Introduction to C

Basic Structure of C Program

IDENTIFIERS

Identifiers, as the name suggests, are used to identify or refer to the names of variables, symbolic constants, functions and arrays. There are certain rules regarding identifier names, they are :

· Identifier names must be a sequence of letters and digits and must begin with a letter.

· The underscore character (_) is also permitted in identifiers. It is usually as a link between two words in long identifiers.

· Names should not be the same as a keyword.

· C is a case sensitive (i.e. upper and lower case letters are treated differently). Thus the names price, Price and PRICE denote different identifier.

Valid examples are :

City

Age

basic_pay

result

date_of_birth

Mark

num1

num2

The following identifiers are invalid :

	Invalid Identifiers
	Reason For Invalidity

	Basic Pay
	Blank space is not allowed

	1price
	Must start with a letter

	$amount
	Special characters is not allowed

	break
	break is a keyword

CONSTANTS

Constants refer to fixed values that do not change during the execution of a program. Figure below shows the various types of constants available in C :

Integer Constants

Integer constants are whole numbers without any fractional part.

Rules for constructing integer constants are :

1. An integer constant must have at least one digit and must not have a decimal point.

2. An integer constant may be positive or negative. If no sign is preceded an integer constant, it is assumed to be positive.

3. Embedded spaces, commas and non-digit characters are not allowed.

There are three types of integer constants namely :

(i) Decimal

(ii) Octal
(iii) Hexadecimal

(i) Decimal Integer Constants

Decimal integer constants can consist any combinations of digits from 0 to 9, preceded by an optional + or – sign.

Valid examples are :

0

+47

179

-240
22099

Invalid examples are :

	Invalid Decimal Integer Constants
	Reason For Invalidity

	15 750
	Blank space is not allowed

	20,000
	Comma is not allowed

	$1000
	$ symbol is not allowed

	12.55
	Decimal point is not allowed

(ii) Octal Integer Constants

Octal integer constants can consist of any combinations of digits from 0 to 7. However, the first digit must be zero (0), in order to identify the constant as an octal number. For instance, decimal integer 8 will be written as 010 as octal integer.

Valid examples are :

0

047

0179

0240

(iii) Hexadecimal Integer Constants

Hexadecimal integer constants can consists of any combination of digits from 0 to 9 and letters from A to F (either uppercase or lowercase). A hexadecimal integer constant must begin with either 0x or 0X. For instance, decimal integer 12 will be written as 0XC as hexadecimal integer.

Valid examples are :

0x

0X2

0x7A

0xbcd

Thus, the number 12 will be written either 12 (as decimal), 014 (as octal) and 0xC (as hexadecimal).

Note : The larger integer value that can be stored is machine dependent.

	Machine Type
	Largest Integer Value

	16 bit machines
	32,767

	32 bit machines
	2,147,483,647

Real Constants

Real constants are also called as floating point constants. Real constants are numbers having fractional parts. These may be written in one of the two forms :

(i) Fractional form

(ii) Exponential form

(i) Fractional Form

The fractional form consists of a series of digits representing the whole part followed by a decimal point and series of digits representing the floating part. The whole part or fractional part can be omitted but not both. The decimal point cannot be omitted.

Rules for constructing real constants expressed in fractional form are :

1. A real constant must have at least one digit and it must have a decimal point.

2. A real constant could be either positive or negative (default sign is positive).

3. Embedded spaces, commas and non-digit characters are not allowed.

Valid examples are :

0.0002

-0.96

179.47

+31.79

+.2

-.47

179.

.99

Invalid examples are :

	Invalid Fractional Form
	Reason For Invalidity

	12,000.50
	Comma is not allowed

	31
	No decimal point

	12.30.45
	Two decimal point

	$1000.75
	$ symbol is not allowed

	15 750.25
	Blank space is not allowed

(ii) Exponential Form

The exponential (or scientific) form of representation of real constants is usually used if the value of the constant is either too small or too large. In exponential form of representation, the real constant is represented in two parts namely, mantissa and exponent. The syntax is :

mantissa e exponent

[or]

mantissa E exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is an integer number with an optional plus or minus sign. The letter e separating the mantissa and exponent can be written in either lowercase or uppercase.

For example, 3.5 can be written as 0.35 x 10 = 0.35E1 where the mantissa part is 0.5 (the part appearing before E) and the exponent part is 1 (the part appearing after E).

Rules for constructing real constants expressed in exponential form are :

1. The mantissa and the exponent should be separated by a letter e (either uppercase or lowercase).

2. The mantissa and exponent part may have a positive or negative sign (default sign is positive).

3. The mantissa and exponent part must have at least one digit.

4. Embedded spaces, commas are not allowed.

Valid examples are :

0.31e2

12e-2

3.1e+5

3.18E4

-1.2E-2

Invalid examples are :

	Invalid Exponential Form
	Reason For Invalidity

	12,000e2
	Comma is not allowed

	3.1e 2
	Blank space is not allowed

	3.1E+2.4
	Exponent must be an integer

Note : Floating point constants are normally represented as double precision quantities. However, the suffixes f or F may be used to force single precision and l or L to extend double precision further.

Single Character Constants

A single character constant or a character constant consist of a single character encloses within apostrophes.

