Stoichiometry

1.	The law of multiple proportions is illustrated by										
	1) HBr, H	I	2) H	20, D	₂ O	3) CO), C	02	4) (CaO, l	MgO
2.	Nitrogen	forms	N ₂ O,	NO,	N ₂ O ₃ ,	NO_2	&	N ₂ O ₅	;	with	oxygen,
	it illustrat	es the?									0)
	1) Law of	definite	proport	ions		2) La	w of	f multip	ole	propo	ortions
	3) Law of	reciproc	al propo	ortion		4) La	w of	conse	r v a	ition o	of mass
3.	A balance	d chemi	ical equ	ation	obeys						
	1) Law of	multiple	propor	tions	2) Law of definite proportions				rtions		
	3) Law of	reciproc	al propo	ortion		4) La	w of	f conse	rva	ation o	of mass
4.	In an experiment 10 g of CaCO ₃ on heating gave 4.6 g of CaO & 2.24l					& 2.24lt					
	of CO ₂ at STP. These results show the law of										
	1) Gay-Lussac's 2) Constant proportions										
	3) Conserv	ation of	mass		4) R	Reciproc	cal p	roporti	ons	S	
5.	The perce	ntage ¢	omposit	tions o	f four hy	drocar	bon	s is giv	'en	ì	
	I	-9	II		II	Ι		IV	7		
	% of C	5	75		80)		85	.7	91.3	
	% of H	*	25		20)		14	.3	8.7	
	These dat	a illustr	ate the	law of	•						
	1) Constar	ıt propor	rtions			2) Re	cipr	ocal pr	opo	ortion	S
1	3) Definite	proport	tions			4) M	ultip	le prop	ort	tions	
6.	In H ₂ (g)	+ Cl ₂	$(g) \rightarrow 2$	HCl (§	g) the ra	tio of	volu	mes of	H	$I_2 Cl_2$	2 & HC <i>l</i>
	gases is 1:	1: 2. Tl	hese fig	ures il	lustrate	the law	of				
	1) Multiple	e propor	tions			2) Co	mbi	ning V	olu	imes	
	3) Definite	e proport	tions			4) Re	cipr	ocal pr	op	ortion	S

7.	Law of reciprocal	proportion was given	ı by	
	1) Dalton	2) Ritcher	3) Proust	4) Lavoiser
8.	The following data	are avaiable		
	a) % of Mg in MgO	and in $\mathrm{MgC}l_2$	b) % if C in CO & 0	CO_2
	c) % of Cr in K ₂ Cr ₂	₂ O ₇ & K ₂ CrO ₄	c) % of Cu isotopes	in Cu Metal
	The law of multiple	e proportions may be	e illustrated by data	
	1) a and b	2) b only	3) b & d	4) c only
9.	Law of multiple pr	oportions is given by	the pair	O
	1) SO2 & SO ₃		2) H ₂ O & D ₂ O	
	3) NaCl & NaBr		4) MgO & MgCl ₂	
10.	Percentage of copp	oer & oxygen in sam	ples of CuO obtained	d by different
	methods were foun	nd to be the same. Th	is proves the law of	
	1) Constant proport	ions	2) Reciprocal prop	portions
	3) Multiple proporti	ons	4) None	
11.	Oxygen combines	with the isotopes of	carbon to form tw	o samples of
	CO ₂ . This data illu	strates the law of		
	1) Conservation of	mass	2) Multiple proporti	ons
	3) Reciprocal prop	ortions	4) None	
12.	In SO ₂ & SO ₃ the	e ratio of the weight	s of oxygen that con	nbines with a
	fixed weight of sulp	phur is 2: 3. This illu	strates the law of	
	1) Constant proporti	ions	2) Conservation of 1	mass
1	3) Multiple proporti	ons	4) Reciprocal propo	ortions

