
VB.NET

 VB.NET

 1

About the Tutorial

VB.Net is a simple, modern, object-oriented computer programming language

developed by Microsoft to combine the power of .NET Framework and the common

language runtime with the productivity benefits that are the hallmark of Visual

Basic.

This tutorial will teach you basic VB.Net programming and will also take you

through various advanced concepts related to VB.Net programming language.

Audience

This tutorial has been prepared for the beginners to help them understand basic

VB.Net programming. After completing this tutorial, you will find yourself at a

moderate level of expertise in VB.Net programming from where you can take

yourself to next levels.

Prerequisites

VB.Net programming is very much based on BASIC and Visual Basic programming

languages, so if you have basic understanding on these programming languages,

then it will be a fun for you to learn VB.Net programming language.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book can retain a copy for future reference

but commercial use of this data is not allowed. Distribution or republishing any

content or a part of the content of this e-book in any manner is also not allowed

without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

 VB.NET

 2

Table of Contents

About the Tutorial ... 1

Audience ... 1

Prerequisites ... 1

Copyright & Disclaimer .. 1

Table of Contents .. 2

1. OVERVIEW ... 8

Strong Programming Features VB.Net ... 8

2. ENVIRONMENT SETUP ... 10

The .Net Framework ... 10

Integrated Development Environment (IDE) For VB.Net ... 11

Writing VB.Net Programs on Linux or Mac OS ... 11

3. PROGRAM STRUCTURE .. 12

VB.Net Hello World Example ... 12

Compile & Execute VB.Net Program .. 13

4. BASIC SYNTAX .. 15

A Rectangle Class in VB.Net ... 15

Identifiers .. 17

VB.Net Keywords .. 17

5. DATA TYPES ... 19

Data Types Available in VB.Net ... 19

Example .. 21

The Type Conversion Functions in VB.Net ... 22

Example .. 24

 VB.NET

 3

6. VARIABLES ... 25

Variable Declaration in VB.Net .. 25

Variable Initialization in VB.Net .. 27

Example .. 27

Accepting Values from User .. 28

Lvalues and Rvalues .. 28

7. CONSTANTS AND ENUMERATIONS .. 30

Declaring Constants .. 30

Example .. 31

Print and Display Constants in VB.Net ... 31

Declaring Enumerations .. 32

Example .. 33

8. MODIFIERS .. 35

List of Available Modifiers in VB.Net ... 35

9. STATEMENTS ... 40

Declaration Statements ... 40

Executable Statements .. 44

10. DIRECTIVES .. 45

Compiler Directives in VB.Net ... 45

11. OPERATORS ... 50

Arithmetic Operators .. 50

Example .. 51

Comparison Operators .. 52

Logical/Bitwise Operators ... 54

Example .. 55

Bit Shift Operators .. 57

 VB.NET

 4

Example .. 59

Assignment Operators... 60

Example .. 61

Miscellaneous Operators .. 62

Example .. 63

Operators Precedence in VB.Net ... 64

Example .. 65

12. DECISION MAKING... 67

If...Then Statement ... 68

If...Then...Else Statement .. 70

The If...Else If...Else Statement .. 71

Nested If Statements ... 73

Select Case Statement ... 74

Nested Select Case Statement ... 76

13. LOOPS ... 78

Do Loop ... 79

For...Next Loop.. 82

Each...Next Loop ... 84

While... End While Loop .. 85

With... End With Statement .. 88

Nested Loops .. 89

Loop Control Statements... 91

Exit Statement .. 92

Continue Statement .. 94

GoTo Statement .. 95

 VB.NET

 5

14. STRINGS... 98

Creating a String Objec .. 98

Properties of the String Class .. 99

Methods of the String Class ... 99

Examples ... 105

15. DATE & TIME ... 108

Properties and Methods of the DateTime Structure .. 109

Creating a DateTime Object .. 112

Getting the Current Date and Time ... 113

Formatting Date .. 114

Predefined Date/Time Formats ... 115

Properties and Methods of the DateAndTime Class .. 117

16. ARRAYS .. 121

Creating Arrays in VB.Net .. 121

Dynamic Arrays ... 122

Multi-Dimensional Arrays ... 124

Jagged Array.. 125

The Array Class .. 126

17. COLLECTIONS .. 131

Various Collection Classes and Their Usage ... 131

ArrayList .. 132

Hashtable .. 136

SortedList .. 138

Stack ... 142

Queue ... 144

BitArray ... 146

 VB.NET

 6

18. FUNCTIONS ... 151

Defining a Function ... 151

Example .. 151

Function Returning a Value ... 152

Recursive Function .. 153

Param Arrays .. 154

Passing Arrays as Function Arguments .. 154

19. SUB PROCEDURES ... 156

Defining Sub Procedures ... 156

Example .. 156

Passing Parameters by Value .. 157

Passing Parameters by Reference.. 158

20. CLASSES & OBJECTS ... 160

Class Definition ... 160

Member Functions and Encapsulation .. 162

Constructors and Destructors .. 163

Shared Members of a VB.Net Class ... 166

Inheritance .. 167

Base & Derived Classes.. 167

Base Class Initialization ... 169

21. EXCEPTION HANDLING .. 171

Syntax ... 171

Exception Classes in .Net Framework .. 172

Handling Exceptions .. 173

Creating User-Defined Exceptions ... 174

Throwing Objects .. 175

 VB.NET

 7

22. FILE HANDLING .. 176

Binary Files .. 183

23. BASIC CONTROLS ... 193

24. DIALOG BOXES ... 286

25. ADVANCED FORM ... 308

26. EVENT HANDLING .. 331

27. REGULAR EXPRESSIONS ... 337

28. DATABASE ACCESS... 351

29. EXCEL SHEET .. 366

30. SEND EMAIL .. 371

31. XML PROCESSING .. 377

32. WEB PROGRAMMING .. 392

 VB.NET

 8

Visual Basic .NET (VB.NET) is an object-oriented computer programming language

implemented on the .NET Framework. Although it is an evolution of classic Visual

Basic language, it is not backwards-compatible with VB6, and any code written in

the old version does not compile under VB.NET.

Like all other .NET languages, VB.NET has complete support for object-oriented

concepts. Everything in VB.NET is an object, including all of the primitive types

(Short, Integer, Long, String, Boolean, etc.) and user-defined types, events, and

even assemblies. All objects inherits from the base class Object.

VB.NET is implemented by Microsoft's .NET framework. Therefore, it has full

access to all the libraries in the .Net Framework. It's also possible to run VB.NET

programs on Mono, the open-source alternative to .NET, not only under Windows,

but even Linux or Mac OSX.

The following reasons make VB.Net a widely used professional language:

 Modern, general purpose.

 Object oriented.

 Component oriented.

 Easy to learn.

 Structured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 Part of .Net Framework.

Strong Programming Features VB.Net

VB.Net has numerous strong programming features that make it endearing to

multitude of programmers worldwide. Let us mention some of these features:

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

1. Overview

 VB.NET

 9

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

 VB.NET

 10

In this chapter, we will discuss the tools available for creating VB.Net applications.

We have already mentioned that VB.Net is part of .Net framework and used for

writing .Net applications. Therefore before discussing the available tools for

running a VB.Net program, let us understand how VB.Net relates to the .Net

framework.

The .Net Framework

The .Net framework is a revolutionary platform that helps you to write the

following types of applications:

 Windows applications

 Web applications

 Web services

The .Net framework applications are multi-platform applications. The framework

has been designed in such a way that it can be used from any of the following

languages: Visual Basic, C#, C++, Jscript, and COBOL, etc.

All these languages can access the framework as well as communicate with each

other.

The .Net framework consists of an enormous library of codes used by the client

languages like VB.Net. These languages use object-oriented methodology.

Following are some of the components of the .Net framework:

 Common Language Runtime (CLR)

 The .Net Framework Class Library

 Common Language Specification

 Common Type System

 Metadata and Assemblies

 Windows Forms

 ASP.Net and ASP.Net AJAX

 ADO.Net

2. Environment Setup

 VB.NET

 11

 Windows Workflow Foundation (WF)

 Windows Presentation Foundation

 Windows Communication Foundation (WCF)

 LINQ

For the jobs each of these components perform, please see ASP.Net - Introduction,

and for details of each component, please consult Microsoft's documentation.

Integrated Development Environment (IDE) For VB.Net

Microsoft provides the following development tools for VB.Net programming:

 Visual Studio 2010 (VS)

 Visual Basic 2010 Express (VBE)

 Visual Web Developer

The last two are free. Using these tools, you can write all kinds of VB.Net programs

from simple command-line applications to more complex applications. Visual Basic

Express and Visual Web Developer Express edition are trimmed down versions of

Visual Studio and has the same look and feel. They retain most features of Visual

Studio. In this tutorial, we have used Visual Basic 2010 Express and Visual Web

Developer (for the web programming chapter).

You can download it from here. It gets automatically installed in your machine.

Please note that you need an active internet connection for installing the express

edition.

Writing VB.Net Programs on Linux or Mac OS

Although the .NET Framework runs on the Windows operating system, there are

some alternative versions that work on other operating systems. Mono is an open-

source version of the .NET Framework which includes a Visual Basic compiler and

runs on several operating systems, including various flavors of Linux and Mac OS.