Rules for constructing single character constants are :

1. A character constant is a single alphabet, a single digit, a single special symbol or a blank space.

2. The maximum length of a character constant can be one character.

Valid examples are :

‘B’

‘V’

‘+’

‘$’

‘ ’

Invalid examples are :

‘abc’

‘123’

String Constants

A string constant is a sequence of characters encloses within double quotation marks. Technically, a string is an array of characters. The compiler automatically places the null character (\0) at the end of each such string, so program can conveniently find the end.

Rules for constructing string constants are :

1. The string constant may be letters, numbers, special characters and blank spaces.

2. Every string constant ends up with a null character, which is automatically assigned.

Valid examples are :

“India”

“2002”

“WELCOME”

“*.*”

“B”

“$120”

Note :

1. A character constant ‘B’ is not the same as the string constant that contains the single character “B”. The former is the single character and the latter a character string consisting of character B and \0 (null).

2. A character constant as an equivalent integer value, whereas single character string constant does not have an equivalent integer value. It occupies two bytes, one for the ASCII code of B and another for the null character with a value 0, which is used to terminate strings.

VARIABLES

A quantity, which may vary during the execution of a program, is called as variable. It is a data name that may be used to store a data value. A variable name can be chosen by the programmer in a meaningful way so as to reflect its function or nature in the program.

Rules for constructing a variable are :

1. A variable name is any combination of alphabets, digits or underscores.

2. The first character in the variable name must be an alphabet.

3. No comma or blank spaces are allowed within the variable name.

4. No special characters other than an underscore (_) can be used in a variable name.

5. A variable name cannot be a keyword.

6. Variable names are case sensitive, i.e., uppercase and lowercase letters are treated as distinct and different. Hence, MARK, mark and Mark are three separate names.

7. A variable name should not be of length more than 31 characters.

Valid examples are :

AVERAGE

height

subject1

n1

City

male_sum

fact

n

Invalid examples are :

	Invalid Variable Name
	Reason For Invalidity

	char
	char is a keyword

	price$
	$ sign is illegal

	group one
	Blank space is not allowed

	786
	First character must be an alphabet

Note :

1. Some compilers permit underscore as the first character.

2. There is no limit on the length of the variable, but some compilers recognize only first eight characters. For example, the variable name dataname1 and dataname2 mean the same thing to the compiler.

DECLARATION OF VARIABLE

data_type V1, V2, . . . Vn ;

DATA TYPES

1. Primary (or fundamental) data types

2. User-defined data types

3. Derived data types

4. Empty data set

	Data Type
	Size
	Range

	char
	1 byte
	-128 to 127

	Int
	2 bytes
	-32,768 to 32,767

	float
	4 bytes
	3.4e-38 to 3.4e+38

	double
	8 bytes
	1.7e-308 to 1.7e+308

Integer Data Type

	Type
	Length
	Range

	Unsigned int (or)

unsigned short int
	16 bits
	0 to 65,535

	int (or)

short int (or)

signed int (or)

signed short int
	16 bits
	-32,768 to 32,767

	Unsigned long (or)

Unsigned long int
	32 bits
	0 to 4,294,967,295

	long (or)

long int (or)

signed long int
	32 bits
	-2,147,483,648 to 2,147,483,647

Floating point Data Type

	Type
	Length
	Range

	float
	32 bits
	3.4e-38 to 3.4e+38

	double
	64 bits
	1.7e-308 to 1.7e+308

	long double
	80 bits
	3.4e-4932 to 1.1e+4932

Character Data Type

	Type
	Length
	Range

	unsigned char
	8 bits
	0 to 255

	char (or)

signed char
	8 bits
	-128 to 127

OPERATORS
1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operator

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Comma operator

9. sizeof operator

Arithmetic Operators

	Operator
	Meaning

	+
	Addition or unary plus

	-
	Subtraction or unary minus

	*
	Multiplication

	/
	Division

	%
	Modulo division or remainder after division

Relational Operators

	Operator
	Meaning

	<
	Less than

	>
	Greater than

	<=
	Less than or equal to

	>=
	Greater than or equal to

	==
	Equal to

	!=
	Not equal to

Logical Operators

	Operator
	Meaning

	&&
	Logical AND

	||
	Logical OR

	!
	Logical NOT

Assignment Operator

=,+=,-=,*=,/=,%=

Increment and Decrement Operators

++,--

Conditional Operators

exp1 ? exp2 : exp3 ;

Bit wise Operators

	Operator
	Meaning

	&
	Bitwise AND

	|
	Bitwise OR

	^
	Bitwise XOR

	<<
	Shift left

	>>
	Shift right

	~
	One’s complement

EVALUATION OF EXPRESSIONS

	Algebraic Expression
	Equivalent C Expression

	3.14x r2
	3.14 * r * r

	a
bc
	a / (b * c)

	5a2 + 3a + 1
	5 * a * a + 3 * a + 1

	s(s-a)(s-b)(s-c)
	s * (s - a) * (s - b) * (s - c)

PRECEDENCE OF OPERATORS

	Operator
	Description
	Associativity
	Rank

	()

[]

-> and .
	Function call

Array element reference

Structure operators
	Left to Right
	1

	+

-

++

--

!

