection of key-and-value pairs that are sorted

by the keys and are accessible by key and by index.

A sorted list is a combination of an array and a hashtable. It contains a list of

items that can be accessed using a key or an index. If you access items using an

index, it is an ArrayList, and if you access items using a key, it is a Hashtable. The

collection of items is always sorted by the key value.

Properties and Methods of the SortedList Class

The following table lists some of the commonly used properties of

the SortedList class:

 VB.NET

 139

Property Description

Capacity Gets or sets the capacity of the SortedList.

Count Gets the number of elements contained in the SortedList.

IsFixedSize Gets a value indicating whether the SortedList has a fixed

size.

IsReadOnly Gets a value indicating whether the SortedList is read-only.

Item Gets and sets the value associated with a specific key in the

SortedList.

Keys Gets the keys in the SortedList.

Values Gets the values in the SortedList.

The following table lists some of the commonly used methods of

the SortedList class:

S.N Method Name & Purpose

1 Public Overridable Sub Add (key As Object, value As Object)

Adds an element with the specified key and value into the SortedList.

2 Public Overridable Sub Clear

Removes all elements from the SortedList.

3 Public Overridable Function ContainsKey (key As Object) As

Boolean

Determines whether the SortedList contains a specific key.

4 Public Overridable Function ContainsValue (value As Object) As

Boolean

 VB.NET

 140

Determines whether the SortedList contains a specific value.

5 Public Overridable Function GetByIndex (index As Integer) As

Object

Gets the value at the specified index of the SortedList.

6 Public Overridable Function GetKey (index As Integer) As Object

Gets the key at the specified index of the SortedList.

7 Public Overridable Function GetKeyList As IList

Gets the keys in the SortedList.

8 Public Overridable Function GetValueList As IList

Gets the values in the SortedList.

9 Public Overridable Function IndexOfKey (key As Object) As

Integer

Returns the zero-based index of the specified key in the SortedList.

10 Public Overridable Function IndexOfValue (value As Object) As

Integer

Returns the zero-based index of the first occurrence of the specified value

in the SortedList.

11 Public Overridable Sub Remove (key As Object)

Removes the element with the specified key from the SortedList.

12 Public Overridable Sub RemoveAt (index As Integer)

Removes the element at the specified index of SortedList.

13 Public Overridable Sub TrimToSize

Sets the capacity to the actual number of elements in the SortedList.

 VB.NET

 141

Example

The following example demonstrates the concept:

Module collections

 Sub Main()

 Dim sl As SortedList = New SortedList()

 sl.Add("001", "Zara Ali")

 sl.Add("002", "Abida Rehman")

 sl.Add("003", "Joe Holzner")

 sl.Add("004", "Mausam Benazir Nur")

 sl.Add("005", "M. Amlan")

 sl.Add("006", "M. Arif")

 sl.Add("007", "Ritesh Saikia")

 If (sl.ContainsValue("Nuha Ali")) Then

 Console.WriteLine("This student name is already in the list")

 Else

 sl.Add("008", "Nuha Ali")

 End If

 ' Get a collection of the keys.

 Dim key As ICollection = sl.Keys

 Dim k As String

 For Each k In key

 Console.WriteLine(" {0} : {1}", k, sl(k))

 Next k

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

001: Zara Ali

002: Abida Rehman

003: Joe Holzner

 VB.NET

 142

004: Mausam Banazir Nur

005: M. Amlan

006: M. Arif

007: Ritesh Saikia

008: Nuha Ali

Stack

It represents a last-in, first-out collection of objects. It is used when you need a

last-in, first-out access of items. When you add an item in the list, it is called

pushing the item, and when you remove it, it is called popping the item.

Properties and Methods of the Stack Class

The following table lists some of the commonly used properties of

the Stack class:

Property Description

Count Gets the number of elements contained in the Stack.

The following table lists some of the commonly used methods of the Stack class:

S.N Method Name & Purpose

1 Public Overridable Sub Clear

Removes all elements from the Stack.

2 Public Overridable Function Contains (obj As Object) As Boolean

Determines whether an element is in the Stack.

3 Public Overridable Function Peek As Object

Returns the object at the top of the Stack without removing it.

4 Public Overridable Function Pop As Object

Removes and returns the object at the top of the Stack.

 VB.NET

 143

5 Public Overridable Sub Push (obj As Object)

Inserts an object at the top of the Stack.

6 Public Overridable Function ToArray As Object()

Copies the Stack to a new array.

Example

The following example demonstrates use of Stack:

Module collections

 Sub Main()

 Dim st As Stack = New Stack()

 st.Push("A")

 st.Push("M")

 st.Push("G")

 st.Push("W")

 Console.WriteLine("Current stack: ")

 Dim c As Char

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 st.Push("V")

 st.Push("H")

 Console.WriteLine("The next poppable value in stack: {0}",

st.Peek())

 Console.WriteLine("Current stack: ")

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 Console.WriteLine("Removing values ")

 st.Pop()

 st.Pop()

 VB.NET

 144

 st.Pop()

 Console.WriteLine("Current stack: ")

 For Each c In st

 Console.Write(c + " ")

 Next c

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current stack:

W G M A

The next poppable value in stack: H

Current stack:

H V W G M A

Removing values

Current stack:

G M A

Queue

It represents a first-in, first-out collection of object. It is used when you need a

first-in, first-out access of items. When you add an item in the list, it is

called enqueue, and when you remove an item, it is called deque

Properties and Methods of the Queue Class

The following table lists some of the commonly used properties of

the Queue class:

Property Description

Count Gets the number of elements contained in the Queue.

The following table lists some of the commonly used methods of the Queue class:

S.N Method Name & Purpose

 VB.NET

 145

1 Public Overridable Sub Clear

Removes all elements from the Queue.

2 Public Overridable Function Contains (obj As Object) As Boolean

Determines whether an element is in the Queue.

3 Public Overridable Function Dequeue As Object

Removes and returns the object at the beginning of the Queue.

4 Public Overridable Sub Enqueue (obj As Object)

Adds an object to the end of the Queue.

5 Public Overridable Function ToArray As Object()

Copies the Queue to a new array.

6 Public Overridable Sub TrimToSize

Sets the capacity to the actual number of elements in the Queue.