The most recent version is VB 2012.

The stated purpose of Mono is not only to be able to run Microsoft .NET applications

cross-platform, but also to bring better development tools to Linux developers.

Mono can be run on many operating systems including Android, BSD, iOS, Linux,

OS X, Windows, Solaris and UNIX.

http://localhost/asp.net/asp.net_introduction.htm
http://www.microsoft.com/visualstudio/eng/downloads

 VB.NET

 12

Before we study basic building blocks of the VB.Net programming language, let us

look a bare minimum VB.Net program structure so that we can take it as a

reference in upcoming chapters.

VB.Net Hello World Example

A VB.Net program basically consists of the following parts:

 Namespace declaration

 A class or module

 One or more procedures

 Variables

 The Main procedure

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

Imports System

Module Module1

 'This program will display Hello World

 Sub Main()

 Console.WriteLine("Hello World")

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Hello, World!

Let us look various parts of the above program:

 The first line of the program Imports System is used to include the System

namespace in the program.

3. Program Structure

 VB.NET

 13

 The next line has a Module declaration, the module Module1. VB.Net is

completely object oriented, so every program must contain a module of a

class that contains the data and procedures that your program uses.

 Classes or Modules generally would contain more than one procedure.

Procedures contain the executable code, or in other words, they define the

behavior of the class. A procedure could be any of the following:

o Function

o Sub

o Operator

o Get

o Set

o AddHandler

o RemoveHandler

o RaiseEvent

 The next line ('This program) will be ignored by the compiler and it has

been put to add additional comments in the program.

 The next line defines the Main procedure, which is the entry point for all

VB.Net programs. The Main procedure states what the module or class will

do when executed.

 The Main procedure specifies its behavior with the statement

Console.WriteLine ("Hello World") WriteLine is a method of

the Console class defined in the System namespace. This statement causes

the message "Hello, World!" to be displayed on the screen.

 The last line Console.ReadKey() is for the VS.NET Users. This will prevent

the screen from running and closing quickly when the program is launched

from Visual Studio .NET.

Compile & Execute VB.Net Program

If you are using Visual Studio.Net IDE, take the following steps:

 Start Visual Studio.

 On the menu bar, choose File New Project.

 Choose Visual Basic from templates

 VB.NET

 14

 Choose Console Application.

 Specify a name and location for your project using the Browse button, and

then choose the OK button.

 The new project appears in Solution Explorer.

 Write code in the Code Editor.

 Click the Run button or the F5 key to run the project. A Command Prompt

window appears that contains the line Hello World.

You can compile a VB.Net program by using the command line instead of the Visual

Studio IDE:

 Open a text editor and add the above mentioned code.

 Save the file as helloworld.vb

 Open the command prompt tool and go to the directory where you saved

the file.

 Type vbc helloworld.vb and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to

the next line and would generate helloworld.exe executable file.

 Next, type helloworld to execute your program.

 You will be able to see "Hello World" printed on the screen.

 VB.NET

 15

VB.Net is an object-oriented programming language. In Object-Oriented

Programming methodology, a program consists of various objects that interact

with each other by means of actions. The actions that an object may take are

called methods. Objects of the same kind are said to have the same type or, more

often, are said to be in the same class.

When we consider a VB.Net program, it can be defined as a collection of objects

that communicate via invoking each other's methods. Let us now briefly look into

what do class, object, methods, and instant variables mean.

 Object - Objects have states and behaviors. Example: A dog has states -

color, name, breed as well as behaviors - wagging, barking, eating, etc. An

object is an instance of a class.

 Class - A class can be defined as a template/blueprint that describes the

behaviors/states that object of its type support.

 Methods - A method is basically a behavior. A class can contain many

methods. It is in methods where the logics are written, data is manipulated

and all the actions are executed.

 Instant Variables - Each object has its unique set of instant variables. An

object's state is created by the values assigned to these instant variables.

A Rectangle Class in VB.Net

For example, let us consider a Rectangle object. It has attributes like length and

width. Depending upon the design, it may need ways for accepting the values of

these attributes, calculating area and displaying details.

Let us look at an implementation of a Rectangle class and discuss VB.Net basic

syntax on the basis of our observations in it:

Imports System

Public Class Rectangle

 Private length As Double

 Private width As Double

 'Public methods

 Public Sub AcceptDetails()

4. Basic Syntax

 VB.NET

 16

 length = 4.5

 width = 3.5

 End Sub

 Public Function GetArea() As Double

 GetArea = length * width

 End Function

 Public Sub Display()

 Console.WriteLine("Length: {0}", length)

 Console.WriteLine("Width: {0}", width)

 Console.WriteLine("Area: {0}", GetArea())

 End Sub

 Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 3.5

Area: 15.75

In previous chapter, we created a Visual Basic module that held the code. Sub

Main indicates the entry point of VB.Net program. Here, we are using Class that

contains both code and data. You use classes to create objects. For example, in

the code, r is a Rectangle object.

An object is an instance of a class:

Dim r As New Rectangle()

 VB.NET

 17

A class may have members that can be accessible from outside class, if so

specified. Data members are called fields and procedure members are called

methods.

Shared methods or static methods can be invoked without creating an object of

the class. Instance methods are invoked through an object of the class:

Shared Sub Main()

 Dim r As New Rectangle()

 r.Acceptdetails()

 r.Display()

 Console.ReadLine()

End Sub

Identifiers

An identifier is a name used to identify a class, variable, function, or any other

user-defined item. The basic rules for naming classes in VB.Net are as follows:

 A name must begin with a letter that could be followed by a sequence of

letters, digits (0 - 9) or underscore. The first character in an identifier

cannot be a digit.

 It must not contain any embedded space or symbol like ? - +! @ # % ^ &

* () [] { } . ; : " ' / and \. However, an underscore (_) can be used.

 It should not be a reserved keyword.

VB.Net Keywords

The following table lists the VB.Net reserved keywords:

AddHandler AddressOf Alias And AndAlso As Boolean

ByRef Byte ByVal Call Case Catch CBool

CByte CChar CDate CDec CDbl Char CInt

Class CLng CObj Const Continue CSByte CShort

CSng CStr CType CUInt CULng CUShort Date

 VB.NET

 18

Decimal Declare Default Delegate Dim DirectCast Do

Double Each Else ElseIf End End If Enum

Erase Error Event Exit False Finally For

Friend Function Get GetType
GetXML

Namespace

Global GoTo

Handles If Implements Imports In Inherits Integer

Interface Is IsNot Let Lib Like Long

Loop Me Mod Module MustInherit MustOverride MyBase

MyClass Namespace Narrowing New Next Not Nothing

Not

Inheritable

Not

Overridable

Object Of On Operator Option

Optional Or OrElse Overloads Overridable Overrides ParamArray

Partial Private Property Protected Public RaiseEvent ReadOnly

ReDim REM

Remove

Handler

Resume Return SByte Select

Set Shadows Shared Short Single Static Step

Stop String Structure Sub SyncLock Then Throw

To True Try TryCast TypeOf UInteger While

Widening With WithEvents WriteOnly Xor

 VB.NET

 19

Data types refer to an extensive system used for declaring variables or functions

of different types. The type of a variable determines how much space it occupies

in storage and how the bit pattern stored is interpreted.

Data Types Available in VB.Net

VB.Net provides a wide range of data types. The following table shows all the data

types available:

Data Type
Storage

Allocation
Value Range

Boolean

Depends on

implementing

platform

True or False

Byte 1 byte 0 through 255 (unsigned)

Char 2 bytes 0 through 65535 (unsigned)

Date 8 bytes

0:00:00 (midnight) on January 1, 0001

through 11:59:59 PM on December 31,

9999

Decimal 16 bytes

0 through +/-

79,228,162,514,264,337,593,543,950,335

(+/-7.9...E+28) with no decimal point; 0

through +/-

7.9228162514264337593543950335 with

28 places to the right of the decimal

Double 8 bytes

-1.79769313486231570E+308 through -

4.94065645841246544E-324, for negative

values

4.94065645841246544E-324 through

1.79769313486231570E+308, for positive

values

5. Data Types

 VB.NET

 20

Integer 4 bytes
-2,147,483,648 through 2,147,483,647

(signed)

Long 8 bytes
-9,223,372,036,854,775,808 through

9,223,372,036,854,775,807(signed)

Object

4 bytes on 32-bit

platform

8 bytes on 64-bit

platform

Any type can be stored in a variable of type

Object

SByte 1 byte -128 through 127 (signed)

Short 2 bytes -32,768 through 32,767 (signed)

Single 4 bytes

-3.4028235E+38 through -1.401298E-45

for negative values;

1.401298E-45 through 3.4028235E+38 for

positive values

String

Depends on

implementing

platform

0 to approximately 2 billion Unicode

characters

UInteger 4 bytes 0 through 4,294,967,295 (unsigned)

ULong 8 bytes
0 through 18,446,744,073,709,551,615

(unsigned)

User-

Defined

Depends on

implementing

platform

Each member of the structure has a range

determined by its data type and

independent of the ranges of the other

members

UShort 2 bytes 0 through 65,535 (unsigned)

 VB.NET

 21

Example

The following example demonstrates use of some of the types:

Module DataTypes

 Sub Main()

 Dim b As Byte

 Dim n As Integer

 Dim si As Single

 Dim d As Double

 Dim da As Date

 Dim c As Char

 Dim s As String

 Dim bl As Boolean

 b = 1

 n = 1234567

 si = 0.12345678901234566

 d = 0.12345678901234566

 da = Today

 c = "U"c

 s = "Me"

 If ScriptEngine = "VB" Then

 bl = True

 Else

 bl = False

 End If

 If bl Then

 'the oath taking

 Console.Write(c & " and," & s & vbCrLf)

 Console.WriteLine("declaring on the day of: {0}", da)

 Console.WriteLine("We will learn VB.Net seriously")

 Console.WriteLine("Lets see what happens to the floating point

variables:")

 Console.WriteLine("The Single: {0}, The Double: {1}", si, d)

 End If

 Console.ReadKey()

 VB.NET

 22

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

U and, Me

declaring on the day of: 12/4/2012 12:00:00 PM

We will learn VB.Net seriously

Lets see what happens to the floating point variables:

The Single:0.1234568, The Double: 0.123456789012346

The Type Conversion Functions in VB.Net

VB.Net provides the following in-line type conversion functions:

S.N Functions & Description

1 CBool(expression)

Converts the expression to Boolean data type.