~

*

&

sizeof

(type)
	Unary plus

Unary minus

Increment

Decrement

Logical negation

One’s complement

Pointer reference (indirection)

Address

Size of an object

Type cast (conversion)
	Right to left
	2

	*

/

%
	Multiplication

Division

Modulus
	Left to Right
	3

	+

-
	Addition

Subtraction
	Left to Right
	4

	<<

>>
	Left shift

Right shift
	Left to Right
	5

	<

<=

>

>=
	Less than

Less than or equal to

Greater than

Greater than or equal to
	Left to Right
	6

	==

!=
	Equality

Inequality
	Left to Right
	7

	&
	Bitwise AND
	Left to Right
	8

	^
	Bitwise XOR
	Left to Right
	9

	|
	Bitwise OR
	Left to Right
	10

	&&
	Logical AND
	Left to Right
	11

	||
	Logical OR
	Left to Right
	12

	?:
	Condition expression
	Right to left
	13

	=

*=

/=

%=

+=

-=

&=

^=

|=

<<=

>>=
	Assignment operators
	Right to left
	14

	,
	Comma operator
	Left to Right
	15

Input and Output Functions

getchar()
getch()
getche()
gets()

putchar()
puts()

scanf(“control strings”, arg1, arg2, . . . argn),

printf(“control strings”, arg1, arg2, . . . argn) ;

	Format Specifier
	Type of Argument
	Input

	%c
	Character
	Reads a single character

	%d or %i
	Integer
	Reads a decimal integer

	%e or %E or %f or %g or %G
	Floating point
	Reads a floating point value

	%hd or %hi
	Short integer
	Reads decimal short integer

	%hu
	Short integer
	Reads decimal unsigned short integer

	%ld or %li
	Long integer
	Reads decimal long integer

	%le or %lf or %lg
	Double
	Reads signed double

	%Le or %Lf or %Lg
	Long double
	Reads signed long double

	%lo
	Long integer
	Reads an octal long integer

	%lu
	Long integer
	Reads decimal unsigned long integer

	%lx
	Long integer
	Reads hexadecimal long integer

	%o
	Octal integer
	Reads an unsigned octal integer

	%s
	Sequence of characters
	Reads a string

	%u
	Integer
	Reads an unsigned decimal integer

	%x or %X
	Hexadecimal integer
	Reads a unsigned hexadecimal integer

ESCAPE SEQUENCES (BACKSLASH CHARACTER CONSTANTS)

	ASCII Value
	Escape Sequences
	Meaning

	000
	\0
	Null

	007
	\a
	Audible alter (bell)

	008
	\b
	Backspace

	009
	\t
	Horizontal tab

	010
	\n
	New line

	011
	\v
	Vertical tab

	012
	\f
	Form feed

	013
	\r
	Carriage return

	034
	\”
	Double quote

	039
	\’
	Single quote

	063
	\?
	Question mark

	092
	\\
	Backslash

Control Statements
INTRODUCTION

1. Sequential control structure

2. Selective control structure

3. Iterative control structure

Sequential Control Structure

The normal flow of control of all programs is sequential. In sequential structure, a sequence of programs statements are executed one after another in the order in which they are placed. Both selection and repetition statements allows allow the programmer to alter the normal sequential flow of control.

Sequential programming can also be called linear programming. The sequential programs are non-modular in nature. That is, reusability of code is not possible. Thus, they are difficult to maintain and understand. Examples of sequence control structure statements are, the program will have statements that are placed sequentially and there is no decision involved in the process. Also, the program does not require a specific task to be repeated over and over again.

Selective Control Structure (or) Decision Control Structure

The selective structure allows the usual sequential order of execution to be modified. It consists of a test for a condition followed by alternative paths that the program can follow. The program selects one of the alternative paths depending upon the result of the test for condition. Examples of selective control structures statements are :

1. Simple if statement

2. if . . . else statement

3. Nested if . . . else statement

4. else if ladder

5. switch . . . case . . .default statement

Iterative Control Structure (or) Loop Control Structure

The iterative structure provides the ability to go back and repeat a set of statements. Iterative structure is otherwise referred to as repetitive structure. Examples of iterative control structure statements are :

1. while statement

2. do . . . while statement

3. for statement

if STATEMENTS

C allows decisions to be made by evaluating a given expression as true or false. Such an expression involves the relational and logical operators. Depending on the outcome of the decision, program execution proceeds in one direction or another. The C statement that enables these tests to be made is called the if statements.

The if statements may be implemented in different forms depending on the complexity of conditions to be tested. They are :

1. Simple if statement

2. if . . . else statement

3. Nested if . . . else statement

4. else if ladder

Simple if Statement

The simple if statement is used to specify conditional execution of program statement or a group of statements enclosed in braces. The syntax is :

if (test condition)

{

statement-block ;

}

statement-x ;

When an if statement is encountered, test condition is evaluated first and if it is true, the statement-block will be executed. If the test condition is false, the statement-block will be skipped and the execution will jump to the statement-x.

When the test condition is true, both the statement-block and the statement-x are executed in sequence. The test condition is always enclosed within a pair of parenthesis. The statement-block may be a single statement or a group of statements.

