Stoichiometry

1. The law of multiple proportions is illustrated by
1) $\mathrm{HBr}, \mathrm{HI}$
2) $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$
3) $\mathrm{CO}, \mathrm{CO}_{2}$
4) $\mathrm{CaO}, \mathrm{MgO}$
2. Nitrogen forms $\mathbf{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{5}$ with oxygen, it illustrates the?
1) Law of definite proportions
2) Law of multiple proportions
3) Law of reciprocal proportion
4) Law of conservation of mass
3. A balanced chemical equation obeys
1) Law of multiple proportions
2) Law of definite proportions
3) Law of reciprocal proportion
4) Law of conservation of mass
4. In an experiment 10 g of CaCO_{3} on heating gave 4.6 g of $\mathrm{CaO} \& 2.24 \mathrm{lt}$ of CO_{2} at STP. These results show the law of
1) Gay-Lussac's
2) Constant proportions
3) Conservation of mass
4) Reciprocal proportions
5. The percentage compositions of four hydrocarbons is given

II	II	IIII	IV	
\% of C	75	80	85.7	91.3
\% of H	25	20	14.3	8.7

These data illustrate the law of

1) Constant proportions
2) Reciprocal proportions
3) Definite proportions
4) Multiple proportions
6. In $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{\mathbf{2}}^{(\mathrm{g})} \boldsymbol{\rightarrow} \mathbf{2 H C l}(\mathrm{g})$ the ratio of volumes of $\mathbf{H}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}} \& \mathbf{H C l}$ gases is $1: 1: 2$. These figures illustrate the law of
1) Multiple proportions
2) Combining Volumes
3) Definite proportions
4) Reciprocal proportions
7. Law of reciprocal proportion was given by
1) Dalton
2) Ritcher
3) Proust
4) Lavoiser
8. The following data are avaiable
a) $\%$ of Mg in MgO and in MgCl_{2}
b) $\%$ if C in $\mathrm{CO} \& \mathrm{CO}_{2}$
c) $\%$ of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \& \mathrm{~K}_{2} \mathrm{CrO}_{4}$
c) $\%$ of Cu isotopes in Cu Metal