2 CByte(expression)

Converts the expression to Byte data type.

3 CChar(expression)

Converts the expression to Char data type.

4 CDate(expression)

Converts the expression to Date data type

5 CDbl(expression)

Converts the expression to Double data type.

6 CDec(expression)

Converts the expression to Decimal data type.

 VB.NET

 23

7 CInt(expression)

Converts the expression to Integer data type.

8 CLng(expression)

Converts the expression to Long data type.

9 CObj(expression)

Converts the expression to Object type.

10 CSByte(expression)

Converts the expression to SByte data type.

11 CShort(expression)

Converts the expression to Short data type.

12 CSng(expression)

Converts the expression to Single data type.

13 CStr(expression)

Converts the expression to String data type.

14 CUInt(expression)

Converts the expression to UInt data type.

15 CULng(expression)

Converts the expression to ULng data type.

16 CUShort(expression)

Converts the expression to UShort data type.

 VB.NET

 24

Example

The following example demonstrates some of these functions:

Module DataTypes

 Sub Main()

 Dim n As Integer

 Dim da As Date

 Dim bl As Boolean = True

 n = 1234567

 da = Today

 Console.WriteLine(bl)

 Console.WriteLine(CSByte(bl))

 Console.WriteLine(CStr(bl))

 Console.WriteLine(CStr(da))

 Console.WriteLine(CChar(CChar(CStr(n))))

 Console.WriteLine(CChar(CStr(da)))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

True

-1

True

12/4/2012

1

1

 VB.NET

 25

A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in VB.Net has a specific type, which determines the size

and layout of the variable's memory; the range of values that can be stored within

that memory; and the set of operations that can be applied to the variable.

We have already discussed various data types. The basic value types provided in

VB.Net can be categorized as:

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger, Long,

ULong and Char

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference

types of variables like Class. We will discuss date types and Classes in subsequent

chapters.

Variable Declaration in VB.Net

The Dim statement is used for variable declaration and storage allocation for one

or more variables. The Dim statement is used at module, class, structure,

procedure, or block level.

Syntax for variable declaration in VB.Net is:

[< attributelist>] [accessmodifier] [[Shared] [Shadows] |

[Static]]

[ReadOnly] Dim [WithEvents] variablelist

Where,

 attributelist is a list of attributes that apply to the variable. Optional.

6. Variables

 VB.NET

 26

 accessmodifier defines the access levels of the variables, it has values as

- Public, Protected, Friend, Protected Friend and Private. Optional.

 Shared declares a shared variable, which is not associated with any specific

instance of a class or structure, rather available to all the instances of the

class or structure. Optional.

 Shadows indicate that the variable re-declares and hides an identically

named element, or set of overloaded elements, in a base class. Optional.

 Static indicates that the variable will retain its value, even when the after

termination of the procedure in which it is declared. Optional.

 ReadOnly means the variable can be read, but not written. Optional.

 WithEvents specifies that the variable is used to respond to events raised

by the instance assigned to the variable. Optional.

 Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts:

variablename[([boundslist])] [As [New] datatype] [=

initializer]

Where,

 variablename: is the name of the variable

 boundslist: optional. It provides list of bounds of each dimension of an

array variable.

 New: optional. It creates a new instance of the class when the Dim

statement runs.

 datatype: Required if Option Strict is On. It specifies the data type of the

variable.

 initializer: Optional if New is not specified. Expression that is evaluated

and assigned to the variable when it is created.

Some valid variable declarations along with their definition are shown here:

Dim StudentID As Integer

Dim StudentName As String

Dim Salary As Double

 VB.NET

 27

Dim count1, count2 As Integer

Dim status As Boolean

Dim exitButton As New System.Windows.Forms.Button

Dim lastTime, nextTime As Date

Variable Initialization in VB.Net

Variables are initialized (assigned a value) with an equal sign followed by a

constant expression. The general form of initialization is:

variable_name = value;

for example,

Dim pi As Double

pi = 3.14159

You can initialize a variable at the time of declaration as follows:

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Example

Try the following example which makes use of various types of variables:

Module variablesNdataypes

 Sub Main()

 Dim a As Short

 Dim b As Integer

 Dim c As Double

 a = 10

 b = 20

 c = a + b

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 28

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Accepting Values from User

The Console class in the System namespace provides a function ReadLine for

accepting input from the user and store it into a variable. For example,

Dim message As String

message = Console.ReadLine

The following example demonstrates it:

Module variablesNdataypes

 Sub Main()

 Dim message As String

 Console.Write("Enter message: ")

 message = Console.ReadLine

 Console.WriteLine()

 Console.WriteLine("Your Message: {0}", message)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result

(assume the user inputs Hello World):

Enter message: Hello World

Your Message: Hello World

Lvalues and Rvalues

There are two kinds of expressions:

 lvalue : An expression that is an lvalue may appear as either the left-hand

or right-hand side of an assignment.

 rvalue : An expression that is an rvalue may appear on the right- but not

left-hand side of an assignment.

 VB.NET

 29

Variables are lvalues and so may appear on the left-hand side of an assignment.

Numeric literals are rvalues and so may not be assigned and can not appear on

the left-hand side. Following is a valid statement:

Dim g As Integer = 20

But following is not a valid statement and would generate compile-time error:

20 = g

 VB.NET

 30

The constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating

constant, a character constant, or a string literal. There are also enumeration

constants as well.

The constants are treated just like regular variables except that their values

cannot be modified after their definition.

An enumeration is a set of named integer constants.

Declaring Constants

In VB.Net, constants are declared using the Const statement. The Const

statement is used at module, class, structure, procedure, or block level for use in

place of literal values.

The syntax for the Const statement is:

[< attributelist>] [accessmodifier] [Shadows]

Const constantlist

Where,

 attributelist: specifies the list of attributes applied to the constants; you

can provide multiple attributes separated by commas. Optional.

 accessmodifier: specifies which code can access these constants.

Optional. Values can be either of the: Public, Protected, Friend, Protected

Friend, or Private.

 Shadows: this makes the constant hide a programming element of

identical name in a base class. Optional.

 Constantlist: gives the list of names of constants declared. Required.

Where, each constant name has the following syntax and parts:

constantname [As datatype] = initializer

 constantname: specifies the name of the constant

 datatype: specifies the data type of the constant

7. Constants and Enumerations

 VB.NET

 31

 initializer: specifies the value assigned to the constant

For example,

' The following statements declare constants.

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Example

The following example demonstrates declaration and use of a constant value:

Module constantsNenum

 Sub Main()

 Const PI = 3.14149

 Dim radius, area As Single

 radius = 7

 area = PI * radius * radius

 Console.WriteLine("Area = " & Str(area))

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Area = 153.933

Print and Display Constants in VB.Net

VB.Net provides the following print and display constants:

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

 VB.NET

 32

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for calling

external procedures.

vbObjectError Error number. User-defined error numbers should be

greater than this value. For example:

Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Declaring Enumerations

An enumerated type is declared using the Enum statement. The Enum statement

declares an enumeration and defines the values of its members. The Enum

statement can be used at the module, class, structure, procedure, or block level.

The syntax for the Enum statement is as follows:

[< attributelist >] [accessmodifier] [Shadows]

Enum enumerationname [As datatype]

 memberlist

End Enum

Where,

 attributelist: refers to the list of attributes applied to the variable.

Optional.

 asscessmodifier: specifies which code can access these enumerations.

Optional. Values can be either of the: Public, Protected, Friend, or Private.

 Shadows: this makes the enumeration hide a programming element of

identical name in a base class. Optional.

 enumerationname: name of the enumeration. Required

 datatype: specifies the data type of the enumeration and all its members.

 VB.NET

 33

 memberlist: specifies the list of member constants being declared in this

statement. Required.

Each member in the memberlist has the following syntax and parts:

[< attribute list>] member name [= initializer]

Where,

 name: specifies the name of the member. Required.

 initializer: value assigned to the enumeration member. Optional.