The figure below shows the flowchart of simple if statement :

Table below shows the various expressions that are used as conditions inside an if statement :

	Conditional Expression
	Meaning
	For e.g.,

Value of a
	For e.g.,

Value of b
	Result

	a == b
	a is equal to b
	5

5
	5

3
	True

False

	a != b
	a is not equal to b
	5

5
	3

5
	True

False

	a < b
	a is less than b
	3

5
	5

3
	True

False

	a > b
	a is greater than b
	5

3
	3

5
	True

False

	a <= b
	a is less than or equal to b
	3

3

5
	5

3

3
	True

True

False

	a >= b
	a is greater than or equal to b
	5

5

3
	3

5

5
	True

True

False

Two or more conditions may be combined in an if statement using a logical AND operator (&&) or a logical OR operator (||). It can compare any number of variables in a single if statement.
Table below shows the various expressions that are used as conditions inside an if statement :

	Conditional Expression
	Meaning
	For e.g.,

Value of a
	For e.g.,

Value of b
	For e.g.,

Value of c
	Result

	((a>b) && (b>c))
	a is greater than b AND b is greater than c
	30
	20
	10
	True

	
	
	30
	10
	20
	False

	
	
	10
	30
	20
	False

	
	
	10
	20
	30
	False

	((a>b) || (b>c)
	a is greater than b OR b is greater than c
	30
	20
	10
	True

	
	
	30
	10
	20
	True

	
	
	10
	30
	20
	True

	
	
	10
	20
	30
	False

Note : There is only one statement in the if block, the braces are optional. But if there is more than one statement you must use the braces.

if . . . else Statement

Sometimes, we can execute one group of statements if the condition is true and another group of statements if the condition is false, in such a situation, the if . . . else statement can be used.

The if . . . else statement is an extension of simple if statement. The syntax is :

if (test condition)

{

true-block-statement(s) ;

}

else

{

false-block-statement(s) ;

}

statement-x ;

If the test condition is true, then the true-block-statement(s) are executed. If the test condition is false, then the false-block-statement(s) are executed. In either case, either true-block-statement(s) or false-block-statement(s) will be executed, not both.

The figure below shows the flowchart of simple if statement :

To understand this programming construct, let us consider an example of checking whether the person is eligible to vote or not by getting the age of the person. The task include :

· Getting the input (age) from the user.

· Making the decision if the age is greater than or equal to 18, then print the person is eligible to vote.

· Else print the person is not eligible to vote.

Nested if . . . else Statement

We can write an entire if . . . else construct within either the body of an if statement or the body of an else statement. This is called nesting of ifs. The syntax is :

if (test condition 1)

{

if (test condition 2)

{

statement-1 ;

}

else

{

statement-2 ;

}

}

else

{

statement-3 ;

}

statement-x ;

If the test condition 1 is false, the statement-3 will be executed. If the test condition 1 is true, it continues to perform the test condition 2. If the test condition 2 it is true, the statement-1 will be executes. If the test condition 2 is false, the statement-2 will be executed and then the control is transferred to the statement-x.

else if Ladder

Generally, the case where the statements in the if part of an if . . . else statement is another if statement tends to be confusing and best avoided. However an extremely useful construction occurs when the else part of if statement contains another if . . . else statement. This construction is called as an else if ladder or chain. The syntax is :

if (test condition 1)

{

statement-1 ;

}

else if (test condition 2)

{

statement-2 ;

}

.
.
.

.
.
.

.
.
.

else if (test condition n)

{

statement-n ;

}

else

{

default-statement ;

}

statement-x ;

Each condition is evaluated in order and if any condition is true, the corresponding statement is executed and the remainder of the chain is terminated and the control is transferred to the statement-x. The final else statement containing the default statement will be executed if none of the previous n conditions are not satisfied.

switch STATEMENT

The control statement which allows us to make a decision from the number of choices is called a switch, or more correctly a switch . . . case . . . default, since these three keywords go together to make up the control statement.

The switch statement tests the value of a given variable (or expression) against a list of case values and when a match is found, a block of statements associated with the case is executed. The syntax is :

switch (expression)

{

case value-1 :

statement-1 ;

break ;

case value-2 :

statement-2 ;

break ;

.
.
.

.
.
.

.
.
.

default :

default-statement ;

}

statement-x ;

Where the expression is an integer expression or characters. value-1, value-2 are constants or constant expression (valuable to an integral constant) and are known as case labels. Each of these values should be should be unique with a switch statement. statement-1, statement-2 are statement lists and may contain one or more statements. There is no need to put braces around these blocks. The keyword case is followed by an integer or a character constant. Each constant in each case must be different from all others and the case labels end with a colon (:).

When the switch is executed, the value is computed for expression, the list of possible constant expression values determined from all case statements is searched for a match. If a match is found, execution continues after the matching case statement and continues until a break statement is encountered or the end of statement is reached.

The break statement at the end of each block signals the end of a particular case and causes an exit from the switch statement, transferring the control to the statement-x following the switch. The default is an optional case. If a match is not found and the default statement prefix is found within switch, execution continues at this point. Otherwise, switch is skipped entirely and the control goes to the statement-x.