The law of multiple proportions may be illustrated by data

1) a and b
2) b only
3) $b \& d$
4) c only
9. Law of multiple proportions is given by the pair
1) $\mathrm{SO} 2 \& \mathrm{SO}_{3}$
2) $\mathrm{H}_{2} \mathrm{O} \& \mathrm{D}_{2} \mathrm{O}$
3) $\mathrm{NaCl} \& \mathrm{NaBr}$
4) $\mathrm{MgO} \& \mathrm{MgCl}_{2}$
10. Percentage of copper $\&$ oxygen in samples of $\mathbf{C u O}$ obtained by different methods were found to be the same. This proves the law of
1) Constant proportions
2) Reciprocal proportions
3) Multiple proportions
4) None
11. Oxygen combines with the isotopes of carbon to form two samples of CO_{2}. This data illustrates the law of
1) Conservation of mass
2) Multiple proportions
3) Reciprocal proportions
4) None
12. In $\mathrm{SO}_{2} \& \mathrm{SO}_{3}$ the ratio of the weights of oxygen that combines with a fixed weight of sulphur is 2: 3. This illustrates the law of
1) Constant proportions
2) Conservation of mass
3) Multiple proportions
4) Reciprocal proportions
13. CO_{2} was prepared by i) buring C in air and ii) The action of dil HCl on MgCO_{3}. In both casescarbon \& oxygen combined in the ratio of 3: 8. These figures illustrate the law of
1) Constant proportions
2) Reciprocal proportions
3) Multiple proportions
4) Conservation of mass
14. A sample of CaCO_{3} has $\mathrm{Ca}=40 \%, \mathrm{C}=\mathbf{1 2 \%}$ and $0=48 \%$ if the law of definite proportions is true then the mass of Ca in 4 g of a sample of a CaCO_{3} from another source will be
1) 0.16 g
2) 1.6 g
3) 16 g
4) 0.016 g
15. 1.0 g of an oxide of A contained 0.5 g of A .4 .0 g of another oxide of A contained 1.6 g of A. The data indicates the law of
1) Reciprocal proportions
2) Constant proportions
3) Conservation of energy
4) Multiple proportions
16. Which of the following data illustrates the law of conservation of mass?
1) 12 g of C is heated in vacuûm \& on cooling there is no change is mass.
2) 56 g of CO reacts with 32 g of oxygen to form 44 g of CO_{2}.
3) 1.70 g of AgNO_{3} reacts with 100 ml 0.1 M HCl to produce 1.435 g of $\mathrm{AgCl} \& 0.63 \mathrm{~g}$ of HNO_{3}.
4) None
17. ' H ' combines with ' O ' to form $\mathrm{H}_{2} \mathrm{O}$ in which 16 g oxygen combines with $\mathbf{2 g}$ of hydrogen. ' H ' also combines with carbon to form $\mathrm{CH}_{\mathbf{4}}$ in which $\mathbf{2 g}$ of ' H ' combine with $\mathbf{6 g}$ of carbon if ' C ' \& ' O ' combine together then they will do so in the ratio of
1) $6: 18$
2) $6: 16$
3) $1: 2$
4) $12: 24$
18. SO_{2} contains $\mathbf{5 \% ~ S}, \mathrm{H}_{2} \mathrm{~S}$ contains $\mathbf{5 . 8 \%} \mathrm{H}_{2}$ while $\mathrm{H}_{2} \mathrm{O}$ contains 11.12% of $\mathbf{H}_{\mathbf{2}}$. These figures illustrate the law of
1) Conservation of mass
2) Reciprocal proportions
3) Definite proportions
4) Multiple proportions
19. The percentage of hydrogen in water \& Hydrogen peroxide are respectively $\mathbf{1 1 . 2 \%}$ and $\mathbf{5 . 9 4 \%}$. This illustrates the law of
1) Conservation of mass
2) Multiple proportions
3) Constant composition
4) Reciprocal proportions
20. 4.4 g of an oxide of nitrogen gives 2.2 litres of nitrogen and 60 g of another oxide of nitrogen gives $\mathbf{2 2 . 4}$ litres of nitrogen at NTP. The data shows
1) Law of conservation of mass
2) Law of multiple proportions
3) Law of constant proportions
4) Law of gaseous volumes
21. Law of difinite proportions does not apply to nitrogen oxide because
1) Mass number of nitrogen îs not constant
2) Atomic weight of oxygen is variable
3) Equivalent weight of nitrogen is variable
4) Molecular weight of nitrogen is not fixed
22. Which one illustrates the law of reciprocal proportions?
1) $\mathrm{CS}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$
2) $\mathrm{PH}_{3}, \mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{P}_{2} \mathrm{O}_{5}$
3) $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}$
4) $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$
23. 1.5 g of hydrocarbon on combustion in excess of oxygen produces 4.4 g of $\mathrm{CO}_{\mathbf{2}}$ and 2.7 g of $\mathrm{H}_{\mathbf{2}} \mathrm{O}$. The data illustrates the law of
1) Definite composition
2) Conservation of mass
3) Multiple proportions
4) Reciprocal proportions
24. If Law of conservation of mass was to hold true then 20.8 g of $\mathrm{BaCl}_{\mathbf{2}}$ on reaction with 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will produce 7.3 g of HCl and BaSO_{4} equal to
1) 25.5 g
2) 23.3 g
3) 11.65 g
4) 30.6 g
25. Law of reciprocal proportions can be used to determine
1) Atomic weights of a gas
2) Equivalent heights
3) Molecular weights of gases
4) None of these
26. Which of the following statement is correct?
1) There is no difference between precision and accuracy.
2) A good precision always means good accuracy.
3) Accuracy means that all measured values of an experiment are close to the actual value.
4) A measurement may have good accuracy but poor precision.
27. The number of significant figures in 0.0024 are
1) Two
2) Three
3) Four
4) Five
28. The number of significant figures in 96500 are
1) Three
2) Four
3) Five
4) Can be any of these
29. The number of significant figures in Avogadro's number ($\mathrm{N}_{\mathbf{0}}$) $\mathbf{6 . 0 2 3 \times 1 0 ^ { 2 3 }}$ is
1) Three
2) Four
3) Five
4) Twenty Four
30. 1.00025 has how many significant figures?
1) 5
2) 3
3) 4
4) 6
31. The gram atomic weight of Silver is reported as 108.000 gm . The number of significant figures in it is
1) 6
2) 3
3) 5
4) 4
32. The number of significant figures in the charge of electron i.e. $1.602 \times$ 10-19 Coulmbs
1) 1
2) 2
3) 3
4) 4
5) 0.414 has how many significant figures?
6) 1
7) 2
8) 3
9) 4
34. The correctly reported answer of the addition of $3.829,1.3$ and 7.24 will have significant figures
1) Two
2) Three
3) Four
4) Five
35. The correctly reported answer of the addition of $154.21,6.142$ and 23 will be
1) 183.352
2) 183.35
3) 183.4
4) 183
36. The correctly reported difference of 16.4215 and 6.01 will have significant figures equal to
1) Three
2) Four
3) Five
4) Six
37. After rounding 6.235 and 6.225 to three significant figures, we will have their answers respectively as
1) $6.23,6.22$
2) $6.24,6.123$
3) $6.23,6.23$
4) $6.24,6.22$
38. The actual product of 4.327 and 2.8 is $\mathbf{1 2 . 1 1 5 6}$. The correctly reported answer will be
1) 12
2) 12.1
3) 12.12
4) 12.116
39. On dividing 0.46 by 15.374 , the actual answer is $\mathbf{0 . 0 2 9 2 3 6}$. The correctly reported answer will be
1) 0.02923
2) 0.029
3) 0.029236
4) 0.02924
40. Two students x and y report the length of a pen as 12.0 cm and 12.00 cm respectively. Which of the following statements is correct?
1) Both are equally accurate
2) x is more accurate than y
3) y is more accurate than x
4) None of these
41. In which of the following numbers all zeros are significant?
1) 0.00004
2) 0.0060
3) 20.000
4) 0.800
42. The number of significant figures in the value of Plank's constant is ($6.625 \times 10^{-34} \mathrm{Js}$.)
1) Four
2) Five
3) Three
4) Thirty four
$43) 21.4 \mathrm{~g}$ sample of ethyl alcohol contains 0.004 g of water. The amount of pure ethyl alcohol (to the proper number of significant figures) is:
5) 21.396 g
6) 21.40 g
7) 21.4 g
8) 21.3 g
44. The number of significant figures in 5 are
1) Five
2) Infinite number
3) Zero
4) One
45. The Rydberg's constant is $1.0973731 \times 10^{7} \mathrm{~m}^{-1}$. It can be expressed to three significant figures as:
1) $1.0974 \times 10^{7} \mathrm{~m}^{-1}$
2) $1.09 \times 10^{7} \mathrm{~m}^{-1}$
3) $1.10 \times 10^{7} \mathrm{~m}^{-1}$
4) $1.10^{7} \mathrm{~m}^{-1}$