For example,

Enum Colors

 red = 1

 orange = 2

 yellow = 3

 green = 4

 azure = 5

 blue = 6

 violet = 7

End Enum

Example

The following example demonstrates declaration and use of the Enum

variable Colors:

Module constantsNenum

 Enum Colors

 red = 1

 orange = 2

 yellow = 3

 green = 4

 azure = 5

 blue = 6

 violet = 7

 End Enum

 Sub Main()

 VB.NET

 34

 Console.WriteLine("The Color Red is : " & Colors.red)

 Console.WriteLine("The Color Yellow is : " & Colors.yellow)

 Console.WriteLine("The Color Blue is : " & Colors.blue)

 Console.WriteLine("The Color Green is : " & Colors.green)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

The Color Red is: 1

The Color Yellow is: 3

The Color Blue is: 6

The Color Green is: 4

 VB.NET

 35

The modifiers are keywords added with any programming element to give some

especial emphasis on how the programming element will behave or will be

accessed in the program

For example, the access modifiers: Public, Private, Protected, Friend, Protected

Friend, etc., indicate the access level of a programming element like a variable,

constant, enumeration, or a class.

List of Available Modifiers in VB.Net

The following table provides the complete list of VB.Net modifiers:

S.N Modifier Description

1 Ansi

Specifies that Visual Basic should marshal all strings

to American National Standards Institute (ANSI)

values regardless of the name of the external

procedure being declared.

2 Assembly
Specifies that an attribute at the beginning of a source

file applies to the entire assembly.

3 Async

Indicates that the method or lambda expression that

it modifies is asynchronous. Such methods are

referred to as async methods. The caller of an async

method can resume its work without waiting for the

async method to finish.

4 Auto

The charsetmodifier part in the Declare statement

supplies the character set information for marshaling

strings during a call to the external procedure. It also

affects how Visual Basic searches the external file for

the external procedure name. The Auto modifier

specifies that Visual Basic should marshal strings

according to .NET Framework rules.

5 ByRef Specifies that an argument is passed by reference,

i.e., the called procedure can change the value of a

8. Modifiers

 VB.NET

 36

variable underlying the argument in the calling code.

It is used under the contexts of:

Declare Statement

Function Statement

Sub Statement

6 ByVal

Specifies that an argument is passed in such a way

that the called procedure or property cannot change

the value of a variable underlying the argument in the

calling code. It is used under the contexts of:

Declare Statement

Function Statement

Operator Statement

Property Statement

Sub Statement

7 Default
Identifies a property as the default property of its

class, structure, or interface.

8 Friend

Specifies that one or more declared programming

elements are accessible from within the assembly

that contains their declaration, not only by the

component that declares them.

Friend access is often the preferred level for an

application's programming elements, and Friend is

the default access level of an interface, a module, a

class, or a structure.

9 In It is used in generic interfaces and delegates.

10 Iterator

Specifies that a function or Get accessor is an iterator.

Aniterator performs a custom iteration over a

collection.

11 Key
The Key keyword enables you to specify behavior for

properties of anonymous types.

 VB.NET

 37

12 Module

Specifies that an attribute at the beginning of a source

file applies to the current assembly module. It is not

same as the Module statement.

13 MustInherit
Specifies that a class can be used only as a base class

and that you cannot create an object directly from it.

14 MustOverride

Specifies that a property or procedure is not

implemented in this class and must be overridden in

a derived class before it can be used.

15 Narrowing

Indicates that a conversion operator (CType) converts

a class or structure to a type that might not be able

to hold some of the possible values of the original

class or structure.

16 NotInheritable Specifies that a class cannot be used as a base class.

17 NotOverridable
Specifies that a property or procedure cannot be

overridden in a derived class.

18 Optional
Specifies that a procedure argument can be omitted

when the procedure is called.

19 Out
For generic type parameters, the Out keyword

specifies that the type is covariant.

20 Overloads

Specifies that a property or procedure redeclares one

or more existing properties or procedures with the

same name.

21 Overridable

Specifies that a property or procedure can be

overridden by an identically named property or

procedure in a derived class.

22 Overrides

Specifies that a property or procedure overrides an

identically named property or procedure inherited

from a base class.

 VB.NET

 38

23 ParamArray

ParamArray allows you to pass an arbitrary number

of arguments to the procedure. A ParamArray

parameter is always declared using ByVal.

24 Partial
Indicates that a class or structure declaration is a

partial definition of the class or structure.

25 Private

Specifies that one or more declared programming

elements are accessible only from within their

declaration context, including from within any

contained types.

26 Protected

Specifies that one or more declared programming

elements are accessible only from within their own

class or from a derived class.

27 Public
Specifies that one or more declared programming

elements have no access restrictions.

28 ReadOnly
Specifies that a variable or property can be read but

not written.

29 Shadows

Specifies that a declared programming element

redeclares and hides an identically named element,

or set of overloaded elements, in a base class.

30 Shared

Specifies that one or more declared programming

elements are associated with a class or structure at

large, and not with a specific instance of the class or

structure.

31 Static

Specifies that one or more declared local variables are

to continue to exist and retain their latest values after

termination of the procedure in which they are

declared.

32 Unicode

Specifies that Visual Basic should marshal all strings

to Unicode values regardless of the name of the

external procedure being declared.

 VB.NET

 39

33 Widening

Indicates that a conversion operator (CType) converts

a class or structure to a type that can hold all possible

values of the original class or structure.

34 WithEvents
Specifies that one or more declared member variables

refer to an instance of a class that can raise events.

35 WriteOnly Specifies that a property can be written but not read.

 VB.NET

 40

A statement is a complete instruction in Visual Basic programs. It may contain

keywords, operators, variables, literal values, constants, and expressions.

Statements could be categorized as:

 Declaration statements - these are the statements where you name a

variable, constant, or procedure, and can also specify a data type.

 Executable statements - these are the statements, which initiate actions.

These statements can call a method or function, loop or branch through

blocks of code or assign values or expression to a variable or constant. In

the last case, it is called an Assignment statement.

Declaration Statements

The declaration statements are used to name and define procedures, variables,

properties, arrays, and constants. When you declare a programming element, you

can also define its data type, access level, and scope.

The programming elements you may declare include variables, constants,

enumerations, classes, structures, modules, interfaces, procedures, procedure

parameters, function returns, external procedure references, operators,

properties, events, and delegates.

Following are the declaration statements in VB.Net:

S.N Statements and Description Example

1 Dim Statement

Declares and allocates storage space for one

or more variables.

Dim number As

Integer

Dim quantity As

Integer = 100

Dim message As

String = "Hello!"

2 Const Statement

Declares and defines one or more constants. Const maximum As

Long = 1000

9. Statements

 VB.NET

 41

Const naturalLogBase

As Object

= CDec(2.7182818284)

3 Enum Statement

Declares an enumeration and defines the

values of its members.

Enum CoffeeMugSize

 Jumbo

 ExtraLarge

 Large

 Medium

 Small

End Enum

4 Class Statement

Declares the name of a class and introduces

the definition of the variables, properties,

events, and procedures that the class

comprises.

Class Box

Public length As

Double

Public breadth As

Double

Public height As

Double

End Class

5 Structure Statement

Declares the name of a structure and

introduces the definition of the variables,

properties, events, and procedures that the

structure comprises.

Structure Box

Public length As

Double

Public breadth As
Double

Public height As

Double

End Structure

 VB.NET

 42

6 Module Statement

Declares the name of a module and

introduces the definition of the variables,

properties, events, and procedures that the

module comprises.

Public Module

myModule

Sub Main()

Dim user As String =

InputBox("What is
your name?")

MsgBox("User name

is" & user)

End Sub

End Module

7 Interface Statement

Declares the name of an interface and

introduces the definitions of the members

that the interface comprises.

Public Interface

MyInterface

 Sub

doSomething()

End Interface

8 Function Statement

Declares the name, parameters, and code

that define a Function procedure.

Function myFunction

(ByVal n As Integer)
As Double

 Return 5.87 * n

End Function

9 Sub Statement

Declares the name, parameters, and code

that define a Sub procedure.

Sub mySub(ByVal s As

String)

 Return

End Sub

10 Declare Statement

Declares a reference to a procedure

implemented in an external file.

Declare Function

getUserName

Lib "advapi32.dll"

Alias "GetUserNameA"

(

 VB.NET

 43

 ByVal lpBuffer As

String,

 ByRef nSize As

Integer) As Integer

11 Operator Statement

Declares the operator symbol, operands, and

code that define an operator procedure on a

class or structure.

Public Shared

Operator +

(ByVal x As obj,
ByVal y As obj) As

obj

 Dim r As New

obj

' implemention code

for r = x + y

 Return r

 End Operator

12 Property Statement

Declares the name of a property, and the

property procedures used to store and

retrieve the value of the property.

ReadOnly Property

quote() As String

 Get

 Return

quoteString

 End Get

End Property

13 Event Statement

Declares a user-defined event.
Public Event

Finished()

14 Delegate Statement

Used to declare a delegate.
Delegate Function

MathOperator(

 ByVal x As

Double,

 ByVal y As

Double

) As Double

 VB.NET

 44

Executable Statements

An executable statement performs an action. Statements calling a procedure,

branching to another place in the code, looping through several statements, or

evaluating an expression are executable statements. An assignment statement is

a special case of an executable statement.