Note : At the end of every case, there should be a break statement. Otherwise, it will result in causing the program execution to continue into the next case whenever case gets executed.

goto STATEMENT

The goto statement is used to alter the normal sequence of program execution by unconditionally transferring control to some part of the program. The syntax is :

goto label :

Where label is an identifier used to label the target statement to which the control would be transferred. Control may be transferred to any other statement within the current function. The target function must be labeled followed by a colon. The syntax is :

label : statement ;

while STATEMENT

The while statement is a general repetition statement that can be used in a number of programming environments. It is an entry controlled loop statement, since the test condition is tested before the start of the loop execution. This loops statement is used when the number of passes are not known in advance. The syntax is :

while(test condition)

{

body of the loop ;

}

statement-x ;

Where the body of the loop may have one or more statements. The braces are need only if the body contains two or more statements. The test condition is evaluated and if the condition is true, then the body of the loop is executed. After execution of the body, the test condition is once again evaluated and if it is true, the body of the loop is executed once again. This process of repeated execution of the body of the loop continues until the test condition becomes false and the control is transferred out of the loop. On exit, the program continues with the statement-x which is immediately after the body of the loop.

Note : The test condition specified in the while loop should eventually become false at one point of the program, otherwise the loop will become an infinite loop.

do . . . while STATEMENT

There is a minor difference between the working of while and do . . . while loops. This difference is the place where the condition is tested. The while test condition before executing any of the statements within the while loop. The do . . . while tests the condition after having executed the statements within the loop. This means that do . . . while would execute its statements at lease once, even if the condition fails for the first time itself. The while, on the other hand will not execute its statement if the condition fails for the first time.

do . . . while is an exit controlled loop statement, since the test condition is performed at the end of the body of the loop and therefore the body of the loop is executed unconditionally for the first time. The syntax is :

do

{

body of the loop ;

} while(test condition) ;

statement-x ;

Where the body of the loop may have one or more statements. On reaching the do statement, the program proceeds to evaluate the body of the loop first. At the end of the loop, the test condition in the while statement is evaluated. If the condition is true, then the program continues to evaluate the body of the loop once again. This process continues as long as the condition is true. When the condition becomes false, the loop will be terminated and the control goes to the statement-x that appears immediately after the while statement.

for STATEMENT

The for loop is another entry controlled loop that provides a more concise loop control structure. The syntax is :

for(exp1 ; exp2 ; exp3)

{

body of the loop ;

}

Before the first iteration, <expr1> is evaluated. This is usually used to initialize variables for the loop that is used to set the loop control variable. The <expr2> is a relational expression that determines when the loop should terminate. After each iteration of the loop, <expr3> is evaluated. This is usually used to increment or decrement the loop counters. The body of the loop is executed repeatedly till the condition in <expr2> is satisfied. The expressions must be separated by a semicolon. All the expressions are optional. If <expr2> is left out, it is assumed to be 1 (i.e. True).

Functions
6.1. INTRODUCTION

A function is a self-contained block of statements that performs a specified task. The specified task is repeated each time that the program calls the function. Functions break large computing tasks into smaller ones. They work together to accomplish the goal of the whole program. Every program must contain one function named main() where the program always begin execution.

C functions can be classified into two categories namely :

1. Library functions

2. User-defined functions

main() is an example of user-defined function. printf() and scanf() are the examples of library functions. Other library functions are sqrt, cos, strcat, etc. The main difference between these categories is that library functions are not required to be written by the user (i.e. they are already defined), whereas a user-defined functions has to be developed by the user at the time of writing a program. However, a user-defined function can later become a part of the C program library.

Some type of operation or calculation is repeated at many times throughout a program. For example, we might use the factorial of a number at several points in the program, in such situations we may repeat the program statements wherever they are needed. Another approach is to design a function that can be called and used whenever required, this saves both time and space.

A function is called by simply using the function name in a statement. Generally a function will process information that is passed to it from the calling part of the program. Information is passed to the function via special identifiers called arguments or parameters and returned via the return statement. The function in which the function call is contained is known as calling function and the function named in the call is said to be the called function.

The following are the advantages of functions :

1. The length of a source program can be reduced using functions at appropriate places.

2. It is easy to locate and isolate a faulty function.

3. A function may be used by many other programs.

6.2. FUNCTION DEFINITION

A function definition introduces a new function by declaring the type of value it returns, its parameters and specifying the statements that are executed when the function is called. The syntax of the function definition is :

return_type function_name(argument_list)

argument_declarations ;

{

local_variable_declarations ;

statement_1 ;

statement_2 ;

.
.
.

.
.
.

.
.
.

statement_n ;

return(expression) ;

}

Where the return_type specifies the data type of the value to be returned by the function. The data type is assumed to be of type int by default if it is not specified.

The function_name is used to identify the function. The rules for naming a function are same as the variable names.

The argument_list and its associated argument_delclarations parts are optional. The argument list contains valid variable names separated by comma and the list must be surrounded by parenthesis. Semicolons are not allowed after the closing parenthesis. The argument variables receive values from the calling function, thus providing a means for data communication from the calling function to the called function. All argument variables must be declared for their types before the opening brace of the function body.

The declaration of local variables is required only when any local variables are used in the function.

A function can have any number of executable statements.