www.sakshieducation.com

KEY

1) 3
2) 2
3) 3
4) 3
5) 4
6) 2
7) 2
8) 3
9) 1
10) 1
11) 4
12) 3
13) 1
14) 2
15) $4 \quad 16) 3$
17)2
16) 2
17) 2 20) 2
18) 3
19) 1
20) 2
21) 2
22) 2
23) $3 \quad$ 27) 1
24) 4 29) 2 30) 4
25) 1
26) 4
27) 3
28) 1
29) 4
30) $2 \quad 37) 4$
31) 1 39) 2 40) 3
32) 3
33) 3
34) 3
35) 2
36) 3

Empirical and Molecular Formulâ

Percent composition

The composition of pure chemical compound is always fixed according to law of definite proportions.

The weight in grams of an element present in 100 grams of its compound is called weight percent of that element.

$$
\frac{\begin{array}{c}
\text { Weight of element in } \\
\text { one mole of the compound }
\end{array}}{\text { Gram molecular }} \times 100
$$

Weight percent of an element in a compound $=$
Eg. The weight percent of oxygen in NaOH is
Solution: Weight percent of oxygen $=(16 / 40) \times 100=40 \%$
"Empirical formula of a compound is the simplest formula showing the relative number of atoms of different elements present in one molecule of the compound"
"Molecular formula represents the actual number of atoms of different elements present in one molecule of the compound."

For certain compounds the molecular formula and the empirical formula may be one and the same.

E.g.: Compound	Empirical formula	Molecular formula
Methane	$\mathbf{C H}_{4}$	$\mathbf{C H}_{4}$
Water	$\mathbf{H 2}_{2}$	$\mathbf{H}_{2} \mathbf{O}$

The molecular formula of a compound may be same as empirical formula or whole number multiple of it. Thus,

The molecular formula $=($ empirical formula $) \times \mathrm{n}$ Where n is an integer $1,2,3 \ldots$ etc.
If the vapour density of the substance is known, its molecular weight can be calculated by using the equation.

2 x Vapour density $=$ Molecular weight.
The difference between empirical and molecular formula illustrated with some examples in

Compound	Empiricat formula	Molecular	
Benzene	$\mathbf{C H}$	$\mathbf{6}$	$\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}$
Butane	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}}$	$\mathbf{2}$	$\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}$
Ethane	$\mathbf{C H}_{\mathbf{3}}$	$\mathbf{2}$	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$
Acetic acid	$\mathbf{C H}_{\mathbf{2}} \mathrm{O}$	$\mathbf{2}$	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{O}_{\mathbf{2}}$
Glucose	$\mathbf{C H}_{\mathbf{2}} \mathbf{O}$	$\mathbf{6}$	$\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}}$

www.sakshieducation.com

Calculation of the empirical formula
Empirical formula can be determined from the mass percentages of various elements present in a compound.

The sequence of steps in the determination of empirical formula is:

1) The weight percentage (or weight) of each constituent element is taken or to be calculated.
2) The percent weight of each constituent is to be divided with its atomic weight to get relative number of atoms of each element.
3) The simplest whole number ratio of the values of step (2) is to be obtained. This may be done by dividing all values with the smallest among them. If it is not a whole number, then multiply them with a suitable integer to get whole number ratio.
4) The simplest atomic ratio obtained in (3) represents empirical formula.

Eg. The percentage composition of an organic compound is given below. Calculate the emperical formula

$$
\mathrm{C}=70.59 ; \mathrm{H}=5.88 ; \mathrm{O}=23.53
$$

Solution: Percentage of the elements present
Carbon Hydrogen oxygen.
$70.59 \quad 5.88 \quad 23.53$
Dividing the percentage compositions by the respective atomic weights of the elements

$$
70.59 / 12=5.88 \quad 5.88 / 1=5.88 \quad 23.53 / 16=1.47
$$

Dividing equal value in step 2 by the smallest number among them to get simple atomic ratio

$$
5.88 / 1.47=4 \quad 5.88 / 1.47=4 \quad 1.47 / 1.47=1
$$

The ratio of atoms present in the molecule
C : H: O
$4: 4: 1$
The empirical formula of the compound $=\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$

STOICHIOMETRY

1. A compound made of two elements A \& B are found to contain 25% A (atomic mass 12.5) and $\mathbf{7 5 \%}$ B (atomic mass 37.5) The simplest formula of the counpound is
1) $A B$
2) $A B_{2}$
3) AB_{3}
4) $A_{3} B$

Ans:1

$$
\begin{array}{cc}
\text { A } & \text { B } \\
25 / 12.5=2 & 75 / 37.5=2
\end{array}
$$

Therefore simple ratio is $1: 1, \quad \mathrm{E}, \mathrm{F}$ is AB
2. On analysis a certain compound was found to contain iodine and oxygen in the ratio of 254 g of iodine (atomic mass 127) and 80 g oxygen. The formula of the compound

1) IO
2) $\mathrm{I}_{2} \mathrm{O}_{4}$
3) $\mathrm{I}_{5} \mathrm{O}_{3}$
4) $\mathrm{I}_{2} \mathrm{O}_{5}$

Ans: 4. No, of mole atoms Iodine $=254 / 127=2$
No, of mole atoms Oxygen $=80 / 16=5$, Simple ratio is 2: 5, formula is $\mathrm{I}_{2} \mathrm{O}_{5}$.
3. The weight percentage of oxygen in NaOH is

1) 40
2) 60
3) 8
4) 10

Ans: 1, Wt\% of $\mathrm{O}=(16 / 40) \mathrm{X} 100=40 \%$
4. 60 g of a compound on analysis gave 24 g ' C ', 4 g ' H '\& 32 g ' O '. The empirical formula of the compound is

1) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
2) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
3) $\mathrm{CH}_{2} \mathrm{O}_{2}$
4) $\mathrm{CH}_{2} \mathrm{O}$

Ans: 4 , No. of mole atoms of $\mathrm{C}=24 / 12=2$, of $\mathrm{H}=4 / 1=4$ and of $\mathrm{O}=32 / 16=2$
Thus simple ratio is $1: 2: 1$ and EF is $\mathrm{CH}_{2} \mathrm{O}$

www.sakshieducation.com

5. Caffine contains $\mathbf{2 8 . 9 \%}$ by mass of nitrogen. If molecular mass of caffine is 194, then the number of nitrogen atoms present in one molecule of caffine is
1) 3
2) 4
3) 5
4) 6

Ans: 2, 100 g of caffeine contains 28.9 gm of N
194 g of caffeine contains (194/100) X28.9 $=56.06 \mathrm{~g}$ of $\mathrm{N}=56.06 / 14=4$
6. A phosphorus oxide has $\mathbf{4 3 . 6} \%$ phosporus. The empirical formula of the compound is

1) $\mathrm{P}_{2} \mathrm{O}_{5}$
2) $\mathrm{P}_{2} \mathrm{O}_{3}$
3) $\mathrm{P}_{4} \mathrm{O}_{6}$
4) PO_{2}

Ans: 1

> P
> $43.6 / 31=1.4$
> $1.4 / 1.4=1$
$100-43.6=56.4 / 16=3.52$
$3.52 / 1.4=5 / 2$
Simple ratio is $1: 5 / 2=2: 5$
7. Two elements X (at.wt $=75$) and Y (at.wt $=16$) combine to give compound having $\mathbf{7 5 . 8 \%} \mathrm{X}$. The compound is

1) $X Y$
2) $X_{2} \mathrm{Y}$
3) $X_{2} Y_{2}$
4) $\mathrm{X}_{2} \mathrm{Y}_{3}$

Ans: 4

$$
\begin{array}{ll}
\mathrm{X} & \mathrm{Y} \\
75.8 / 75=1.01 & 100-75.8=24.2 / 16=1.5 \\
1.01 / 1.01=1 & 1.5 / 1.01=3 / 2
\end{array}
$$

Simple ratio is $1: 3 / 2=2: 3$
8. Atomic weight of a metal M is 56 . The empirical formula of its oxide containing 70% of M is

1) MO_{2}
2) $\mathrm{M}_{2} \mathrm{O}_{3}$
3) $\mathrm{M}_{3} \mathrm{O}_{2}$
4) MO_{4}

Ans: 2

$$
\begin{array}{cl}
\mathrm{M} & \mathrm{O} \\
(70 / 56)=5 / 4 & (30 / 16)=15 / 8
\end{array}
$$

Simple ratio is $5 / 4: 15 / 8=1: 3 / 2=2: 3$, E.F $=\mathrm{M}_{2} \mathrm{O}_{3}$

www.sakshieducation.com

9. A certain compound has the molecular formula $\mathrm{X}_{\mathbf{4}} \mathrm{O}_{\mathbf{6}}$. If the compound contains 56.2% of X. Then the atomic mass of X is
1) 48 a.m.u
2) $30.8 \mathrm{a} . \mathrm{m} . \mathrm{u}$
3) 42 a.m.u
4) $62.0 \mathrm{a} . \mathrm{m} . \mathrm{u}$

Ans: $2 \quad 1$ mole $\mathrm{X}_{4} \mathrm{O}_{6}$ contains 96 gm of O
Given 56.2 gm X combines with 43.8 gm O
Wt of X that combines with $96 \mathrm{gm} \mathrm{O}=(96 / 43.8) \mathrm{X} 56.2=123.18$
Atomic mass of $\mathrm{X}=123.18 / 4=30.79 \mathrm{amu}$
10. An organic compound containing $\mathrm{C}, \mathrm{H} \& \mathrm{O}$ has a vapour density $\mathbf{8 3}$. The molecular formula of the compound is

1) $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2}$
2) $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$
3) $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$
4) $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{3}$

Ans: $3 \quad$ Molecular wt $=2 \times \mathrm{XD}=2 \mathrm{X} 83=166$.
Molecular wt of $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4} \quad=166$
11. A carbon compound contains $\mathbf{8 0 \%}$ carbon $\& 20 \%$ hydrogen. Its molecular formula is likely

1) $\mathrm{C}_{2} \mathrm{H}_{4}$
2) $\mathrm{C}_{2} \mathrm{H}_{6}$
3) $\mathrm{C}_{3} \mathrm{H}_{8}$
4) $\mathrm{C}_{4} \mathrm{H}_{10}$

Ans: $2 \quad \mathrm{C}=80 / 12=6.66, \mathrm{H}: 20 / 1=20$
Simple ratio of C: $\mathrm{H}=(6.66 / 6.66):(20 / 6.66)=1: 3 \therefore \mathrm{E} . \mathrm{F}=\mathrm{CH}_{3}$
12. List-I
A) Glucose
B) Oxalic acid
C) Inorganic benzene
D) Hydrogen peroxide

The correct match is

List - II (Empirical formula)

1) BNH_{2}
2) $\mathrm{CH}_{2} \mathrm{O}$
3) CH
4) CHO_{2}
5) HO
A \quad B \quad C \quad D

$1)$	3	5	2	4
$2)$	2	4	1	5
$3)$	1	3	2	4
$4)$	4	2	1	3

Ans: 2
13. List $-I$
A) CH_{4}

1) $90 \% \mathrm{C}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}$
2) $75 \% \mathrm{C}$
C) $\mathrm{C}_{2} \mathrm{H}_{4}$
3) $\mathbf{8 0} \% \mathrm{C}$
D) $\mathrm{C}_{3} \mathrm{H}_{4}$
4) $85.7 \% \mathrm{C}$
5) $60 \% \mathrm{C}$
A B C

$1)$	2	3	4	1
$2)$	5	1	2	4
$3)$	3	2	4	1
$4)$	2	1	5	3

Ans: $1 \% \mathrm{wt}$ of $\mathrm{C}=$ (wt of C/molar mass of compound) X100
14. 4 g of a hydrocarbon on complete combustion gives 12.571 g of $\mathrm{CO}_{\mathbf{2}}$.

The compound may be
i) $\mathrm{C}_{2} \mathrm{H}_{4}$
ii) CH_{4}
iii) $\mathrm{C}_{3} \mathrm{H}_{8}$
iv) $\mathrm{C}_{4} \mathrm{H}_{8}$

1) i only
2) ii only
3) ii \& iii only
4) i \& iv only

Ans: $4 \% \mathrm{c}=\quad \frac{\text { wtofCO } 2 \times 12 \times 100}{\text { WtofOrganic.compound } \times 44}=\frac{12 \times 12.571 \times 100}{4 X 44}=85.7 \%$
$\mathrm{H}=100-85.7=14.3$
$\mathrm{C}=(85.7 / 12)=7.14 \quad, \mathrm{H}=(14.3 / 1)=14.3$
Simple ratio of C and $\mathrm{H}=(7.14 / 7,14):(14.3 / 7.14)=1: 2 \quad \therefore \quad$ E.F $=\mathrm{CH}_{2}$.
15. Assertion (A): Empirical formula of glucose \& acetic acid is $\mathbf{C H}_{2} \mathbf{O}$.

Reason (R): The percentage composition of elements is same in both.

1) Both A and R are true, and R is correct explanation of A.
2) Both A and R are true, and R is not correct explanation of A.
3) A is true, but R is false.
4) Both A and R are false.

Ans: 1
16. An alkane has $\mathbf{C / H}$ ratio (by mass) of 5.1428. Its molecular formula is

1) $\mathrm{C}_{5} \mathrm{H}_{12}$
2) $\mathrm{C}_{6} \mathrm{H}_{14}$
3) $\mathrm{C}_{8} \mathrm{H}_{18}$
4) $\mathrm{C}_{7} \mathrm{H}_{16}$

Ans: $2 \quad \mathrm{C}_{6} \mathrm{H}_{14}$ contains 72 gm of C and 14 gm of $\mathrm{H} . \mathrm{C} / \mathrm{H}=72 / 14=5.14$
17. An organic compound is found to contain $C=54.5 \%, 0=36.4 \%$ and $\mathbf{H}=9.1 \%$ by mass. Its empirial formula is

1) $\mathrm{CH}_{2} \mathrm{O}$
2) CHO_{2}
3) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
4) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