13.	CO ₂ was prepared by i) buring C in air and ii) The action of dil HCl on				
	MgCO ₃ . In bot	h casescarbon &	z oxygen combined in	the ratio of 3: 8.	
	These figures illu	strate the law of	•		
	1) Constant propo	ortions	2) Reciprocal J	proportions	
	3) Multiple propo	ortions	4) Conservatio	on of mass	
14.	A sample of CaC	CO_3 has $Ca = 40$	%, C = 12% and 0 =	48% if the law of	
	definite proporti	ions is true then	the mass of Ca in 4g	g of a sample of a	
	CaCO ₃ from and	other source will	be		
	1) 0.16 g	2) 1.6 g	3) 16 g	4) 0.016 g	
15.	1.0 g of an oxide	e of A contained	0.5 g of A. 4.0 g of a	nother oxide of A	
	contained 1.6 g o	f A. The data inc	licates the law of		
	1) Reciprocal proportions 2) Constant proportions				
	3) Conservation o	f energy	4) Multiple pro	oportions	
16.	Which of the foll	owing data illust	rates the law of conse	rvation of mass?	
	1) 12 g of <i>C</i> is hear	ated in vacuum &	on cooling there is no	change is mass.	
	2) 56 g of <i>CO</i> rea	cts with 32 g of or	xygen to form 44 g of C	CO_2 .	
	3) 1.70 g of AgN	IO ₃ reacts with 1	00 ml 0.1 M HC <i>l</i> to j	produce 1.435 g of	
	AgCl & 0.63 g of	HNO _{3.}			
	4) None				
17.	'H' combines wi	th 'O' to form H	2O in which 16 g oxyg	gen combines with	
	2g of hydrogen.	'H' also combine	s with carbon to form	n CH ₄ in which 2g	
	of 'H' combine	with 6g of carbo	on if 'C' & 'O' comb	oine together then	
1	they will do so in				
	1) 6: 18	2) 6: 16	3) 1: 2	4) 12: 24	

18.	SO ₂ contains 5% S, H ₂ S contains 5.8% H ₂ while H ₂ O contains 11.12 %				
	of H ₂ . These figures illustrate the law of	•			
	1) Conservation of mass	2) Reciprocal proportions			
	3) Definite proportions	4) Multiple proportions			
19.	The percentage of hydrogen in wat	ter & Hydrogen peroxide are			
	respectively 11.2% and 5.94%. This illu	strates the law of			
	1) Conservation of mass	2) Multiple proportions			
	3) Constant composition	4) Reciprocal proportions			
20.	4.4 g of an oxide of nitrogen gives 2.	2 litres of nitrogen and 60g of			
	another oxide of nitrogen gives 22.4 litt	res of nitrogen at NTP. The data			
	shows				
	1) Law of conservation of mass	2) Law of multiple proportions			
	3) Law of constant proportions	4) Law of gaseous volumes			
21.	Law of difinite proportions does not app	oly to nitrogen oxide because			
	1) Mass number of nitrogen is not constant	t			
	2) Atomic weight of oxygen is variable				
	3) Equivalent weight of nitrogen is variable	e			
	4) Molecular weight of nitrogen is not fixe	d			
22.	Which one illustrates the law of reciproc	cal proportions?			
	1) CS_2 , CO_2 , SO_2	2) PH ₃ , P ₂ O ₃ , P ₂ O ₅			
	3) N ₂ O ₃ , N ₂ O ₄ , N ₂ O ₅	4) NaCl, NaBr, NaI			
23.	1.5 g of hydrocarbon on combustion in	excess of oxygen produces 4.4 g			
1	of CO_2 and 2.7 g of H_2O . The data illustrates	trates the law of			
	1) Definite composition	2) Conservation of mass			
	3) Multiple proportions	4) Reciprocal proportions			

24.	If Law of conserva	tion of mass w	as to hold true the	n 20.8 g of BaC l_2 on			
	reaction with 9.8 g	of H ₂ SO ₄ will	produce 7.3 g of H	Cl and BaSO ₄ equal			
	to						
	1) 25.5 g	2) 23.3 g	3) 11.65 g	4) 30.6 g			
25.	Law of reciprocal p	proportions car	n be used to determ	nine			
	1) Atomic weights of	f a gas	2) Equivaler	nt heights			
	3) Molecular weight	s of gases	4) None of t	hese			
26.	Which of the followi	ng statement is	s correct?				
	1) There is no differen	nce between pre	ecision and accuracy				
	2) A good precision a	lways means go	ood accuracy.				
	3) Accuracy means that all measured values of an experiment are close to the						
	actual value.						
	4) A measurement may have good accuracy but poor precision.						
27.	The number of signi	ficant figures i	n 0.0024 are				
	1) Two 2) Three	3) Four	4) Five			
28.	The number of signi	ficant figures i	n 96500 are				
	1) Three	2) Four					
	3) Five	4) Can be any	of these				
29.	29. The number of significant figures in Avogadro's number (N $_0$) 6.023×10 ²³						
	is						
A	1) Three	2) Four	3) Five	4) Twenty Four			
30.	1.00025 has how mai	ny significant f	igures?				
	1) 5	2) 3	3) 4	4) 6			