Example

The following example demonstrates use of Queue:

Module collections

 Sub Main()

 Dim q As Queue = New Queue()

 q.Enqueue("A")

 q.Enqueue("M")

 q.Enqueue("G")

 q.Enqueue("W")

 Console.WriteLine("Current queue: ")

 Dim c As Char

 For Each c In q

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 VB.NET

 146

 q.Enqueue("V")

 q.Enqueue("H")

 Console.WriteLine("Current queue: ")

 For Each c In q

 Console.Write(c + " ")

 Next c

 Console.WriteLine()

 Console.WriteLine("Removing some values ")

 Dim ch As Char

 ch = q.Dequeue()

 Console.WriteLine("The removed value: {0}", ch)

 ch = q.Dequeue()

 Console.WriteLine("The removed value: {0}", ch)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Current queue:

A M G W

Current queue:

A M G W V H

Removing some values

The removed value: A

The removed value: M

BitArray

The BitArray class manages a compact array of bit values, which are represented

as Booleans, where true indicates that the bit is on (1) and false indicates the bit

is off (0).

It is used when you need to store the bits but do not know the number of bits in

advance. You can access items from the BitArray collection by using an integer

index, which starts from zero.

 VB.NET

 147

Properties and Methods of the BitArray Class

The following table lists some of the commonly used properties of

the BitArray class:

Property Description

Count Gets the number of elements contained in the BitArray.

IsReadOnly Gets a value indicating whether the BitArray is read-only.

Item Gets or sets the value of the bit at a specific position in the

BitArray.

Length Gets or sets the number of elements in the BitArray.

The following table lists some of the commonly used methods of

the BitArray class:

S.N Method Name & Purpose

1 Public Function And (value As BitArray) As BitArray

Performs the bitwise AND operation on the elements in the current

BitArray against the corresponding elements in the specified BitArray.

2 Public Function Get (index As Integer) As Boolean

Gets the value of the bit at a specific position in the BitArray.

3 Public Function Not As BitArray

Inverts all the bit values in the current BitArray, so that elements set to

true are changed to false, and elements set to false are changed to true.

4 Public Function Or (value As BitArray) As BitArray

 VB.NET

 148

Performs the bitwise OR operation on the elements in the current BitArray

against the corresponding elements in the specified BitArray.

5 Public Sub Set (index As Integer, value As Boolean)

Sets the bit at a specific position in the BitArray to the specified value.

6 Public Sub SetAll (value As Boolean)

Sets all bits in the BitArray to the specified value.

7 Public Function Xor (value As BitArray) As BitArray

Performs the bitwise eXclusive OR operation on the elements in the

current BitArray against the corresponding elements in the specified

BitArray.

Example

The following example demonstrates the use of BitArray class:

Module collections

 Sub Main()

 'creating two bit arrays of size 8

 Dim ba1 As BitArray = New BitArray(8)

 Dim ba2 As BitArray = New BitArray(8)

 Dim a() As Byte = {60}

 Dim b() As Byte = {13}

 'storing the values 60, and 13 into the bit arrays

 ba1 = New BitArray(a)

 ba2 = New BitArray(b)

 'content of ba1

 Console.WriteLine("Bit array ba1: 60")

 Dim i As Integer

 For i = 0 To ba1.Count

 Console.Write("{0 } ", ba1(i))

 Next i

 Console.WriteLine()

 VB.NET

 149

 'content of ba2

 Console.WriteLine("Bit array ba2: 13")

 For i = 0 To ba2.Count

 Console.Write("{0 } ", ba2(i))

 Next i

 Console.WriteLine()

 Dim ba3 As BitArray = New BitArray(8)

 ba3 = ba1.And(ba2)

 'content of ba3

 Console.WriteLine("Bit array ba3 after AND operation: 12")

 For i = 0 To ba3.Count

 Console.Write("{0 } ", ba3(i))

 Next i

 Console.WriteLine()

 ba3 = ba1.Or(ba2)

 'content of ba3

 Console.WriteLine("Bit array ba3 after OR operation: 61")

 For i = 0 To ba3.Count

 Console.Write("{0 } ", ba3(i))

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Bit array ba1: 60

False False True True True True False False

Bit array ba2: 13

True False True True False False False False

Bit array ba3 after AND operation: 12

False False True True False False False False

Bit array ba3 after OR operation: 61

True False True True False False False False

 VB.NET

 150

 VB.NET

 151

A procedure is a group of statements that together perform a task when called.

After the procedure is executed, the control returns to the statement calling the

procedure. VB.Net has two types of procedures:

 Functions

 Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter and the body of

a function. The syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers: specify the access level of the function; possible values are:

Public, Private, Protected, Friend, Protected Friend and information

regarding overloading, overriding, sharing, and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example

Following code snippet shows a function FindMax that takes two integer values and

returns the larger of the two.

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As

Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

18. Functions

 VB.NET

 152

 result = num1

 Else

 result = num2

 End If

 FindMax = result

End Function

Function Returning a Value

In VB.Net, a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

The following example demonstrates using the FindMax function:

Module myfunctions

 Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer) As

Integer

 ' local variable declaration */

 Dim result As Integer

 If (num1 > num2) Then

 result = num1

 Else

 result = num2

 End If

 FindMax = result

 End Function

 Sub Main()

 Dim a As Integer = 100

 Dim b As Integer = 200

 Dim res As Integer

 res = FindMax(a, b)

 Console.WriteLine("Max value is : {0}", res)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 153

When the above code is compiled and executed, it produces the following result:

Max value is : 200

Recursive Function

A function can call itself. This is known as recursion. Following is an example that

calculates factorial for a given number using a recursive function:

Module myfunctions

 Function factorial(ByVal num As Integer) As Integer

 ' local variable declaration */

 Dim result As Integer

 If (num = 1) Then

 Return 1

 Else

 result = factorial(num - 1) * num

 Return result

 End If

 End Function

 Sub Main()

 'calling the factorial method

 Console.WriteLine("Factorial of 6 is : {0}", factorial(6))

 Console.WriteLine("Factorial of 7 is : {0}", factorial(7))

 Console.WriteLine("Factorial of 8 is : {0}", factorial(8))

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Factorial of 6 is: 720

Factorial of 7 is: 5040

Factorial of 8 is: 40320

 VB.NET

 154

Param Arrays

At times, while declaring a function or sub procedure, you are not sure of the

number of arguments passed as a parameter. VB.Net param arrays (or parameter

arrays) come into help at these times.