Ans: 3, $\mathrm{C}=54.5 / 12=4.54, \mathrm{H}=9.1 / 1=9.1$ and $\mathrm{O}=36.4 / 16=2.27$ Simple ratio $=(4.54 / 2.27): 9.1 / 2.27): 2.27 / 2.27)=2: 4: 1 \therefore$ E.F $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
18. The empirical formula of a compound is $\mathrm{CH}_{2} \mathrm{O}$. Its molecular weight is
120. The molecular formula of the compound is

1) $\mathrm{CH}_{2} \mathrm{O}$
2) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
3) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
4) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$

Ans: 4 Empirical formula weight $=12+2+16=30, \quad \mathrm{n}=120 / 30=4$ The molecular formula $=\mathrm{E} . \mathrm{FXn}=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{4}$
19. In a compound $C, H \& N$ atoms are present in 9: 1: 3.5 by weight. Molecular weight of compound is 108. Molecular formula of the compound is

1) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}$
2) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
3) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
4) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3}$

Ans: 2, C: H: N = (9/12): (1/1): $(3.5 / 14)=3 / 4: 1: 1 / 4=3: 4: 1 . E F=C_{3} H_{4} N$
20. 0.36 g of an organic compound on complete combustion gives 1.1 g of CO_{2} and 0.54 g of $\mathrm{H}_{2} \mathrm{O}$, then percentage composition of Carbon $\&$ Hydrogen respectively in the compound are

1) 60,40
2) $77.8,22.2$
3) 75,25
4) $83.33,16.67$

Ans: 4, \%C = (12X1.1X100/44X0.36) $=83.33 \%$

$$
\% \mathrm{H}=(2 \mathrm{X} 0.54 \mathrm{X} 100 / 18 \mathrm{X} 0.36)=16.67 \%
$$

21. 0.2 g of an Organic compound on complete combustion liberates 56.CC of nitrogen at STP, then percentage composition of Nitogen in the compound is
1) 70
2) 35
3) 17.5
4) 8.75

Ans: $2, \% \mathrm{~N}=\left(\right.$ vol. of N_{2} in c.c at STP$) / 8 \mathrm{w}=(56 / 8) \times 0.2=35 \%$
22. A hydrocarbon contains 10% hydrogen, and then the hydrocarbon may be
A) Alkane
B) Alkene
C) Alkyne

1) Only C
2) A or B
3) B or C
4) A or B or C

Ans: 1.
Mole atoms of $\mathrm{C}=90 / 12=7.5$
Mole atoms of $\mathrm{H}=10 / 1=10$
Simple ratio of C and $\mathrm{H}=(7,5 / 7.5):(10 / 7.5)=1: 4 / 3=3: 4 . \therefore \mathrm{E} . \mathrm{F}=\mathrm{C}_{3} \mathrm{H}_{4}$
Hence it is an alkyne.
23. The empirical formula of an organic compound is $\mathbf{C H}_{2} \mathbf{O}$, its vapour density is 45 , then its molecular formula is

1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
2) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
3) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
4) $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}$

Ans: 2, Empirical formula weight $=12+2+16=30$, Molecular $w t=2 \mathrm{X}$
V.D $=2 X 45=90, n=90 / 30=4$

The molecular formula $=\mathbf{E} . \mathbf{F X n}=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3}$
24. 0.2 mole of an alkane on combustion gives $26.4 \mathrm{~g} \mathrm{CO}_{2}$ gas then molecular formula of alkane is

1) $\mathrm{C}_{3} \mathrm{H}_{8}$
2) $\mathrm{C}_{4} \mathrm{H}_{10}$
3) $\mathrm{C}_{2} \mathrm{H}_{6}$
4) CH_{4}

Ans: 1,
0.2 moles give $26.4 \mathrm{gm} \mathrm{CO}_{2}$

Thus 1mole gives $26 \cdot 4 / 0 \cdot 2=132 \mathrm{gm}=132 / 44=3$ moles CO_{2}.
\therefore Alkane has 3 carbon atoms. \therefore Formula is $\mathrm{C}_{3} \mathrm{H}_{8}$
25. 0.5 g of an organic compound on complete combustion produces $\mathbf{0 . 4 4 g}$ CO_{2}. The percentage of carbon in the compound is

1) 48%
2) 12%
3) 60%
4) 24%

Ans: 4,

$$
\% \mathrm{C}=(12 \mathrm{X} 0.44 \mathrm{X} 100) / 44 \mathrm{X} 0.5=24 \%
$$