Example

The following example demonstrates a decision making statement:

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 10

 ' check the boolean condition using if statement '

 If (a < 20) Then

 ' if condition is true then print the following '

 Console.WriteLine("a is less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

 VB.NET

 45

The VB.Net compiler directives give instructions to the compiler to preprocess the

information before actual compilation starts. All these directives begin with #, and

only white-space characters may appear before a directive on a line. These

directives are not statements.

VB.Net compiler does not have a separate preprocessor; however, the directives

are processed as if there was one. In VB.Net, the compiler directives are used to

help in conditional compilation. Unlike C and C++ directives, they are not used to

create macros.

Compiler Directives in VB.Net

VB.Net provides the following set of compiler directives:

 The #Const Directive

 The #ExternalSource Directive

 The #If...Then...#Else Directives

 The #Region Directive

The #Const Directive

This directive defines conditional compiler constants. Syntax for this directive is:

#Const constname = expression

Where,

 constname: specifies the name of the constant. Required.

 expression: it is either a literal, or other conditional compiler constant, or

a combination including any or all arithmetic or logical operators except Is.

For example,

#Const state = "WEST BENGAL"

10. Directives

 VB.NET

 46

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

#Const age = True

Sub Main()

 #If age Then

 Console.WriteLine("You are welcome to the Robotics Club")

 #End If

 Console.ReadKey()

End Sub

End Module

When the above code is compiled and executed, it produces the following result:

You are welcome to the Robotics Club

The #ExternalSource Directive

This directive is used for indicating a mapping between specific lines of source

code and text external to the source. It is used only by the compiler and the

debugger has no effect on code compilation.

This directive allows including external code from an external code file into a

source code file.

Syntax for this directive is:

#ExternalSource(StringLiteral , IntLiteral)

 [LogicalLine]

#End ExternalSource

The parameters of #ExternalSource directive are the path of external file, line

number of the first line, and the line where the error occurred.

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

 Public Class ExternalSourceTester

 Sub TestExternalSource()

 VB.NET

 47

 #ExternalSource("c:\vbprogs\directives.vb", 5)

 Console.WriteLine("This is External Code. ")

 #End ExternalSource

 End Sub

 End Class

 Sub Main()

 Dim t As New ExternalSourceTester()

 t.TestExternalSource()

 Console.WriteLine("In Main.")

 Console.ReadKey()

 End Sub

When the above code is compiled and executed, it produces the following result:

This is External Code.

In Main.

The #If...Then...#Else Directives

This directive conditionally compiles selected blocks of Visual Basic code.

Syntax for this directive is:

#If expression Then

 statements

[#ElseIf expression Then

 [statements]

...

#ElseIf expression Then

 [statements]]

[#Else

 [statements]]

#End If

 VB.NET

 48

For example,

#Const TargetOS = "Linux"

#If TargetOS = "Windows 7" Then

 ' Windows 7 specific code

#ElseIf TargetOS = "WinXP" Then

 ' Windows XP specific code

#Else

 ' Code for other OS

#End if

Example

The following code demonstrates a hypothetical use of the directive:

Module mydirectives

#Const classCode = 8

 Sub Main()

 #If classCode = 7 Then

 Console.WriteLine("Exam Questions for Class VII")

 #ElseIf classCode = 8 Then

 Console.WriteLine("Exam Questions for Class VIII")

 #Else

 Console.WriteLine("Exam Questions for Higher Classes")

 #End If

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exam Questions for Class VIII

The #Region Directive

This directive helps in collapsing and hiding sections of code in Visual Basic files.

Syntax for this directive is:

 VB.NET

 49

#Region "identifier_string"

#End Region

For example,

#Region "StatsFunctions"

 ' Insert code for the Statistical functions here.

#End Region

 VB.NET

 50

An operator is a symbol that tells the compiler to perform specific mathematical

or logical manipulations. VB.Net is rich in built-in operators and provides following

types of commonly used operators:

 Arithmetic Operators

 Comparison Operators

 Logical/Bitwise Operators

 Bit Shift Operators

 Assignment Operators

 Miscellaneous Operators

This tutorial will explain the most commonly used operators.

Arithmetic Operators

Following table shows all the arithmetic operators supported by VB.Net. Assume

variable A holds 2 and variable B holds 7, then:

Operator Description Example

^ Raises one operand to the power of another B^A will give 49

+ Adds two operands A + B will give 9

- Subtracts second operand from the first A - B will give -5

* Multiplies both operands A * B will give 14

/ Divides one operand by another and

returns a floating point result

B / A will give 3.5

\ Divides one operand by another and

returns an integer result

B \ A will give 3

MOD Modulus Operator and remainder of

after an integer division

B MOD A will give 1

11. Operators

 VB.NET

 51

Example

Try the following example to understand all the arithmetic operators available in

VB.Net:

Module operators

 Sub Main()

 Dim a As Integer = 21

 Dim b As Integer = 10

 Dim p As Integer = 2

 Dim c As Integer

 Dim d As Single

 c = a + b

 Console.WriteLine("Line 1 - Value of c is {0}", c)

 c = a - b

 Console.WriteLine("Line 2 - Value of c is {0}", c)

 c = a * b

 Console.WriteLine("Line 3 - Value of c is {0}", c)

 d = a / b

 Console.WriteLine("Line 4 - Value of d is {0}", d)

 c = a \ b

 Console.WriteLine("Line 5 - Value of c is {0}", c)

 c = a Mod b

 Console.WriteLine("Line 6 - Value of c is {0}", c)

 c = b ^ p

 Console.WriteLine("Line 7 - Value of c is {0}", c)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of d is 2.1

Line 5 - Value of c is 2

 VB.NET

 52

Line 6 - Value of c is 1

Line 7 - Value of c is 100

Comparison Operators

Following table shows all the comparison operators supported by VB.Net. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

= Checks if the values of two operands are equal

or not; if yes, then condition becomes true.

(A = B) is not

true.

<> Checks if the values of two operands are equal

or not; if values are not equal, then condition

becomes true.

(A <> B) is true.

> Checks if the value of left operand is greater than

the value of right operand; if yes, then condition

becomes true.

(A > B) is not

true.

< Checks if the value of left operand is less than

the value of right operand; if yes, then condition

becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than

or equal to the value of right operand; if yes,

then condition becomes true.

(A >= B) is not

true.

<= Checks if the value of left operand is less than or

equal to the value of right operand; if yes, then

condition becomes true.

(A <= B) is true.

Try the following example to understand all the relational operators available in

VB.Net:

Module operators

 Sub Main()

 Dim a As Integer = 21

 Dim b As Integer = 10

 VB.NET

 53

 If (a = b) Then

 Console.WriteLine("Line 1 - a is equal to b")

 Else

 Console.WriteLine("Line 1 - a is not equal to b")

 End If

 If (a < b) Then

 Console.WriteLine("Line 2 - a is less than b")

 Else

 Console.WriteLine("Line 2 - a is not less than b")

 End If

 If (a > b) Then

 Console.WriteLine("Line 3 - a is greater than b")

 Else

 Console.WriteLine("Line 3 - a is not greater than b")

 End If

 ' Lets change value of a and b

 a = 5

 b = 20

 If (a <= b) Then

 Console.WriteLine("Line 4 - a is either less than or equal to

b")

 End If

 If (b >= a) Then

 Console.WriteLine("Line 5 - b is either greater than or equal

to b")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

 VB.NET

 54

Line 5 - b is either greater than or equal to b

Apart from the above, VB.Net provides three more comparison operators, which

we will be using in forthcoming chapters; however, we give a brief description

here.

 Is Operator - It compares two object reference variables and determines if

two object references refer to the same object without performing value

comparisons. If object1 and object2 both refer to the exact same object

instance, result is True; otherwise, result is False.

 IsNot Operator - It also compares two object reference variables and

determines if two object references refer to different objects. If object1 and

object2 both refer to the exact same object instance, result is False;

otherwise, result is True.

 Like Operator - It compares a string against a pattern.

Apart from the above, VB.Net provides three more comparison operators, which

we will be using in forthcoming chapters; however, we give a brief description

here.

 Is Operator - It compares two object reference variables and determines if

two object references refer to the same object without performing value

comparisons. If object1 and object2 both refer to the exact same object

instance, result is True; otherwise, result is False.

 IsNot Operator - It also compares two object reference variables and

determines if two object references refer to different objects. If object1 and

object2 both refer to the exact same object instance, result is False;

otherwise, result is True.

 Like Operator - It compares a string against a pattern.

Logical/Bitwise Operators

Following table shows all the logical operators supported by VB.Net. Assume

variable A holds Boolean value True and variable B holds Boolean value False,

then:

Operator Description Example

And It is the logical as well as bitwise AND operator.

If both the operands are true, then condition

becomes true. This operator does not perform

short-circuiting, i.e., it evaluates both the

expressions.

(A And B) is

False.