31.	The gram atomic	weight of Silver	is reported	as 108.000gm. The number
	of significant figur	es in it is		
	1) 6	2) 3	3) 5	4) 4
32.	The number of s	significant figure	es in the char	arge of electron i.e. $1.602 \times$
	10 ⁻¹⁹ Coulmbs			
	1) 1	2) 2	3) 3	4) 4
33)	0.414 has how man	ny significant fig	gures?	
	1) 1	2) 2	3) 3	4) 4
34.	The correctly rep	orted answer of	the addition	n of 3.829, 1.3 and 7.24 will
	have significant fig	gures		
	1) Two	2) Three	3) Four	4) Five
35.	The correctly repo	orted answer of	the addition	of 154.21, 6.142 and 23 will
	be		,0	
	1) 183.352	2) 183.35		
	3) 183.4	4) 183		
36.	The correctly repo	orted difference	of 16.4215 ar	nd 6.01 will have significant
	figures equal to)		
	1) Three	2) Four	3) Five	4) Six
37.	After rounding 6.	235 and 6.225 t	o three signi	ficant figures, we will have
	their answers resp	ectively as		
1	1) 6.23, 6.22	2) 6.24, 6.123	3) 6.23, 6.23	3 4) 6.24, 6.22
38.	The actual produ	ct of 4.327 and	2.8 is 12.115	56. The correctly reported
	answer will be			

39.	On dividing 0.46 l	by 15.374, the ac	ctual a	nswer is 0.02	29236.	The correctly
	reported answer w	vill be				
	1) 0.02923	2) 0.029		3) 0.029236	5	4) 0.02924
40.	Two students x an	nd y report the	length	of a pen as	12.0cm	and 12.00cm
	respectively. Which	ch of the followin	g state	ements is cor	rect?	
	1) Both are equally	accurate				
	2) x is more accurate	te than y				CO
	3) y is more accurat	te than x				•
	4) None of these				0),	
41.	In which of the fol	lowing numbers	all ze	ros are signif	icant?	
	1) 0.00004	2) 0.0060	3) 20	.000	4) 0.8	00
42.	The number of s	ignificant figur	es in	the value of	Plank	's constant is
	$(6.625 \times 10^{-34} \text{Js.})$.0				
	1) Four	2) Five	3) Th	ree	4) Th	irty four
43)	21.4g sample of eth	yl alcohol contai	ins 0.0	04g of water	. The a	mount of pure
	ethyl alcohol (to th	ne proper numbe	er of si	gnificant figu	ıres) is:	:
	1) 21.396 g	2) 21.40g	3) 2	21.4g	4) 21	.3 g
44.	The number of sig	nificant figures	in 5 ar	re		
	1) Five	2) Infinite numb	er	3) Zero		4) One
45.	The Rydberg's co	onstant is 1.0973	3731 ×	10 ⁷ m ⁻¹ . It	can be	e expressed to
	three significant fi	gures as:				
	1) 1.0974×10 ⁷ m ⁻¹	2) 1.09×10 ⁷ n	n-1	3) 1.10×10 ⁷	m-1	4) 1.10 ⁷ m ⁻¹

KEY

1) 3	2) 2	3) 3	4) 3	5) 4	6) 2	7) 2	8) 3	9) 1	10) 1
11) 4	12) 3	13) 1	14) 2	15) 4	16)3	17)2	18) 2	19) 2	20) 2
21) 3	22) 1	23) 2	24) 2	25) 2	26) 3	27) 1	28) 4	29) 2	30) 4
31) 1	32) 4	33) 3	34) 1	35) 4	36) 2	37) 4	38) 1	39) 2	40) 3
41) 3	42) 3	43) 3	44) 2	45) 3					11.

Empirical and Molecular Formula

Percent composition

The composition of pure chemical compound is always fixed according to law of definite proportions.

The weight in grams of an element present in 100 grams of its compound is called weight percent of that element.

 $\frac{\text{Weight of element in}}{\text{Gram molecular}} \times 100$ weight of compound

Weight percent of an element in a compound =

Eg. The weight percent of oxygen in NaOH is

Solution: Weight percent of oxygen = (16/40) x100=40%

"Empirical formula of a compound is the simplest formula showing the relative number of atoms of different elements present in one molecule of the compound"

"Molecular formula represents the actual number of atoms of different elements present in one molecule of the compound."

For certain compounds the molecular formula and the empirical formula may be one and the same.

E.g.: Compound	Empirical	Molecular
	formula	formula
Methane	CH ₄	CH ₄
Water	H ₂ O	H ₂ O

The molecular formula of a compound may be same as empirical formula or whole number multiple of it. Thus,

The molecular formula = $(empirical formula) \times n$ Where n is an integer 1, 2, 3 ... etc.

If the vapour density of the substance is known, its molecular weight can be calculated by using the equation.

2 x Vapour density = Molecular weight.

The difference between empirical and molecular formula illustrated with some examples in

Compound	Empirical	n	Molecular
	formula		formula
Benzene	СН	6	C ₆ H ₆
Butane	C ₂ H ₅	2	C_4H_{10}
Ethane	СН3	2	C ₂ H ₆
Acetic acid	CH ₂ O	2	C ₂ H ₄ O ₂
Glucose	CH ₂ O	6	C ₆ H ₁₂ O ₆

Calculation of the empirical formula

Empirical formula can be determined from the mass percentages of various elements present in a compound.

The sequence of steps in the determination of empirical formula is:

- 1) The weight percentage (or weight) of each constituent element is taken or to be calculated.
- 2) The percent weight of each constituent is to be divided with its atomic weight to get relative number of atoms of each element.
- 3) The simplest whole number ratio of the values of step (2) is to be obtained. This may be done by dividing all values with the smallest among them. If it is not a whole number, then multiply them with a suitable integer to get whole number ratio.
- 4) The simplest atomic ratio obtained in (3) represents empirical formula.
- **Eg.** The percentage composition of an organic compound is given below. Calculate the emperical formula

$$C = 70.59$$
; $H = 5.88$; $O = 23.53$

Solution: Percentage of the elements present

Carbon Hydrogen oxygen.

70.59 5.88 23.53

Dividing the percentage compositions by the respective atomic weights of the elements

$$70.59/12 = 5.88$$
 $5.88/1 = 5.88$ $23.53/16 = 1.47$

Dividing equal value in step 2 by the smallest number among them to get simple atomic ratio

5.88/1.47= 4 5.88/1.47= 4 1.47/1.47= 1

The ratio of atoms present in the molecule

C: H: O

4:4:1

The empirical formula of the compound = C_4H_4O

STOICHIOMETRY

1.	_		ss A & B are found to	
	of the counpou		omic mass 37.3) The	simplest for mula
	1) AB	2) AB ₂	3) AB ₃	4) A ₃ B
	Ans:1			~O,
	A		В	
	25/12.5	5 = 2	75/37.5=2	
	Therefore simp	ple ratio is 1:1, E	, F is AB	
2.	On analysis a c	ertain compound w	as found to contain i	odine and oxygen
	in the ratio of	254 g of iodine (at	omic mass 127) and	80g oxygen. The
	formula of the	compound		
	1) IO	2) I ₂ O ₄	3) I ₅ O ₃	4) I ₂ O ₅
	Ans: 4. No, of n	nole atoms Iodine= 2.	54/127 =2	
	No, of mole at	oms Oxygen=80/16 =	=5, Simple ratio is 2: 5	5 , formula is I_2O_5 .
3.	The weight per	centage of oxygen in	n NaOH is	
	1) 40	2) 60	3) 8	4)10
	Ans: 1, Wt% of	O= (16/40) X100=40	0%	
4.	60 g of a comp	oound on analysis g	ave 24 g 'C', 4g 'H'	& 32 g 'O'. The
	empirical form	ula of the compound	d is	
-	1) $C_2H_4O_2$	$2) C_2 H_2 O_2$	3) CH ₂ O ₂	4) CH ₂ O
1	Ans: 4, No. of n	nole atoms of C=24/1	2 = 2, of H= $4/1 = 4$ and	of O=32/16 =2
	Thus simple ran	tio is 1:2:1 and EF is	CH ₂ O	

5.	Caffine contains 28	.9% by mass of nitr	ogen. If mole	ecular mass of caffine
	is 194, then the nu	ımber of nitrogen a	atoms presen	t in one molecule of
	caffine is			
	1) 3	2) 4	3) 5	4) 6
	Ans: 2, 100 g of caff	eine contains 28.9 gr	n of N	
	194g of caffeine con	tains (194/100) X28.	.9 =56.06g of	N =56.06/14 =4
6.	A phosphorus oxide	e has 43.6 % phospo	orus. The em	pirical formula of the
	compound is			C
	1) P ₂ O ₅	2) P ₂ O ₃	3) P_4O_6	4) PO ₂
	Ans: 1	P	0	0)
		43.6/31 =1.4	100-43.6=56	.4/16 =3.52
		1.4/1.4=1	3.52/1.4= 5/	2
		Simple ratio is 1:5	5/2 =2:5	
7.	Two elements X	(at.wt = 75) and	Y (at.wt = 1	16) combine to give
	compound having 7	75.8% X. The comp	ound is	
	1) XY	2) X ₂ Y	$3) X_2 Y_2$	4) X ₂ Y ₃
	Ans: 4	X	Y	
		75.8/75 =1.01	100-75.8	3=24.2/16 =1.5
	S	1.01/1.01=1	1.5/1.01=	= 3/2
	N .	Simple ratio is 1:	3/2 =2:3	
8. A	tomic weight of a	metal M is 56. Th	e empirical	formula of its oxide
	containing 70% of	M is		
1	1) MO ₂	$2) M_2 O_3$	$3) M_3 O_2$	4) MO ₄
	Ans: 2	M	O	
		(70/56)=5/4	(30	0/16)=15/8
		Simple ratio is 5/4:	:15/8 =1: 3/2 =	=2:3, E.F= M ₂ O ₃

9.	A certain compound has the molecular formula X_4O_6 . If the compound						
	contains 56.2% of X. Then the atomic mass of X is						
	1) 48 a.m.u	2) 30.8 a.m.u					
	3) 42 a.m.u	4) 62.0 a.m.u					
	Ans: 2 1mole X ₄ O ₆ contains 96gm of O						
	Given 56.2gm X combines with 43.8gm O						
	Wt of X that combines with 96gm $O = (96/43.8)X56.2 = 123.18$						
	Atomic mass of X=123.18/4 =30.79amu						
10.	An organic compound containing C, H & O has a vapour density 83						
	The molecular formula of the compound is						
	1) $C_6H_3O_2$	$2) C_5 H_6 O_2$					
	3) $C_8H_6O_4$	4) $C_8H_{10}O_3$	Co				
	Ans: 3 Molecular	wt= 2 X VD=2X83=	166.				
	Molecular wt of	$C_8H_6O_4 = 166$					
11.	A carbon compound contains 80% carbon & 20% hydrogen. I						
	molecular formula i	s likely					
	1) C ₂ H ₄	2) C ₂ H ₆	3) C ₃ H ₈	4) C_4H_{10}			
	Ans: 2 C =80/12 =6.66, H: 20/1=20						
	Simple ratio of C	C: H= (6.66/6.66): (20	0/6.66) = 1:3 :: E.F=0	CH_3			
	W.						
12.	List - I	List - II (Empirical formula)					
1	A) Glucose		1) BNH ₂				
	B) Oxalic acid		2) CH ₂ O				
	C) Inorganic benzer	ne	3) CH				
	D) Hydrogen peroxi	de	4) CHO ₂				
	The correct match is	S	5) HO				

A B C D

- 1) 3 5 2 4
- 2) 2 4 1 5
- 3) 1 3 2 4
- 4) 4 2 1 3

Ans: 2

13. List - I

List - II

A) CH₄

1) 90% C

B) C₂H₆

2) 75% C

C) C₂H₄

3) 80 % C

D) C₃H₄

- 4) 85.7% C
- 5) 60% C

A B C D

- 1) 2 3 4
- 2) 5 1 2 4
- 3) 3 2 4
- 4) 2 1 5 3

Ans: 1 %wt of C = (wt of C/molar mass of compound) X100

14. 4 g of a hydrocarbon on complete combustion gives 12.571 g of CO₂.

The compound may be

- i) C₂H₄
- ii) CH₄
- iii) C₃H₈

 $\frac{\textit{wtofCO}_2 \times 12 \times 100}{\textit{WtofOrganic.compound} \times 44}$

iv) C₄H₈

1) i only

Ans:

- 2) ii only
- 3) ii & iii only 4) i & iv only

H=100-85.7=14.3

$$C = (85.7/12) = 7.14$$
, $H = (14.3/1) = 14.3$

%c

Simple ratio of C and H = (7.14/7, 14): (14.3/7.14)= 1:2 \therefore E.F=CH₂.

15. Assertion (A): Empirical formula of glucose & acetic acid is CH₂O. Reason (R): The percentage composition of elements is same in both. 1) Both A and R are true, and R is correct explanation of A. 2) Both A and R are true, and R is not correct explanation of A. 3) A is true, but R is false. 4) Both A and R are false. **Ans:** 1 16. An alkane has C/H ratio (by mass) of 5.1428. Its molecular formula is 3) C₈H₁₈ 4) C₇H₁₆ 1) C_5H_{12} $^{2)} C_{6}H_{14}$ **Ans:** 2 C_6H_{14} contains 72gm of C and 14 gm of H. C/H = 72/14 = 5.14 17. An organic compound is found to contain C = 54.5%, 0 = 36.4% and H = 9.1% by mass. Its empirial formula is 2) CHO₂ 3) C₂H₄O $4) C_3H_8O$ 1) CH₂O Ans: 3, C=54.5/12= 4.54, H=9.1/1=9.1 and O= 36.4/16 =2.27 Simple ratio = (4.54/2.27): 9.1/2.27): 2.27/2.27) = 2:4:1 : E.F= C_2H_4O 18. The empirical formula of a compound is CH₂O. Its molecular weight is 120. The molecular formula of the compound is 1) CH_2O 2) $C_2H_4O_2$ 3) $C_3H_6O_3$ 4) $C_4H_8O_4$ **Ans:** 4 Empirical formula weight =12+2+16=30, n = 120/30 = 4The molecular formula = $E.FXn = (CH_2O)_4$ 19. In a compound C, H & N atoms are present in 9: 1: 3.5 by weight. Molecular weight of compound is 108. Molecular formula of the compound is 1) $C_2H_6N_2$ 2) C_3H_4N 3) $C_6H_8N_2$ 4) $C_9H_{12}N_3$ **Ans:** 2, C: H: N = (9/12): (1/1): $(3.5/14) = \frac{3}{4}$: 1: $\frac{1}{4}$ = 3:4:1. EF = C_3H_4N

20.	0.36 g of an organic compound on complete combustion gives 1.1 g of							
	${\rm CO_2}$ and 0.54g of ${\rm H_2O}$, then percentage composition of Carbon &							
	Hydrogen respectively in the compound are							
	1) 60, 40	2) 77.8, 22.2	3) 75, 25	4) 83.33, 16.67				
	Ans: $4, \%C = (12X1)$.1X100/44X0.36	5) =83.33%					
	%H = $(2X0.54X100/18X0.36)$ = $16.67%$							
21.	. 0.2 g of an Organic compound on complete combustion liberates 56.0							
	of nitrogen at STP, then percentage composition of Nitogen in the							
	compound is			· ()				
	1) 70	2) 35	3) 17.5	4) 8.75				
	Ans: 2, %N = (vol. of N ₂ in c.c at STP)/8w = (56/8) $\times 0.2 = 35\%$							
22.	A hydrocarbon con	ntains 10% hydi	rogen, and then tl	ne hydrocarbon may				
	be							
	A) Alkane	B) Alkene	C) Alkyne					
	1) Only C	2) A or B	3) B or C	4) A or B or C				
	Ans: 1.							
	Mole atoms of C =90/12= 7.5 Mole atoms of H =10/1=10 Simple ratio of C and H= $(7, 5/7.5)$: $(10/7.5) =1:4/3=3:4$. \therefore E.F= C ₃ H ₄ Hence it is an alkyne.							
23.	The empirical formula of an organic compound is CH2O, its vapour							
	density is 45, then its molecular formula is							
1	1) C ₂ H ₅ O	$2) C_3 H_6 O_3$	$3) C_2 H_4 O_2$	4) $C_4H_3O_4$				
	Ans: 2, Empirical formula weight = $12+2+16=30$, Molecular wt=22 V.D=2X45=90, n = $90/30=4$ The molecular formula =E. FXn= (CH ₂ O) ₃							

24.	0.2 mole of an alk	ane on combustio	n gives 26.4g CO ₂ ga	s then molecular				
	formula of alkane is							
	1) C ₃ H ₈	2) C_4H_{10}	3) C_2H_6	4) CH ₄				
	Ans: 1,							
	0.2 moles give 26.4gm CO ₂							
	Thus 1mole gives 2	6.4/0.2 =132gm= 1	$32/44 = 3 \text{ moles CO}_2.$					
	∴ Alkane has 3 ca	arbon atoms. ∴ Forr	nula is C ₃ H ₈	60				
25.	0.5 g of an organ	nic compound on	complete combustion	produces 0.44g				
	CO ₂ . The percent	tage of carbon in t	he compound is					
	1) 48%	2) 12%	3) 60%	4) 24%				
	Ans: 4,		60					
%C = (12X0.44X100)/44X0.5=24%								