The return statement is the mechanism for returning a value to the calling function. This is also an optional statement. Its absence indicates that no value is being returned to the calling function.

6.3. return STATEMENT

A function may or may not send back any value to the calling function. It is does, it is done through the return statement. The return statement is used to return the information from the function to the calling portion of the program. It also causes the program logically to return to the point from where the function is accesses (called). The return statement can take one of the following syntax :

return ;

or

return() ;

or

return(constant) ;

or

return(variable) ;

or

return(expression) ;

or

return(conditional_expression) ;

The first and second return statement does not return any value. It acts much as the closing brace of the function. When a return is encountered, the control is immediately passed back to the calling function. For example :

if (choice == ‘n’)

return ;

The third return statement returns a constant to the calling function. For example :

if(fact == 0)

return(1) ;

Will returns a constant value when the condition specified inside the if statement is true. The fourth return statement returns a variable to the calling function. For example :

if(a > 17)

return(a) ;

Will returns a variable (which may return any value) to the calling function depending upon the value of the variable a. The fifth return statement returns a value depending upon the result of the expression specified inside the parenthesis. For example :

return(b*b*-4*a*c)

Will returns a value depending upon the values of a, b and c. The last return statement returns a value depending upon the result of the conditional expression specified inside the parenthesis. For example :

return(a>b?a:b) ;

Will returns a value depending upon the values of a and b.

The following are the important points to be noted while using return statement :

1. The limitation of a return statement is that of can return only one value from the called function to the calling function at a time.

2. The return statement need not always be present at the end of the called function.

3. Number of return statements used in a function are not restricted, since the first return statement will return the value from the called function to the calling function.

4. If the called function does not return any value, then the keyword void must be used as a data type specifier.

5. Parenthesis used around the expression in a return statement is optional.

6.4. TYPES OF FUNCTION

A function, depending upon whether the arguments are present or not and whether a value is returned or not, may be classified as :

1. Function with no arguments and no return values

2. Function with arguments but no return values

3. Function with arguments and return values

6.4.1. Function With No Arguments and No Return Values

When a function has no arguments, it does not receive any data from the calling function. Similarly, when a function has no return values, the calling function does not receive any data from the called function. Hence there is no data transfer between the calling function and the called function. The dotted lines in the Fig below indicate that there is only a transfer of control but not data.

No input

No data

6.4.2. Function With Arguments But No Return Values

When a function has argument, it receives data from the calling function. The main() function will not have any control over the way the functions receive input data. We can also make calling function to read data from the input terminal and pass it to the called function.

The nature of data communication between the calling function and the called function with arguments but no return values is in Fig below.

Values of

arguments

No return value

6.4.3. Function With Arguments and Return Values

When a function has arguments and return values, it receives data from the calling function and does some process and then returns the result to the called function. In this way, the main() function will have control over the function. This approach seems better because the calling function can check the validity of data before it passed to the calling function and to check the validity of the result before it is sent to the standard output device (i.e. screen). When a function is called, a copy of the values of actual arguments is passed to the called function.

Fig below illustrates the use of two-way data communication between the calling and called functions.

Values of

arguments

Function result

6.5. FUNCTION PROTOTYPES

Any C function returns n integer value by default. Whenever a call is made to a function, the compiler assumes that this function would return a value of type int. If we desire that a function should return a value other than an int, then it is necessary to mention the calling function in the called function, which is called as the function prototype.

Function prototype are usually written at the beginning of the program explicitly before all user defined functions including the main() function. The syntax is :

return_type function_name(dt1 arg1, dt2 arg2, . . . dtn argn) ;

Where return_type represents the data type of the value that is returned by the function and dt1, dt2, . . . dtn represents the data type of the arguments arg1, arg2, . . . argn. The data types of the actual arguments must confirm to the data types of the arguments with the prototype. For example :

lonf fact(long num) ;

Here fact is the name of the function, long before the function name fact indicates that the function returns a value of type long. num inside the parenthesis is the parameter passed to the called function. long before the num indicates that it is of type long.

6.6. RECURSION

In C it is possible for the functions to cal itself. Recursion is a process by which a function calls itself repeatedly until some specified condition has been satisfied. A function is called recursive if a statement within the body of a function calls the same function, sometimes called circular definition. Recursion is the process of defining something in terms of itself.

When a recursive program is executed the recursive function calls are not executed immediately, they are placed on a Stack (Last In First Out) until the condition that terminates the recursive function. The function calls are then executed in reverse order as they are popped off the stack. Recursive functions can be effectively used in applications in which the solution to a problem can be expressed in terms of successively applying the same solution to the subsets of the problem.

POINTERS
INTRODUCTION

Pointer is a variable that holds a memory address, usually the location of another variable in memory. The pointers are one of C’s most useful and strongest features. Let i be an ordinary variable that stores the value of an integer. If p is another variable used to store the address of variable i, then p is called a pointer variable, pointing to i. A pointer must be preceded by an asterisk (*), while defining it, so that it is distinct from other variables. The definition of a pointer variable must also specify the type of data stored in the target variable pointed to it. In our example, the target variable is i, is holding integer type data, and hence, the pointer variable p must be defined as of the type int.

Here, i is the name of a variable that stores the value 10 and is stored in memory in the address, say 1234. This could be represented as follows :

	1234
	(Address of the variable i
	

	10
	(Value of the variable i
	

Now consider another variable, p, which holds the address of the variable i. Then p is said to be a pointer pointing to i. This again, could be graphically represented as :

	1234
	-----------(
	10
	

	p
	
	I
	

ADVANTAGES OF USING POINTERS

There are number of advantages of using pointers. They are :

1. Pointers increase the speed of execution of a program.

2. Pointers reduce the length and complexity of a program.

3. Pointers are more efficient in handling the data tables.

4. A pointer enables us to access a variable that is defined outside the function.

5. The use of a pointer array to character strings results in saving of data storage space in memory.

DECLARING POINTERS

Like all variables, a pointer variable should also be declared. The syntax is :

data_type *ptr_variable ;

Where data_type is the type of the pointer variable (ptr_variable) which may of any valid type. * is called as the indirection operator also referred to as the de-referencing operator, which states that the variable is not an ordinary variable but a pointer variable. The ptr_variable is the name of the pointer variable. The rules for naming pointer variables are same as ordinary variables.

For example :

int *ptr ;

Will declare the variable ptr as a pointer variable that points to an integer data type.

INITIALIZING POINTERS

It is always good practice to initialize pointers as soon as it is declared. Since a pointer is just an address, if it is not initialized, it may randomly point to some location in memory. The ampersand (&) symbol, also called address operator, is applied to a variable to refer the address of that variable. Initializing pointers can be made to point to a variable using an assignment statement. The syntax is :

ptr_variable = &variable ;

Here, the address of the variable is assigned to ptr_variable as its value. For example :

ptr = &price ;

Will cause ptr to point to price i.e., ptr now contain the address of price. A pointer variable can be initialized in its declaration itself. For example :

int price, *ptr = &price ;

Is also valid.

ACCESSING A VARIABLE THROUGH ITS POINTER

Accessing the value of the variable using pointer is done by using unary operator * (asterisk), usually known as indirection operator. Consider the following statements :

int price, *ptr, n ;

price = 100 ;

ptr = &price ;

n = *ptr ;

The first line declares the price and n as integer variables and ptr as a pointer variable pointing to an integer. The second line assigns the value 100 to price and third line assigns the address of price to the pointer variable ptr. The fourth line contains the indirection operator *. When the operator * is placed before a pointer variable in an expression (on the right hand side of the equal sign), the pointer returns the value of the variable of which the pointer value is the address.

In this case, *ptr returns the value of the variable price, because ptr is the address of price. The * can be remembered as value at address. Thus the value of n would be 100.

Files:

C supports a number of functions that have the ability to perform basic file operations, which include:

1. Naming a file

2. Opening a file

3. Reading from a file

4. Writing data into a file

5. Closing a file

Real life situations involve large volume of data and in such cases, the console oriented I/O operations pose two major problems

It becomes cumbersome and time consuming to handle large volumes of data through terminals.

The entire data is lost when either the program is terminated or computer is turned off therefore it is necessary to have more flexible approach where data can be stored on the disks and read whenever necessary, without destroying the data. This method employs the concept of files to store data.

File operation functions in C:

Function Name

 Operation

fopen()

 Creates a new file for use

Opens a new existing file for use

fclose

 Closes a file which has been opened for use

getc()

 Reads a character from a file

putc()

 Writes a character to a file

fprintf()

 Writes a set of data values to a file

fscanf()

 Reads a set of data values from a file

getw()

 Reads a integer from a file

putw()

 Writes an integer to the file

fseek()

 Sets the position to a desired point in the file

ftell()

 Gives the current position in the file

rewind()

 Sets the position to the begining of the file

Defining and opening a file:

If we want to store data in a file into the secondary memory, we must specify certain things about the file to the operating system. They include the fielname, data structure, purpose.

The general format of the function used for opening a file is

FILE *fp;

fp=fopen(“filename”,”mode”);

The first statement declares the variable fp as a pointer to the data type FILE. As stated earlier, File is a structure that is defined in the I/O Library. The second statement opens the file named filename and assigns an identifier to the FILE type pointer fp. This pointer, which contains all the information about the file, is subsequently used as a communication link between the system and the program.

The second statement also specifies the purpose of opening the file. The mode does this job.

R open the file for read only.

W open the file for writing only.

A open the file for appending data to it.

Consider the following statements:

FILE *p1, *p2;

p1=fopen(“data”,”r”);

p2=fopen(“results”,”w”);

In these statements the p1 and p2 are created and assigned to open the files data and results respectively the file data is opened for reading and result is opened for writing. In case the results file already exists, its contents are deleted and the files are opened as a new file. If data file does not exist error will occur.

Closing a file:

The input output library supports the function to close a file; it is in the following format.

fclose(file_pointer);

A file must be closed as soon as all operations on it have been completed. This would close the file associated with the file pointer.

Observe the following program.

….

FILE *p1 *p2;

p1=fopen (“Input”,”w”);

p2=fopen (“Output”,”r”);

….

…

fclose(p1);

fclose(p2)

The above program opens two files and closes them after all operations on them are completed, once a file is closed its file pointer can be reversed on other file.

The getc and putc functions are analogous to getchar and putchar functions and handle one character at a time. The putc function writes the character contained in character variable c to the file associated with the pointer fp1. ex putc(c,fp1); similarly getc function is used to read a character from a file that has been open in read mode. c=getc(fp2).

The program shown below displays use of a file operations. The data enter through the keyboard and the program writes it. Character by character, to the file input. The end of the data is indicated by entering an EOF character, which is control-z. the file input is closed at this signal.

#include< stdio.h >

main()

{

file *f1;

printf(“Data input output”);

f1=fopen(“Input”,”w”); /*Open the file Input*/

while((c=getchar())!=EOF) /*get a character from key board*/

putc(c,f1); /*write a character to input*/

fclose(f1); /*close the file input*/

printf(“\nData output\n”);

f1=fopen(“INPUT”,”r”); /*Reopen the file input*/

while((c=getc(f1))!=EOF)

printf(“%c”,c);

fclose(f1);

}

The getw and putw functions:

These are integer-oriented functions. They are similar to get c and putc functions and are used to read and write integer values. These functions would be usefull when we deal with only integer data. The general forms of getw and putw are:

putw(integer,fp);

getw(fp);

/*Example program for using getw and putw functions*/

#include< stdio.h >

main()

{

FILE *f1,*f2,*f3;

int number I;

printf(“Contents of the data file\n\n”);

f1=fopen(“DATA”,”W”);

for(I=1;I< 30;I++)

{

scanf(“%d”,&number);

if(number==-1)

break;

putw(number,f1);

}

fclose(f1);

f1=fopen(“DATA”,”r”);

f2=fopen(“ODD”,”w”);

f3=fopen(“EVEN”,”w”);

while((number=getw(f1))!=EOF)/* Read from data file*/

{

if(number%2==0)

putw(number,f3);/*Write to even file*/

else

putw(number,f2);/*write to odd file*/

}

fclose(f1);

fclose(f2);

fclose(f3);

f2=fopen(“ODD”,”r”);

f3=fopen(“EVEN”,”r”);

printf(“\n\nContents of the odd file\n\n”);

while(number=getw(f2))!=EOF)

printf(“%d%d”,number);

printf(“\n\nContents of the even file”);

while(number=getw(f3))!=EOF)

printf(“%d”,number);

fclose(f2);

fclose(f3);

}

The fprintf & fscanf functions:

The fprintf and scanf functions are identical to printf and scanf functions except that they work on files. The first argument of theses functions is a file pointer which specifies the file to be used. The general form of fprintf is

fprintf(fp,”control string”, list);

Where fp id a file pointer associated with a file that has been opened for writing. The control string is file output specifications list may include variable, constant and string.

fprintf(f1,%s%d%f”,name,age,7.5);

Here name is an array variable of type char and age is an int variable

The general format of fscanf is

fscanf(fp,”controlstring”,list);

This statement would cause the reading of items in the control string.

Example:

fscanf(f2,”5s%d”,item,&quantity”);

Like scanf, fscanf also returns the number of items that are successfully read.

/*Program to handle mixed data types*/

#include< stdio.h >

main()

{

FILE *fp;

int num,qty,I;

float price,value;

char item[10],filename[10];

printf(“Input filename”);

scanf(“%s”,filename);

fp=fopen(filename,”w”);

printf(“Input inventory data\n\n”0;

printf(“Item namem number price quantity\n”);

for I=1;I< =3;I++)

{

fscanf(stdin,”%s%d%f%d”,item,&number,&price,&quality);

fprintf(fp,”%s%d%f%d”,itemnumber,price,quality);

}

fclose (fp);

fprintf(stdout,”\n\n”);

fp=fopen(filename,”r”);

printf(“Item name number price quantity value”);

for(I=1;I< =3;I++)

{

fscanf(fp,”%s%d%f%d”,item,&number,&prince,&quality);

value=price*quantity”);

fprintf(“stdout,”%s%d%f%d%d\n”,item,number,price,quantity,value);

}

fclose(fp);

}

Random access to files:

Sometimes it is required to access only a particular part of the and not the complete file. This can be accomplished by using the following function:

1 > fseek

fseek function:

The general format of fseek function is a s follows:

Constants

Numeric constant

Character constant

String constant

Single character constant

Real constant

Integer constant

function1()

{

	.	.	.

	.	.	.	�	.	.	.

	function2() ;

	.	.	.	

	.	.	.

	.	.	.

}

function2()

{

	.	.	.

	.	.	.	�	.	.	.

	.	.	.

	.	.	.	�	.	.	.

}

function1()

{

	.	.	.

	.	.	.	�	.	.	.

	function2(a) ;

	.	.	.	

	.	.	.

	.	.	.

}

function2(v)

.	.	.

{

	.	.	.

	.	.	.	�	.	.	.

	.	.	.

	.	.	.	�	.	.	.

}

function1()

{

	.	.	.

	.	.	.	�	.	.	.

	function2(a) ;

	.	.	.	

	.	.	.

	.	.	.

}

function2(v)

.	.	.

{

	.	.	.

	.	.	.	�	.	.	.

	.	.	.

	.	.	.	�	return(z) ;

}