 VB.NET

 55

Or It is the logical as well as bitwise OR operator. If

any of the two operands is true, then condition

becomes true. This operator does not perform

short-circuiting, i.e., it evaluates both the

expressions.

(A Or B) is True.

Not It is the logical as well as bitwise NOT operator.

Use to reverses the logical state of its operand. If

a condition is true, then Logical NOT operator will

make false.

Not(A And B) is

True.

Xor It is the logical as well as bitwise Logical Exclusive

OR operator. It returns True if both expressions

are True or both expressions are False; otherwise

it returns False. This operator does not perform

short-circuiting, it always evaluates both

expressions and there is no short-circuiting

counterpart of this operator.

A Xor B is True.

AndAlso It is the logical AND operator. It works only on

Boolean data. It performs short-circuiting.

(A AndAlso B) is

False.

OrElse It is the logical OR operator. It works only on

Boolean data. It performs short-circuiting.

(A OrElse B) is

True.

IsFalse It determines whether an expression is False.

IsTrue It determines whether an expression is True.

Example

Try the following example to understand all the logical/bitwise operators available

in VB.Net:

Module logicalOp

 Sub Main()

 Dim a As Boolean = True

 Dim b As Boolean = True

 Dim c As Integer = 5

 VB.NET

 56

 Dim d As Integer = 20

 'logical And, Or and Xor Checking

 If (a And b) Then

 Console.WriteLine("Line 1 - Condition is true")

 End If

 If (a Or b) Then

 Console.WriteLine("Line 2 - Condition is true")

 End If

 If (a Xor b) Then

 Console.WriteLine("Line 3 - Condition is true")

 End If

 'bitwise And, Or and Xor Checking

 If (c And d) Then

 Console.WriteLine("Line 4 - Condition is true")

 End If

 If (c Or d) Then

 Console.WriteLine("Line 5 - Condition is true")

 End If

 If (c Or d) Then

 Console.WriteLine("Line 6 - Condition is true")

 End If

 'Only logical operators

 If (a AndAlso b) Then

 Console.WriteLine("Line 7 - Condition is true")

 End If

 If (a OrElse b) Then

 Console.WriteLine("Line 8 - Condition is true")

 End If

 ' lets change the value of a and b

 a = False

 b = True

 If (a And b) Then

 Console.WriteLine("Line 9 - Condition is true")

 VB.NET

 57

 Else

 Console.WriteLine("Line 9 - Condition is not true")

 End If

 If (Not (a And b)) Then

 Console.WriteLine("Line 10 - Condition is true")

 End If

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is true

Line 4 - Condition is true

Line 5 - Condition is true

Line 6 - Condition is true

Line 7 - Condition is true

Line 8 - Condition is true

Line 9 - Condition is not true

Line 10 - Condition is true

Bit Shift Operators

We have already discussed the bitwise operators. The bit shift operators perform

the shift operations on binary values. Before coming into the bit shift operators,

let us understand the bit operations.

Bitwise operators work on bits and perform bit-by-bit operations. The truth tables

for &, |, and ^ are as follows:

P q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

 VB.NET

 58

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

We have seen that the Bitwise operators supported by VB.Net are And, Or, Xor

and Not. The Bit shift operators are >> and << for left shift and right shift,

respectively.

Assume that the variable A holds 60 and variable B holds 13, then:

Operator Description Example

And Bitwise AND Operator copies a bit to the

result if it exists in both operands.

(A AND B) will give 12,

which is 0000 1100

Or Binary OR Operator copies a bit if it

exists in either operand.

(A Or B) will give 61,

which is 0011 1101

Xor Binary XOR Operator copies the bit if it

is set in one operand but not both.

(A Xor B) will give 49,

which is 0011 0001

Not Binary Ones Complement Operator is

unary and has the effect of 'flipping'

bits.

(Not A) will give -61,

which is 1100 0011 in 2's

complement form due to a

signed binary number.

<< Binary Left Shift Operator. The left

operands value is moved left by the

A << 2 will give 240,

which is 1111 0000

 VB.NET

 59

number of bits specified by the right

operand.

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15, which

is 0000 1111

Example

Try the following example to understand all the bitwise operators available in

VB.Net:

Module BitwiseOp

 Sub Main()

 Dim a As Integer = 60 ' 60 = 0011 1100

 Dim b As Integer = 13 ' 13 = 0000 1101

 Dim c As Integer = 0

 c = a And b ' 12 = 0000 1100

 Console.WriteLine("Line 1 - Value of c is {0}", c)

 c = a Or b ' 61 = 0011 1101

 Console.WriteLine("Line 2 - Value of c is {0}", c)

 c = a Xor b ' 49 = 0011 0001

 Console.WriteLine("Line 3 - Value of c is {0}", c)

 c = Not a ' -61 = 1100 0011

 Console.WriteLine("Line 4 - Value of c is {0}", c)

 c = a << 2 ' 240 = 1111 0000

 Console.WriteLine("Line 5 - Value of c is {0}", c)

 c = a >> 2 ' 15 = 0000 1111

 Console.WriteLine("Line 6 - Value of c is {0}", c)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

 VB.NET

 60

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

Assignment Operators

There are following assignment operators supported by VB.Net:

Operator Description Example

= Simple assignment operator, Assigns values

from right side operands to left side operand

C = A + B will assign

value of A + B into C

+= Add AND assignment operator, It adds right

operand to the left operand and assigns the

result to left operand

C += A is equivalent

to C = C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left operand

and assigns the result to left operand

C -= A is equivalent

to C = C - A

*= Multiply AND assignment operator, It

multiplies right operand with the left operand

and assigns the result to left operand

C *= A is equivalent

to C = C * A

/= Divide AND assignment operator, It divides

left operand with the right operand and

assigns the result to left operand (floating

point division)

C /= A is equivalent

to C = C / A

\= Divide AND assignment operator, It divides

left operand with the right operand and

assigns the result to left operand (Integer

division)

C \= A is equivalent

to C = C \A

^= Exponentiation and assignment operator. It

raises the left operand to the power of the

right operand and assigns the result to left

operand.

C^=A is equivalent

to C = C ^ A

 VB.NET

 61

<<= Left shift AND assignment operator C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as

C = C >> 2

&= Concatenates a String expression to a String

variable or property and assigns the result to

the variable or property.

Str1 &= Str2 is same

as

Str1 = Str1 & Str2

Example

Try the following example to understand all the assignment operators available in

VB.Net:

Module assignment

 Sub Main()

 Dim a As Integer = 21

 Dim pow As Integer = 2

 Dim str1 As String = "Hello! "

 Dim str2 As String = "VB Programmers"

 Dim c As Integer

 c = a

 Console.WriteLine("Line 1 - = Operator Example, _

 Value of c = {0}", c)

 c += a

 Console.WriteLine("Line 2 - += Operator Example, _

 Value of c = {0}", c)

 c -= a

 Console.WriteLine("Line 3 - -= Operator Example, _

 Value of c = {0}", c)

 c *= a

 Console.WriteLine("Line 4 - *= Operator Example, _

 Value of c = {0}", c)

 c /= a

 Console.WriteLine("Line 5 - /= Operator Example, _

 VB.NET

 62

 Value of c = {0}", c)

 c = 20

 c ^= pow

 Console.WriteLine("Line 6 - ^= Operator Example, _

 Value of c = {0}", c)

 c <<= 2

 Console.WriteLine("Line 7 - <<= Operator Example,_

 Value of c = {0}", c)

 c >>= 2

 Console.WriteLine("Line 8 - >>= Operator Example,_

 Value of c = {0}", c)

 str1 &= str2

 Console.WriteLine("Line 9 - &= Operator Example,_

 Value of str1 = {0}", str1)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Line 1 - = Operator Example, Value of c = 21

Line 2 - += Operator Example, Value of c = 42

Line 3 - -= Operator Example, Value of c = 21

Line 4 - *= Operator Example, Value of c = 441

Line 5 - /= Operator Example, Value of c = 21

Line 6 - ^= Operator Example, Value of c = 400

Line 7 - <<= Operator Example, Value of c = 1600

Line 8 - >>= Operator Example, Value of c = 400

Line 9 - &= Operator Example, Value of str1 = Hello! VB Programmers

Miscellaneous Operators

There are few other important operators supported by VB.Net.

Operator Description Example

 VB.NET

 63

AddressOf Returns the address of

a procedure. AddHandler Button1.Click,

AddressOf Button1_Click

Await It is applied to an

operand in an

asynchronous method

or lambda expression

to suspend execution

of the method until the

awaited task

completes.

Dim result As res

= Await

AsyncMethodThatReturnsResult()

Await AsyncMethod()

GetType It returns a Type

object for the specified

type. The Type object

provides information

about the type such as

its properties,

methods, and events.

MsgBox(GetType(Integer).ToString())

Function

Expression

It declares the

parameters and code

that define a function

lambda expression.

Dim add5 = Function(num As

 Integer) num + 5

'prints 10

Console.WriteLine(add5(5))

If It uses short-circuit

evaluation to

conditionally return

one of two values. The

If operator can be

called with three

arguments or with two

arguments.