The following example demonstrates this:

Module myparamfunc

 Function AddElements(ParamArray arr As Integer()) As Integer

 Dim sum As Integer = 0

 Dim i As Integer = 0

 For Each i In arr

 sum += i

 Next i

 Return sum

 End Function

 Sub Main()

 Dim sum As Integer

 sum = AddElements(512, 720, 250, 567, 889)

 Console.WriteLine("The sum is: {0}", sum)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The sum is: 2938

Passing Arrays as Function Arguments

You can pass an array as a function argument in VB.Net. The following example

demonstrates this:

Module arrayParameter

 Function getAverage(ByVal arr As Integer(), ByVal size As Integer) As

Double

 'local variables

 Dim i As Integer

 Dim avg As Double

 VB.NET

 155

 Dim sum As Integer = 0

 For i = 0 To size - 1

 sum += arr(i)

 Next i

 avg = sum / size

 Return avg

 End Function

 Sub Main()

 ' an int array with 5 elements '

 Dim balance As Integer() = {1000, 2, 3, 17, 50}

 Dim avg As Double

 'pass pointer to the array as an argument

 avg = getAverage(balance, 5)

 ' output the returned value '

 Console.WriteLine("Average value is: {0} ", avg)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Average value is: 214.4

 VB.NET

 156

As we mentioned in the previous chapter, Sub procedures are procedures that do

not return any value. We have been using the Sub procedure Main in all our

examples. We have been writing console applications so far in these tutorials.

When these applications start, the control goes to the Main Sub procedure, and it

in turn, runs any other statements constituting the body of the program.

Defining Sub Procedures

The Sub statement is used to declare the name, parameter and the body of a sub

procedure. The syntax for the Sub statement is:

[Modifiers] Sub SubName [(ParameterList)]

 [Statements]

End Sub

Where,

 Modifiers: specify the access level of the procedure; possible values are:

Public, Private, Protected, Friend, Protected Friend and information

regarding overloading, overriding, sharing, and shadowing.

 SubName: indicates the name of the Sub

 ParameterList: specifies the list of the parameters

Example

The following example demonstrates a Sub procedure CalculatePay that takes two

parameters hours and wages and displays the total pay of an employee:

Module mysub

 Sub CalculatePay(ByVal hours As Double, ByVal wage As Decimal)

 'local variable declaration

 Dim pay As Double

 pay = hours * wage

 Console.WriteLine("Total Pay: {0:C}", pay)

 End Sub

 Sub Main()

19. Sub Procedures

 VB.NET

 157

 'calling the CalculatePay Sub Procedure

 CalculatePay(25, 10)

 CalculatePay(40, 20)

 CalculatePay(30, 27.5)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Total Pay: $250.00

Total Pay: $800.00

Total Pay: $825.00

Passing Parameters by Value

This is the default mechanism for passing parameters to a method. In this

mechanism, when a method is called, a new storage location is created for each

value parameter. The values of the actual parameters are copied into them. So,

the changes made to the parameter inside the method have no effect on the

argument.

In VB.Net, you declare the reference parameters using the ByVal keyword. The

following example demonstrates the concept:

Module paramByval

 Sub swap(ByVal x As Integer, ByVal y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 VB.NET

 158

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

It shows that there is no change in the values though they had been changed

inside the function.

Passing Parameters by Reference

A reference parameter is a reference to a memory location of a variable. When

you pass parameters by reference, unlike value parameters, a new storage

location is not created for these parameters. The reference parameters represent

the same memory location as the actual parameters that are supplied to the

method.

In VB.Net, you declare the reference parameters using the ByRef keyword. The

following example demonstrates this:

Module paramByref

 Sub swap(ByRef x As Integer, ByRef y As Integer)

 Dim temp As Integer

 temp = x ' save the value of x

 x = y ' put y into x

 y = temp 'put temp into y

 End Sub

 Sub Main()

 ' local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 VB.NET

 159

 Console.WriteLine("Before swap, value of a : {0}", a)

 Console.WriteLine("Before swap, value of b : {0}", b)

 ' calling a function to swap the values '

 swap(a, b)

 Console.WriteLine("After swap, value of a : {0}", a)

 Console.WriteLine("After swap, value of b : {0}", b)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

 VB.NET

 160

When you define a class, you define a blueprint for a data type. This doesn't

actually define any data, but it does define what the class name means, that is,

what an object of the class will consist of and what operations can be performed

on such an object.

Objects are instances of a class. The methods and variables that constitute a class

are called members of the class.

Class Definition

A class definition starts with the keyword Class followed by the class name; and

the class body, ended by the End Class statement. Following is the general form

of a class definition:

[<attributelist>] [accessmodifier] [Shadows] [MustInherit |

NotInheritable] [Partial] _

Class name [(Of typelist)]

 [Inherits classname]

 [Implements interfacenames]

 [statements]

End Class

Where,

 attributelist is a list of attributes that apply to the class. Optional.

 accessmodifier defines the access levels of the class, it has values as -

Public, Protected, Friend, Protected Friend and Private. Optional.

 Shadows indicate that the variable re-declares and hides an identically

named element, or set of overloaded elements, in a base class. Optional.

 MustInherit specifies that the class can be used only as a base class and

that you cannot create an object directly from it, i.e., an abstract class.

Optional.

 NotInheritable specifies that the class cannot be used as a base class.

 Partial indicates a partial definition of the class.

 Inherits specifies the base class it is inheriting from.

20. Classes & Objects

 VB.NET

 161

 Implements specifies the interfaces the class is inheriting from.

The following example demonstrates a Box class, with three data members,

length, breadth, and height:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 ' box 1 specification

 Box1.height = 5.0

 Box1.length = 6.0

 Box1.breadth = 7.0

 ' box 2 specification

 Box2.height = 10.0

 Box2.length = 12.0

 Box2.breadth = 13.0

 'volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

 VB.NET

 162

Volume of Box2 : 1560

Member Functions and Encapsulation

A member function of a class is a function that has its definition or its prototype

within the class definition like any other variable. It operates on any object of the

class of which it is a member and has access to all the members of a class for that

object.

Member variables are attributes of an object (from design perspective) and they

are kept private to implement encapsulation. These variables can only be accessed

using the public member functions.

Let us put above concepts to set and get the value of different class members in

a class:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Sub setBreadth(ByVal bre As Double)

 breadth = bre

 End Sub

 Public Sub setHeight(ByVal hei As Double)

 height = hei

 End Sub

 Public Function getVolume() As Double

 Return length * breadth * height

 End Function

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 VB.NET

 163

 ' box 1 specification

 Box1.setLength(6.0)

 Box1.setBreadth(7.0)

 Box1.setHeight(5.0)

 'box 2 specification

 Box2.setLength(12.0)

 Box2.setBreadth(13.0)

 Box2.setHeight(10.0)

 ' volume of box 1

 volume = Box1.getVolume()

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.getVolume()

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Constructors and Destructors

A class constructor is a special member Sub of a class that is executed whenever

we create new objects of that class. A constructor has the name New and it does

not have any return type.

Following program explains the concept of constructor:

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'constructor

 VB.NET

 164

 Console.WriteLine("Object is being created")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

A default constructor does not have any parameter, but if you need, a constructor

can have parameters. Such constructors are called parameterized

constructors. This technique helps you to assign initial value to an object at the

time of its creation as shown in the following example:

Class Line

 Private length As Double ' Length of a line

 Public Sub New(ByVal len As Double) 'parameterised constructor

 Console.WriteLine("Object is being created, length = {0}", len)

 length = len

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 VB.NET

 165

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line(10.0)

 Console.WriteLine("Length of line set by constructor : {0}",

line.getLength())

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line set by setLength : {0}",
line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created, length = 10

Length of line set by constructor : 10

Length of line set by setLength : 6

A destructor is a special member Sub of a class that is executed whenever an

object of its class goes out of scope.

A destructor has the name Finalize and it can neither return a value nor can it

take any parameters. Destructor can be very useful for releasing resources before

coming out of the program like closing files, releasing memories, etc. Destructors

cannot be inherited or overloaded.

Following example demonstrates the concept of destructor:

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'parameterised constructor

 Console.WriteLine("Object is being created")

 End Sub

 Protected Overrides Sub Finalize() ' destructor

 Console.WriteLine("Object is being deleted")

 End Sub

 VB.NET

 166

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

Object is being deleted

Shared Members of a VB.Net Class

We can define class members as static using the Shared keyword. When we

declare a member of a class as Shared, it means no matter how many objects of

the class are created, there is only one copy of the member.

The keyword Shared implies that only one instance of the member exists for a

class. Shared variables are used for defining constants because their values can

be retrieved by invoking the class without creating an instance of it.

Shared variables can be initialized outside the member function or class definition.

You can also initialize Shared variables inside the class definition.

You can also declare a member function as Shared. Such functions can access only

Shared variables. The Shared functions exist even before the object is created.

The following example demonstrates the use of shared members:

Class StaticVar

 Public Shared num As Integer

 Public Sub count()

 VB.NET

 167

 num = num + 1

 End Sub

 Public Shared Function getNum() As Integer

 Return num

 End Function

 Shared Sub Main()

 Dim s As StaticVar = New StaticVar()

 s.count()

 s.count()

 s.count()

 Console.WriteLine("Value of variable num: {0}",

StaticVar.getNum())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Value of variable num: 3

Inheritance

One of the most important concepts in object-oriented programming is that of

inheritance. Inheritance allows us to define a class in terms of another class which

makes it easier to create and maintain an application. This also provides an

opportunity to reuse the code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should

inherit the members of an existing class. This existing class is called

the base class, and the new class is referred to as the derived class.

Base & Derived Classes

A class can be derived from more than one class or interface, which means that it

can inherit data and functions from multiple base classes or interfaces.

The syntax used in VB.Net for creating derived classes is as follows:

<access-specifier> Class <base_class>

...

 VB.NET

 168

End Class

Class <derived_class>: Inherits <base_class>

...

End Class

Consider a base class Shape and its derived class Rectangle:

' Base class

Class Shape

 Protected width As Integer

 Protected height As Integer

 Public Sub setWidth(ByVal w As Integer)

 width = w

 End Sub

 Public Sub setHeight(ByVal h As Integer)

 height = h

 End Sub

End Class

' Derived class

Class Rectangle : Inherits Shape

 Public Function getArea() As Integer

 Return (width * height)

 End Function

End Class

Class RectangleTester

 Shared Sub Main()

 Dim rect As Rectangle = New Rectangle()

 rect.setWidth(5)

 rect.setHeight(7)

 ' Print the area of the object.

 Console.WriteLine("Total area: {0}", rect.getArea())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

 VB.NET

 169

Total area: 35

Base Class Initialization

The derived class inherits the base class member variables and member methods.

Therefore, the super class object should be created before the subclass is created.

The super class or the base class is implicitly known as MyBase in VB.Net

The following program demonstrates this:

' Base class

Class Rectangle

 Protected width As Double

 Protected length As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 length = l

 width = w

 End Sub

 Public Function GetArea() As Double

 Return (width * length)

 End Function

 Public Overridable Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 'end class Rectangle

End Class

'Derived class

Class Tabletop : Inherits Rectangle

 Private cost As Double

 Public Sub New(ByVal l As Double, ByVal w As Double)

 MyBase.New(l, w)

 End Sub

 Public Function GetCost() As Double

 Dim cost As Double

 VB.NET

 170

 cost = GetArea() * 70

 Return cost

 End Function

 Public Overrides Sub Display()

 MyBase.Display()

 Console.WriteLine("Cost: {0}", GetCost())

 End Sub

 'end class Tabletop

End Class

Class RectangleTester

 Shared Sub Main()

 Dim t As Tabletop = New Tabletop(4.5, 7.5)

 t.Display()

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 7.5

Area: 33.75

Cost: 2362.5

VB.Net supports multiple inheritance.

 VB.NET

 171

An exception is a problem that arises during the execution of a program. An

exception is a response to an exceptional circumstance that arises while a program

is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to

another. VB.Net exception handling is built upon four keywords:

Try, Catch, Finally and Throw.

 Try: A Try block identifies a block of code for which particular exceptions

will be activated. It's followed by one or more Catch blocks.

 Catch: A program catches an exception with an exception handler at the

place in a program where you want to handle the problem. The Catch

keyword indicates the catching of an exception.

 Finally: The Finally block is used to execute a given set of statements,

whether an exception is thrown or not thrown. For example, if you open a

file, it must be closed whether an exception is raised or not.

 Throw: A program throws an exception when a problem shows up. This is

done using a Throw keyword.

Syntax

Assuming a block will raise an exception, a method catches an exception using a

combination of the Try and Catch keywords. A Try/Catch block is placed around

the code that might generate an exception. Code within a Try/Catch block is

referred to as protected code, and the syntax for using Try/Catch looks like the

following:

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

[Catch ...]

[Finally

 [finallyStatements]]

21. Exception Handling

 VB.NET

 172

End Try

You can list down multiple catch statements to catch different type of exceptions

in case your try block raises more than one exception in different situations.

Exception Classes in .Net Framework

In the .Net Framework, exceptions are represented by classes. The exception

classes in .Net Framework are mainly directly or indirectly derived from

the System.Exception class. Some of the exception classes derived from the

System.Exception class are the System.ApplicationException and

System.SystemException classes.

The System.ApplicationException class supports exceptions generated by

application programs. So the exceptions defined by the programmers should

derive from this class. The System.SystemException class is the base class for

all predefined system exception.

The following table provides some of the predefined exception classes derived

from the Sytem.SystemException class:

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException Handles errors generated when a

method refers to an array index out of

range.

System.ArrayTypeMismatchException Handles errors generated when type is

mismatched with the array type.

System.NullReferenceException Handles errors generated from

deferencing a null object.

System.DivideByZeroException Handles errors generated from dividing

a dividend with zero.

System.InvalidCastException Handles errors generated during

typecasting.

System.OutOfMemoryException Handles errors generated from

insufficient free memory.

 VB.NET

 173

System.StackOverflowException Handles errors generated from stack

overflow.

Handling Exceptions

VB.Net provides a structured solution to the exception handling problems in the

form of try and catch blocks. Using these blocks the core program statements are

separated from the error-handling statements.

These error handling blocks are implemented using the Try, Catch and Finally

keywords. Following is an example of throwing an exception when dividing by zero

condition occurs:

Module exceptionProg

 Sub division(ByVal num1 As Integer, ByVal num2 As Integer)

 Dim result As Integer

 Try

 result = num1 \ num2

 Catch e As DivideByZeroException

 Console.WriteLine("Exception caught: {0}", e)

 Finally

 Console.WriteLine("Result: {0}", result)

 End Try

 End Sub

 Sub Main()

 division(25, 0)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exception caught: System.DivideByZeroException: Attempted to divide by

zero.

at ...

Result: 0

 VB.NET

 174

Creating User-Defined Exceptions

You can also define your own exception. User-defined exception classes are

derived from the ApplicationException class. The following example

demonstrates this:

Module exceptionProg

 Public Class TempIsZeroException : Inherits ApplicationException

 Public Sub New(ByVal message As String)

 MyBase.New(message)

 End Sub

 End Class

 Public Class Temperature

 Dim temperature As Integer = 0

 Sub showTemp()

 If (temperature = 0) Then

 Throw (New TempIsZeroException("Zero Temperature found"))

 Else

 Console.WriteLine("Temperature: {0}", temperature)

 End If

 End Sub

 End Class

 Sub Main()

 Dim temp As Temperature = New Temperature()

 Try

 temp.showTemp()

 Catch e As TempIsZeroException

 Console.WriteLine("TempIsZeroException: {0}", e.Message)

 End Try

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

TempIsZeroException: Zero Temperature found

 VB.NET

 175

Throwing Objects

You can throw an object if it is either directly or indirectly derived from the

System.Exception class. You can use a throw statement in the catch block to throw

the present object as:

Throw [expression]

The following program demonstrates this:

Module exceptionProg

 Sub Main()

 Try

 Throw New ApplicationException("A custom exception _

 is being thrown here...")

 Catch e As Exception

 Console.WriteLine(e.Message)

 Finally

 Console.WriteLine("Now inside the Finally Block")

 End Try

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

A custom exception is being thrown here...

Now inside the Finally Block

 VB.NET

 176

A file is a collection of data stored in a disk with a specific name and a directory

path. When a file is opened for reading or writing, it becomes a stream.

The stream is basically the sequence of bytes passing through the communication

path. There are two main streams: the input stream and the output stream.

The input stream is used for reading data from file (read operation) and

the output stream is used for writing into the file (write operation).

VB.Net I/O Classes

The System.IO namespace has various classes that are used for performing

various operations with files, like creating and deleting files, reading from or

writing to a file, closing a file, etc.

The following table shows some commonly used non-abstract classes in the

System.IO namespace:

I/O Class Description

BinaryReader Reads primitive data from a binary stream.

BinaryWriter Writes primitive data in binary format.

BufferedStream A temporary storage for a stream of bytes.

Directory Helps in manipulating a directory structure.

DirectoryInfo Used for performing operations on directories.

DriveInfo Provides information for the drives.

File Helps in manipulating files.

FileInfo Used for performing operations on files.

22. File Handling

 VB.NET

 177

FileStream Used to read from and write to any location in a file.

MemoryStream Used for random access of streamed data stored in

memory.

Path Performs operations on path information.

StreamReader Used for reading characters from a byte stream.

StreamWriter Is used for writing characters to a stream.

StringReader Is used for reading from a string buffer.

StringWriter Is used for writing into a string buffer.

The FileStream Class

The FileStream class in the System.IO namespace helps in reading from, writing

to and closing files. This class derives from the abstract class Stream.

You need to create a FileStream object to create a new file or open an existing

file. The syntax for creating a FileStream object is as follows:

Dim <object_name> As FileStream = New FileStream(<file_name>, <FileMode

Enumerator>, <FileAccess Enumerator>, <FileShare Enumerator>)

For example, for creating a FileStream object F for reading a file

named sample.txt:

Dim f1 As FileStream = New FileStream("test.dat", FileMode.OpenOrCreate,

FileAccess.ReadWrite)

Parameter Description

FileMode The FileMode enumerator defines various methods for

opening files. The members of the FileMode enumerator are:

 VB.NET

 178

 Append: It opens an existing file and puts cursor at the

end of file, or creates the file, if the file does not exist.

 Create: It creates a new file.

 CreateNew: It specifies to the operating system that it

should create a new file.

 Open: It opens an existing file.

 OpenOrCreate: It specifies to the operating system that

it should open a file if it exists, otherwise it should create

a new file.

 Truncate: It opens an existing file and truncates its size

to zero bytes.

FileAccess FileAccess enumerators have members: Read, ReadWrite,

and Write.

FileShare

FileShare enumerators have the following members:

 Inheritable: It allows a file handle to pass inheritance

to the child processes

 None: It declines sharing of the current file

 Read: It allows opening the file for reading

 ReadWrite: It allows opening the file for reading and

writing

 Write: It allows opening the file for writing

Example

The following program demonstrates use of the FileStream class:

Imports System.IO

Module fileProg

 VB.NET

 179

 Sub Main()

 Dim f1 As FileStream = New FileStream("test.dat", _

 FileMode.OpenOrCreate, FileAccess.ReadWrite)

 Dim i As Integer

 For i = 0 To 20

 f1.WriteByte(CByte(i))

 Next i

 f1.Position = 0

 For i = 0 To 20

 Console.Write("{0} ", f1.ReadByte())

 Next i

 f1.Close()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -1

Advanced File Operations in VB.Net

The preceding example provides simple file operations in VB.Net. However, to

utilize the immense powers of System.IO classes, you need to know the commonly

used properties and methods of these classes.

We will discuss these classes and the operations they perform in the following

sections. Please click the links provided to get to the individual sections:

Topic and Description

Reading from and Writing into Text files

It involves reading from and writing into text files.

The StreamReader andStreamWriter classes help to accomplish it.

Reading from and Writing into Binary files

It involves reading from and writing into binary files. The BinaryReader and

BinaryWriter classes help to accomplish this.

 VB.NET

 180

Manipulating the Windows file system

It gives a VB.Net programmer the ability to browse and locate Windows files

and directories.

Reading from and Writing to Text Files

The StreamReader and StreamWriter classes are used for reading from and

writing data to text files. These classes inherit from the abstract base class

Stream, which supports reading and writing bytes into a file stream.

The StreamReader Class

The StreamReader class also inherits from the abstract base class TextReader

that represents a reader for reading series of characters. The following table

describes some of the commonly used methods of the StreamReader class:

S.N Method Name & Purpose

1 Public Overrides Sub Close

It closes the StreamReader object and the underlying stream and

releases any system resources associated with the reader.

2 Public Overrides Function Peek As Integer

Returns the next available character but does not consume it.

3 Public Overrides Function Read As Integer

Reads the next character from the input stream and advances the

character position by one character.

Example

The following example demonstrates reading a text file named Jamaica.txt. The

file reads:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

Imports System.IO

 VB.NET

 181

Module fileProg

 Sub Main()

 Try

 ' Create an instance of StreamReader to read from a file.

 ' The using statement also closes the StreamReader.

 Using sr As StreamReader = New StreamReader("e:/jamaica.txt")

 Dim line As String

 ' Read and display lines from the file until the end of

 ' the file is reached.

 line = sr.ReadLine()

 While (line <> Nothing)

 Console.WriteLine(line)

 line = sr.ReadLine()

 End While

 End Using

 Catch e As Exception

 ' Let the user know what went wrong.

 Console.WriteLine("The file could not be read:")

 Console.WriteLine(e.Message)

 End Try

 Console.ReadKey()

 End Sub

End Module

Guess what it displays when you compile and run the program!

The StreamWriter Class

The StreamWriter class inherits from the abstract class TextWriter that

represents a writer, which can write a series of character.

The following table shows some of the most commonly used methods of this class:

S.N Method Name & Purpose

1 Public Overrides Sub Close

Closes the current StreamWriter object and the underlying stream.

 VB.NET

 182

2 Public Overrides Sub Flush

Clears all buffers for the current writer and causes any buffered data to

be written to the underlying stream.

3 Public Overridable Sub Write (value As Boolean)

Writes the text representation of a Boolean value to the text string or

stream. (Inherited from TextWriter.)

4 Public Overrides Sub Write (value As Char)

Writes a character to the stream.

5 Public Overridable Sub Write (value As Decimal)

Writes the text representation of a decimal value to the text string or

stream.

6 Public Overridable Sub Write (value As Double)

Writes the text representation of an 8-byte floating-point value to the

text string or stream.

7 Public Overridable Sub Write (value As Integer)

Writes the text representation of a 4-byte signed integer to the text

string or stream.

8 Public Overrides Sub Write (value As String)

Writes a string to the stream.

9 Public Overridable Sub WriteLine

Writes a line terminator to the text string or stream.

The above list is not exhaustive. For complete list of methods please visit

Microsoft's documentation

Example

The following example demonstrates writing text data into a file using the

StreamWriter class:

Imports System.IO

Module fileProg

 Sub Main()

 Dim names As String() = New String() {"Zara Ali", _

 VB.NET

 183

 "Nuha Ali", "Amir Sohel", "M Amlan"}

 Dim s As String

 Using sw As StreamWriter = New StreamWriter("names.txt")

 For Each s In names

 sw.WriteLine(s)

 Next s

 End Using

 ' Read and show each line from the file.

 Dim line As String

 Using sr As StreamReader = New StreamReader("names.txt")

 line = sr.ReadLine()

 While (line <> Nothing)

 Console.WriteLine(line)

 line = sr.ReadLine()

 End While

 End Using

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Zara Ali

Nuha Ali

Amir Sohel

M Amlan

Binary Files

The BinaryReader and BinaryWriter classes are used for reading from and

writing to a binary file.

The BinaryReader Class

The BinaryReader class is used to read binary data from a file.

A BinaryReader object is created by passing a FileStream object to its

constructor.

 VB.NET

 184

The following table shows some of the commonly used methods of

the BinaryReaderclass.

S.N Method Name & Purpose

1 Public Overridable Sub Close

It closes the BinaryReader object and the underlying stream.

2 Public Overridable Function Read As Integer

Reads the characters from the underlying stream and advances the

current position of the stream.

3 Public Overridable Function ReadBoolean As Boolean

Reads a Boolean value from the current stream and advances the current

position of the stream by one byte.

4 Public Overridable Function ReadByte As Byte

Reads the next byte from the current stream and advances the current

position of the stream by one byte.

5 Public Overridable Function ReadBytes (count As Integer) As

Byte()

Reads the specified number of bytes from the current stream into a byte

array and advances the current position by that number of bytes.

6 Public Overridable Function ReadChar As Char

Reads the next character from the current stream and advances the

current position of the stream in accordance with the Encoding used and

the specific character being read from the stream.

7 Public Overridable Function ReadChars (count As Integer) As

Char()

Reads the specified number of characters from the current stream,

returns the data in a character array, and advances the current position

in accordance with the Encoding used and the specific character being

read from the stream.

8 Public Overridable Function ReadDouble As Double

Reads an 8-byte floating point value from the current stream and

advances the current position of the stream by eight bytes.

 VB.NET

 185

9 Public Overridable Function ReadInt32 As Integer

Reads a 4-byte signed integer from the current stream and advances the

current position of the stream by four bytes.

10 Public Overridable Function ReadString As String

Reads a string from the current stream. The string is prefixed with the

length, encoded as an integer seven bits at a time.

The BinaryWriter Class

The BinaryWriter class is used to write binary data to a stream. A BinaryWriter

object is created by passing a FileStream object to its constructor.

The following table shows some of the commonly used methods of the

BinaryWriter class.

S.N Function Name & Description

1 Public Overridable Sub Close

It closes the BinaryWriter object and the underlying stream.

2 Public Overridable Sub Flush

Clears all buffers for the current writer and causes any buffered data to

be written to the underlying device.

3 Public Overridable Function Seek (offset As Integer, origin As

SeekOrigin) As Long

Sets the position within the current stream.

4 Public Overridable Sub Write (value As Boolean)

Writes a one-byte Boolean value to the current stream, with 0

representing false and 1 representing true.

5 Public Overridable Sub Write (value As Byte)

Writes an unsigned byte to the current stream and advances the stream

position by one byte.

6 Public Overridable Sub Write (buffer As Byte())

Writes a byte array to the underlying stream.

7 Public Overridable Sub Write (ch As Char)

 VB.NET

 186

Writes a Unicode character to the current stream and advances the

current position of the stream in accordance with the Encoding used and

the specific characters being written to the stream.

8 Public Overridable Sub Write (chars As Char())

Writes a character array to the current stream and advances the current

position of the stream in accordance with the Encoding used and the

specific characters being written to the stream.

9 Public Overridable Sub Write (value As Double)

Writes an eight-byte floating-point value to the current stream and

advances the stream position by eight bytes.

10 Public Overridable Sub Write (value As Integer)

Writes a four-byte signed integer to the current stream and advances the

stream position by four bytes.

11 Public Overridable Sub Write (value As String)

Writes a length-prefixed string to this stream in the current encoding of

the BinaryWriter and advances the current position of the stream in

accordance with the encoding used and the specific characters being

written to the stream.

For complete list of methods, please visit Microsoft's documentation.

Example

The following example demonstrates reading and writing binary data:

Imports System.IO

Module fileProg

 Sub Main()

 Dim bw As BinaryWriter

 Dim br As BinaryReader

 Dim i As Integer = 25

 Dim d As Double = 3.14157

 Dim b As Boolean = True

 Dim s As String = "I am happy"

 'create the file

 Try

 VB.NET

 187

 bw = New BinaryWriter(New FileStream("mydata",

FileMode.Create))

 Catch e As IOException

 Console.WriteLine(e.Message + "\n Cannot create file.")

 Return

 End Try

 'writing into the file

 Try

 bw.Write(i)

 bw.Write(d)

 bw.Write(b)

 bw.Write(s)

 Catch e As IOException

 Console.WriteLine(e.Message + "\n Cannot write to file.")

 Return

 End Try

 bw.Close()

 'reading from the file

 Try

 br = New BinaryReader(New FileStream("mydata", FileMode.Open))

 Catch e As IOException

 Console.WriteLine(e.Message + "\n Cannot open file.")

 Return

 End Try

 Try

 i = br.ReadInt32()

 Console.WriteLine("Integer data: {0}", i)

 d = br.ReadDouble()

 Console.WriteLine("Double data: {0}", d)

 b = br.ReadBoolean()

 Console.WriteLine("Boolean data: {0}", b)

 s = br.ReadString()

 Console.WriteLine("String data: {0}", s)

 Catch e As IOException

 VB.NET

 188

 Console.WriteLine(e.Message + "\n Cannot read from file.")

 Return

 End Try

 br.Close()

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Integer data: 25

Double data: 3.14157

Boolean data: True

String data: I am happy

Windows File System

VB.Net allows you to work with the directories and files using various directory

and file-related classes like, the DirectoryInfo class and the FileInfo class.

The DirectoryInfo Class

The DirectoryInfo class is derived from the FileSystemInfo class. It has

various methods for creating, moving, and browsing through directories and

subdirectories. This class cannot be inherited.

Following are some commonly used properties of the DirectoryInfo class:

S.N Property Name & Description

1 Attributes

Gets the attributes for the current file or directory.

2 CreationTime

Gets the creation time of the current file or directory.

3 Exists

Gets a Boolean value indicating whether the directory exists.

4 Extension

Gets the string representing the file extension.

 VB.NET

 189

5 FullName

Gets the full path of the directory or file.

6 LastAccessTime

Gets the time the current file or directory was last accessed.

7 Name

Gets the name of this DirectoryInfo instance.

Following are some commonly used methods of the DirectoryInfo class:

S.N Method Name & Purpose

1 Public Sub Create

Creates a directory.

2 Public Function CreateSubdirectory (path As String) As

DirectoryInfo

Creates a subdirectory or subdirectories on the specified path. The

specified path can be relative to this instance of the DirectoryInfo class.

3 Public Overrides Sub Delete

Deletes this DirectoryInfo if it is empty.

4 Public Function GetDirectories As DirectoryInfo()

Returns the subdirectories of the current directory.

5 Public Function GetFiles As FileInfo()

Returns a file list from the current directory.

For complete list of properties and methods please visit Microsoft's documentation.

The FileInfo Class

The FileInfo class is derived from the FileSystemInfo class. It has properties

and instance methods for creating, copying, deleting, moving, and opening of files,

and helps in the creation of FileStream objects. This class cannot be inherited.

Following are some commonly used properties of the FileInfo class:

 VB.NET

 190

S.N Property Name & Description

1 Attributes

Gets the attributes for the current file.

2 CreationTime

Gets the creation time of the current file.

3 Directory

Gets an instance of the directory, which the file belongs to.

4 Exists

Gets a Boolean value indicating whether the file exists.

5 Extension

Gets the string representing the file extension.

6 FullName

Gets the full path of the file.

7 LastAccessTime

Gets the time the current file was last accessed.

8 LastWriteTime

Gets the time of the last written activity of the file.

9 Length

Gets the size, in bytes, of the current file.

10 Name

Gets the name of the file.

Following are some commonly used methods of the FileInfo class:

S.N Method Name & Purpose

1 Public Function AppendText As StreamWriter

Creates a StreamWriter that appends text to the file represented by this

instance of the FileInfo.

 VB.NET

 191

2 Public Function Create As FileStream

Creates a file.

3 Public Overrides Sub Delete

Deletes a file permanently.

4 Public Sub MoveTo (destFileName As String)

Moves a specified file to a new location, providing the option to specify a

new file name.

5 Public Function Open (mode As FileMode) As FileStream

Opens a file in the specified mode.

6 Public Function Open (mode As FileMode, access As FileAccess)

As FileStream

Opens a file in the specified mode with read, write, or read/write access.

7 Public Function Open (mode As FileMode, access As FileAccess,

share As FileShare) As FileStream

Opens a file in the specified mode with read, write, or read/write access

and the specified sharing option.

8 Public Function OpenRead As FileStream

Creates a read-only FileStream

9 Public Function OpenWrite As FileStream

Creates a write-only FileStream.

For complete list of properties and methods, please visit Microsoft's documentation

Example

The following example demonstrates the use of the above-mentioned classes:

Imports System.IO

Module fileProg

 Sub Main()

 'creating a DirectoryInfo object

 Dim mydir As DirectoryInfo = New DirectoryInfo("c:\Windows")

 ' getting the files in the directory, their names and size

 Dim f As FileInfo() = mydir.GetFiles()

 VB.NET

 192

 Dim file As FileInfo

 For Each file In f

 Console.WriteLine("File Name: {0} Size: {1} ", file.Name,

file.Length)

 Next file

 Console.ReadKey()

 End Sub

End Module

When you compile and run the program, it displays the names of files and their

size in the Windows directory.

 VB.NET

 193

An object is a type of user interface element you create on a Visual Basic form by

using a toolbox control. In fact, in Visual Basic, the form itself is an object. Every

Visual Basic control consists of three important elements:

Properties which describe the object,

Methods cause an object to do something and

Events are what happens when an object does something.

Control Properties

All the Visual Basic Objects can be moved, resized, or customized by setting their

properties. A property is a value or characteristic held by a Visual Basic object,

such as Caption or Fore Color.

Properties can be set at design time by using the Properties window or at run time

by using statements in the program code.

Object. Property = Value

Where,

Object is the name of the object you're customizing.

Property is the characteristic you want t,o change.

Value is the new property setting.

For example,

Form1.Caption = "Hello"

You can set any of the form properties using Properties Window. Most of the

properties can be set or read during application execution. You can refer to

Microsoft documentation for a complete list of properties associated with different

controls and restrictions applied to them.

Control Methods

A method is a procedure created as a member of a class and they cause an object

to do something. Methods are used to access or manipulate the characteristics of

an object or a variable. There are mainly two categories of methods you will use

in your classes:

23. Basic Controls

 VB.NET

 194

 If you are using a control such as one of those provided by the Toolbox,

you can call any of its public methods. The requirements of such a method

depend on the class being used.

 If none of the existing methods can perform your desired task, you can add

a method to a class.

For example, the MessageBox control has a method named Show, which is called

in the code snippet below:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

 Handles Button1.Click

 MessageBox.Show("Hello, World")

 End Sub

End Class

Control Events

An event is a signal that informs an application that something important has

occurred. For example, when a user clicks a control on a form, the form can raise

a Click event and call a procedure that handles the event. There are various types

of events associated with a Form like click, double click, close, load, resize, etc.

Following is the default structure of a form Load event handler subroutine. You

can see this code by double clicking the code which will give you a complete list

of the all events associated with Form control:

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles

MyBase.Load

 'event handler code goes here

End Sub

Here, Handles MyBase.Load indicates that Form1_Load() subroutine

handles Load event. Similar way, you can check stub code for click, double click.

If you want to initialize some variables like properties, etc., then you will keep

such code inside Form1_Load() subroutine. Here, important point to note is the

name of the event handler, which is by default Form1_Load, but you can change

this name based on your naming convention you use in your application

programming.

 VB.NET

 195

Basic Controls

VB.Net provides a huge variety of controls that help you to create rich user

interface. Functionalities of all these controls are defined in the respective control

classes. The control classes are defined in the System.Windows.Forms

namespace.

The following table lists some of the commonly used controls:

S.N. Widget & Description

1 Forms

The container for all the controls that make up the user interface.

2 TextBox

It represents a Windows text box control.

3 Label

It represents a standard Windows label.

4 Button

It represents a Windows button control.

5 ListBox

It represents a Windows control to display a list of items.

6 ComboBox

It represents a Windows combo box control.

7 RadioButton

It enables the user to select a single option from a group of choices when

paired with other RadioButton controls.

8 CheckBox

It represents a Windows CheckBox.

9 PictureBox

It represents a Windows picture box control for displaying an image.

10 ProgressBar

It represents a Windows progress bar control.

 VB.NET

 196

11 ScrollBar

It Implements the basic functionality of a scroll bar control.

12 DateTimePicker

It represents a Windows control that allows the user to select a date and

a time and to display the date and time with a specified format.

13 TreeView

It displays a hierarchical collection of labeled items, each represented by

a TreeNode.

14 ListView

It represents a Windows list view control, which displays a collection of

items that can be displayed using one of four different views.

Forms

Let's start with creating a Window Forms Application by following the following

steps in Microsoft Visual Studio: File -> New Project -> Windows Forms

Applications

Finally, select OK, Microsoft Visual Studio creates your project and displays

following window Form with a name Form1.

 VB.NET

 197

Visual Basic Form is the container for all the controls that make up the user

interface. Every window you see in a running visual basic application is a form,

thus the terms form and window describe the same entity. Visual Studio creates

a default form for you when you create a Windows Forms Application.

Every form will have title bar on which the form's caption is displayed and there

will be buttons to close, maximize and minimize the form shown below:

 VB.NET

 198

If you click the icon on the top left corner, it opens the control menu, which

contains the various commands to control the form like to move control from one

place to another place, to maximize or minimize the form or to close the form.

Form Properties

Following table lists down various important properties related to a form. These

properties can be set or read during application execution. You can refer to

Microsoft documentation for a complete list of properties associated with a Form

control:

S.N Properties Description

1 AcceptButton The button that's automatically activated when you

press Enter, no matter which control has the focus

at the time. Usually the OK button on a form is set

as AcceptButton for a form.

2 CancelButton The button that's automatically activated when

you hit the Esc key.

 VB.NET

 199

Usually, the Cancel button on a form is set as

CancelButton for a form.

3 AutoScale This Boolean property determines whether the

controls you place on the form are automatically

scaled to the height of the current font. The default

value of this property is True. This is a property of

the form, but it affects the controls on the form.

4 AutoScroll This Boolean property indicates whether scroll bars

will be automatically attached to the form if it is

resized to a point that not all its controls are visible.

5 AutoScrollMinSize This property lets you specify the minimum size of

the form, before the scroll bars are attached.

6 AutoScrollPosition The AutoScrollPosition is the number of pixels by

which the two scroll bars were displaced from their

initial locations.

7 BackColor Sets the form background color.

8 BorderStyle The BorderStyle property determines the style of

the form's border and the appearance of the form:

 None: Borderless window that can't be

resized.

 Sizable: This is default value and will be

used for resizable window that's used for

displaying regular forms.

 Fixed3D: Window with a visible border,

"raised" relative to the main area. In this

case, windows can't be resized.

 FixedDialog: A fixed window, used to

create dialog boxes.

 FixedSingle: A fixed window with a single

line border.