Dim num = 5

Console.WriteLine(If(num >= 0,

"Positive", "Negative"))

Example

The following example demonstrates some of these operators:

Module assignment

 Sub Main()

 VB.NET

 64

 Dim a As Integer = 21

 Console.WriteLine(GetType(Integer).ToString())

 Console.WriteLine(GetType(Double).ToString())

 Console.WriteLine(GetType(String).ToString())

 Dim multiplywith5 = Function(num As Integer) num * 5

 Console.WriteLine(multiplywith5(5))

 Console.WriteLine(If(a >= 0, "Positive", "Negative"))

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

System.Int32

System.Double

System.String

25

Positive

Operators Precedence in VB.Net

Operator precedence determines the grouping of terms in an expression. This

affects how an expression is evaluated. Certain operators have higher precedence

than others; for example, the multiplication operator has higher precedence than

the addition operator:

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *

has higher precedence than +, so it first gets multiplied with 3*2 and then adds

into 7.

Here, operators with the highest precedence appear at the top of the table, those

with the lowest appear at the bottom. Within an expression, higher precedence

operators will be evaluated first.

Operator Precedence

Await Highest

Exponentiation (^)

 VB.NET

 65

Unary identity and negation (+, -)

Multiplication and floating-point division (*, /)

Integer division (\)

Modulus arithmetic (Mod)

Addition and subtraction (+, -)

Arithmetic bit shift (<<, >>)

All comparison operators (=, <>, <, <=, >, >=, Is, IsNot, Like,

TypeOf...Is)

Negation (Not)

Conjunction (And, AndAlso)

Inclusive disjunction (Or, OrElse)

Exclusive disjunction (Xor) Lowest

Example

The following example demonstrates operator precedence in a simple way:

Module assignment

 Sub Main()

 Dim a As Integer = 20

 Dim b As Integer = 10

 Dim c As Integer = 15

 Dim d As Integer = 5

 Dim e As Integer

 e = (a + b) * c / d ' (30 * 15) / 5

 Console.WriteLine("Value of (a + b) * c / d is : {0}", e)

 e = ((a + b) * c) / d ' (30 * 15) / 5

 VB.NET

 66

 Console.WriteLine("Value of ((a + b) * c) / d is : {0}", e)

 e = (a + b) * (c / d) ' (30) * (15/5)

 Console.WriteLine("Value of (a + b) * (c / d) is : {0}", e)

 e = a + (b * c) / d ' 20 + (150/5)

 Console.WriteLine("Value of a + (b * c) / d is : {0}", e)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

 VB.NET

 67

Decision making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed if the condition is determined to be true, and optionally,

other statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most

of the programming languages:

VB.Net provides the following types of decision making statements. Click the

following links to check their details.

Statement Description

If ... Then statement An If...Then statement consists of a

boolean expression followed by one or

more statements.

If...Then...Else statement An If...Then statement can be followed

by an optional Else statement, which

executes when the boolean expression is

false.

12. Decision Making

 VB.NET

 68

nested If statements You can use one If or Else if statement

inside another If or Else if statement(s).

Select Case statement A Select Case statement allows a variable

to be tested for equality against a list of

values.

nested Select Case statements You can use one select case statement

inside another select case statement(s).

If...Then Statement

It is the simplest form of control statement, frequently used in decision making

and changing the control flow of the program execution. Syntax for if-then

statement is:

If condition Then

[Statement(s)]

End If

Where, condition is a Boolean or relational condition and Statement(s) is a simple

or compound statement. Example of an If-Then statement is:

If (a <= 20) Then

 c= c+1

End If

If the condition evaluates to true, then the block of code inside the If statement

will be executed. If condition evaluates to false, then the first set of code after the

end of the If statement (after the closing End If) will be executed.

 VB.NET

 69

Flow Diagram

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim a As Integer = 10

 ' check the boolean condition using if statement

 If (a < 20) Then

 ' if condition is true then print the following

 Console.WriteLine("a is less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is less than 20

value of a is : 10

 VB.NET

 70

If...Then...Else Statement

An If statement can be followed by an optional Else statement, which executes

when the Boolean expression is false.

Syntax

The syntax of an If...Then... Else statement in VB.Net is as follows:

If(boolean_expression)Then

 'statement(s) will execute if the Boolean expression is true

Else

 'statement(s) will execute if the Boolean expression is false

End If

If the Boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

Flow Diagram

Example

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 100

 VB.NET

 71

 ' check the boolean condition using if statement

 If (a < 20) Then

 ' if condition is true then print the following

 Console.WriteLine("a is less than 20")

 Else

 ' if condition is false then print the following

 Console.WriteLine("a is not less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a is not less than 20

value of a is : 100

The If...Else If...Else Statement

An If statement can be followed by an optional Else if...Else statement, which is

very useful to test various conditions using single If...Else If statement.

When using If... Else If... Else statements, there are few points to keep in mind.

 An If can have zero or one Else's and it must come after an Else If's.

 An If can have zero to many Else If's and they must come before the Else.

 Once an Else if succeeds, none of the remaining Else If's or Else's will be

tested.

Syntax

The syntax of an if...else if...else statement in VB.Net is as follows:

If(boolean_expression 1)Then

 ' Executes when the boolean expression 1 is true

ElseIf(boolean_expression 2)Then

 ' Executes when the boolean expression 2 is true

ElseIf(boolean_expression 3)Then

 VB.NET

 72

 ' Executes when the boolean expression 3 is true

Else

 ' executes when the none of the above condition is true

End If

Example

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 100

 ' check the boolean condition '

 If (a = 10) Then

 ' if condition is true then print the following '

 Console.WriteLine("Value of a is 10") '

 ElseIf (a = 20) Then

 'if else if condition is true '

 Console.WriteLine("Value of a is 20") '

 ElseIf (a = 30) Then

 'if else if condition is true

 Console.WriteLine("Value of a is 30")

 Else

 'if none of the conditions is true

 Console.WriteLine("None of the values is matching")

 End If

 Console.WriteLine("Exact value of a is: {0}", a)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

 VB.NET

 73

Nested If Statements

It is always legal in VB.Net to nest If-Then-Else statements, which means you can

use one If or ElseIf statement inside another If ElseIf statement(s).

Syntax

The syntax for a nested If statement is as follows:

If(boolean_expression 1)Then

 'Executes when the boolean expression 1 is true

 If(boolean_expression 2)Then

 'Executes when the boolean expression 2 is true

 End If

End If

You can nest ElseIf...Else in the similar way as you have nested If statement.

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 ' check the boolean condition

 If (a = 100) Then

 ' if condition is true then check the following

 If (b = 200) Then

 ' if condition is true then print the following

 Console.WriteLine("Value of a is 100 and b is 200")

 End If

 End If

 Console.WriteLine("Exact value of a is : {0}", a)

 Console.WriteLine("Exact value of b is : {0}", b)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 74

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Select Case Statement

A Select Case statement allows a variable to be tested for equality against a list

of values. Each value is called a case, and the variable being switched on is

checked for each select case.

Syntax

The syntax for a Select Case statement in VB.Net is as follows:

Select [Case] expression

 [Case expressionlist

 [statements]]

 [Case Else

 [elsestatements]]

End Select

Where,

 expression: is an expression that must evaluate to any of the elementary

data type in VB.Net, i.e., Boolean, Byte, Char, Date, Double, Decimal,

Integer, Long, Object, SByte, Short, Single, String, UInteger, ULong, and

UShort.

 expressionlist: List of expression clauses representing match values for

expression. Multiple expression clauses are separated by commas.

 statements: statements following Case that run if the select expression

matches any clause in expressionlist.

 elsestatements: statements following Case Else that run if the select

expression does not match any clause in the expressionlist of any of the

Case statements.

 VB.NET

 75

Flow Diagram

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim grade As Char

 grade = "B"

 Select grade

 Case "A"

 Console.WriteLine("Excellent!")

 Case "B", "C"

 Console.WriteLine("Well done")

 Case "D"

 Console.WriteLine("You passed")

 Case "F"

 Console.WriteLine("Better try again")

 Case Else

 VB.NET

 76

 Console.WriteLine("Invalid grade")

 End Select

 Console.WriteLine("Your grade is {0}", grade)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Nested Select Case Statement

It is possible to have a select statement as part of the statement sequence of an

outer select statement. Even if the case constants of the inner and outer select

contain common values, no conflicts will arise.

Example

Module decisions

 Sub Main()

 'local variable definition

 Dim a As Integer = 100

 Dim b As Integer = 200

 Select a

 Case 100

 Console.WriteLine("This is part of outer case ")

 Select Case b

 Case 200

 Console.WriteLine("This is part of inner case ")

 End Select

 End Select

 Console.WriteLine("Exact value of a is : {0}", a)

 Console.WriteLine("Exact value of b is : {0}", b)

 Console.ReadLine()

 End Sub

 VB.NET

 77

End Module

When the above code is compiled and executed, it produces the following result:

This is part of outer case

This is part of inner case

Exact value of a is : 100

Exact value of b is : 200

 VB.NET

 78

There may be a situation when you need to execute a block of code several

number of times. In general, statements are executed sequentially: The first

statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple

times and following is the general form of a loop statement in most of the

programming languages:

VB.Net provides following types of loops to handle looping requirements. Click the

following links to check their details.

Loop Type Description

Do Loop It repeats the enclosed block of statements while a

Boolean condition is True or until the condition becomes

True. It could be terminated at any time with the Exit

Do statement.

13. Loops

 VB.NET

 79

For...Next It repeats a group of statements a specified number of

times and a loop index counts the number of loop

iterations as the loop executes.

For Each...Next It repeats a group of statements for each element in a

collection. This loop is used for accessing and

manipulating all elements in an array or a VB.Net

collection.

While... End While It executes a series of statements as long as a given

condition is True.

With... End With It is not exactly a looping construct. It executes a series

of statements that repeatedly refer to a single object or

structure.

Nested loops You can use one or more loops inside any another

While, For or Do loop.

Do Loop

It repeats the enclosed block of statements while a Boolean condition is True or

until the condition becomes True. It could be terminated at any time with the Exit

Do statement.

The syntax for this loop construct is:

Do { While | Until } condition

 [statements]

 [Continue Do]

 [statements]

 [Exit Do]

 [statements]

Loop

-or-

Do

 [statements]

 [Continue Do]

 [statements]

 VB.NET

 80

 [Exit Do]

 [statements]

Loop { While | Until } condition

Flow Diagram

Example

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 'do loop execution

 Do

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

 VB.NET

 81

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The program would behave in same way, if you use an Until statement, instead of

While:

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 'do loop execution

 Do

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop Until (a = 20)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

 VB.NET

 82

value of a: 17

value of a: 18

value of a: 19

For...Next Loop

It repeats a group of statements a specified number of times and a loop index

counts the number of loop iterations as the loop executes.

The syntax for this loop construct is:

For counter [As datatype] = start To end [Step step]

 [statements]

 [Continue For]

 [statements]

 [Exit For]

 [statements]

Next [counter]

Flow Diagram

 VB.NET

 83

Example

Module loops

 Sub Main()

 Dim a As Byte

 ' for loop execution

 For a = 10 To 20

 Console.WriteLine("value of a: {0}", a)

 Next

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

 VB.NET

 84

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

If you want to use a step size of 2, for example, you need to display only even

numbers, between 10 and 20:

Module loops

 Sub Main()

 Dim a As Byte

 ' for loop execution

 For a = 10 To 20 Step 2

 Console.WriteLine("value of a: {0}", a)

 Next

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 12

value of a: 14

value of a: 16

value of a: 18

value of a: 20

Each...Next Loop

It repeats a group of statements for each element in a collection. This loop is used

for accessing and manipulating all elements in an array or a VB.Net collection.

 VB.NET

 85

The syntax for this loop construct is:

For Each element [As datatype] In group

 [statements]

 [Continue For]

 [statements]

 [Exit For]

 [statements]

Next [element]

Example

Module loops

 Sub Main()

 Dim anArray() As Integer = {1, 3, 5, 7, 9}

 Dim arrayItem As Integer

 'displaying the values

 For Each arrayItem In anArray

 Console.WriteLine(arrayItem)

 Next

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

1

3

5

7

9

While... End While Loop

It executes a series of statements as long as a given condition is True.

The syntax for this loop construct is:

While condition

 VB.NET

 86

 [statements]

 [Continue While]

 [statements]

 [Exit While]

 [statements]

End While

Here, statement(s) may be a single statement or a block of statements. The

condition may be any expression, and true is logical true. The loop iterates while

the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

Flow Diagram

 VB.NET

 87

Here, key point of the While loop is that the loop might not ever run. When the

condition is tested and the result is false, the loop body will be skipped and the

first statement after the while loop will be executed.

Example

Module loops

 Sub Main()

 Dim a As Integer = 10

 ' while loop execution '

 While a < 20

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 End While

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

 VB.NET

 88

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

With... End With Statement

It is not exactly a looping construct. It executes a series of statements that

repeatedly refers to a single object or structure.

The syntax for this loop construct is:

With object

 [statements]

End With

Example

Module loops

 Public Class Book

 Public Property Name As String

 Public Property Author As String

 Public Property Subject As String

 End Class

 Sub Main()

 Dim aBook As New Book

 With aBook

 .Name = "VB.Net Programming"

 .Author = "Zara Ali"

 .Subject = "Information Technology"

 End With

 VB.NET

 89

 With aBook

 Console.WriteLine(.Name)

 Console.WriteLine(.Author)

 Console.WriteLine(.Subject)

 End With

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

VB.Net Programming

Zara Ali

Information Technology

Nested Loops

VB.Net allows using one loop inside another loop. Following section shows few

examples to illustrate the concept.

Syntax

The syntax for a nested For loop statement in VB.Net is as follows:

For counter1 [As datatype1] = start1 To end1 [Step step1]

 For counter2 [As datatype2] = start2 To end2 [Step step2]

 ...

 Next [counter2]

Next [counter 1]

The syntax for a nested While loop statement in VB.Net is as follows:

While condition1

 While condition2

 ...

 End While

End While

The syntax for a nested Do...While loop statement in VB.Net is as follows:

 VB.NET

 90

Do { While | Until } condition1

 Do { While | Until } condition2

 ...

 Loop

Loop

A final note on loop nesting is that you can put any type of loop inside of any other

type of loop. For example, a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to

100:

Module loops

 Sub Main()

 ' local variable definition

 Dim i, j As Integer

 For i = 2 To 100

 For j = 2 To i

 ' if factor found, not prime

 If ((i Mod j) = 0) Then

 Exit For

 End If

 Next j

 If (j > (i \ j)) Then

 Console.WriteLine("{0} is prime", i)

 End If

 Next i

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

 VB.NET

 91

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope

are destroyed.

VB.Net provides the following control statements. Click the following links to check

their details.

Control Statement Description

 VB.NET

 92

Exit statement Terminates the loop or select case statement and

transfers execution to the statement immediately

following the loop or select case.

Continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

GoTo statement Transfers control to the labeled statement. Though it is

not advised to use GoTo statement in your program.

Exit Statement

The Exit statement transfers the control from a procedure or block immediately to

the statement following the procedure call or the block definition. It terminates

the loop, procedure, try block or the select block from where it is called.

If you are using nested loops (i.e., one loop inside another loop), the Exit

statement will stop the execution of the innermost loop and start executing the

next line of code after the block.

Syntax

The syntax for the Exit statement is:

Exit { Do | For | Function | Property | Select | Sub | Try | While }

Flow Diagram

 VB.NET

 93

Example

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 ' while loop execution '

 While (a < 20)

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 If (a > 15) Then

 'terminate the loop using exit statement

 Exit While

 End If

 End While

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

 VB.NET

 94

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statement

The Continue statement causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating. It works somewhat like the

Exit statement. Instead of forcing termination, it forces the next iteration of the

loop to take place, skipping any code in between.

For the For...Next loop, Continue statement causes the conditional test and

increment portions of the loop to execute. For the While and Do...While loops,

continue statement causes the program control to pass to the conditional tests.

Syntax

The syntax for a Continue statement is as follows:

Continue { Do | For | While }

Flow Diagram

Example

 VB.NET

 95

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 Do

 If (a = 15) Then

 ' skip the iteration '

 a = a + 1

 Continue Do

 End If

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

GoTo Statement

The GoTo statement transfers control unconditionally to a specified line in a

procedure.

The syntax for the GoTo statement is:

GoTo label

 VB.NET

 96

Flow Diagram

Example

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

Line1:

 Do

 If (a = 15) Then

 ' skip the iteration '

 a = a + 1

 GoTo Line1

 End If

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

 VB.NET

 97

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

 VB.NET

 98

In VB.Net, you can use strings as array of characters, however, more common

practice is to use the String keyword to declare a string variable. The string

keyword is an alias for the System.String class.

Creating a String Objec

You can create string object using one of the following methods:

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or object to its string

representation

The following example demonstrates this:

Module strings

 Sub Main()

 Dim fname, lname, fullname, greetings As String

 fname = "Rowan"

 lname = "Atkinson"

 fullname = fname + " " + lname

 Console.WriteLine("Full Name: {0}", fullname)

 'by using string constructor

 Dim letters As Char() = {"H", "e", "l", "l", "o"}

 greetings = New String(letters)

 Console.WriteLine("Greetings: {0}", greetings)

 'methods returning String

 Dim sarray() As String = {"Hello", "From", "Tutorials", "Point"}

 Dim message As String = String.Join(" ", sarray)

14. Strings

 VB.NET

 99

 Console.WriteLine("Message: {0}", message)

 'formatting method to convert a value

 Dim waiting As DateTime = New DateTime(2012, 12, 12, 17, 58, 1)

 Dim chat As String = String.Format("Message sent at {0:t} on

{0:D}", waiting)

 Console.WriteLine("Message: {0}", chat)

 Console.ReadLine()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Full Name: Rowan Atkinson

Greetings: Hello

Message: Hello From Tutorials Point

Message: Message sent at 5:58 PM on Wednesday, December 12, 2012

Properties of the String Class

The String class has the following two properties:

S.N Property Name & Description

1 Chars

Gets the Char object at a specified position in the current String object.

2 Length

Gets the number of characters in the current String object.

Methods of the String Class

The String class has numerous methods that help you in working with the string

objects. The following table provides some of the most commonly used methods:

