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Course Structure

This course will be conducted in Flipped Classroom Mode.

Every Friday evening, 3 to 7 videos of total duration 60
minutes will be released.

The venue and timings of Flipped classrooms: W/Th
09:00-9:50 L7

The timing of tutorial is M 09:00-9:50.

e R. Churchill and J. Brown, Complex variables and applications.
Fourth edition. McGraw-Hill Book Co., New York, 1984. - an
elementary text suitable for a one semester; emphasis on
applications.

e E. Stein and R. Shakarchi, Complex Analysis, Princeton
University Press, 2006.- Modern treatment of the subject, but
recommended for second reading.

e Lecture notes and assignments by P. Shunmugaraj, (strongly
recommended for students), http://home.iitk.ac.in/ psraj/

e Please feel free to contact me through chavaneiitk.ac.in



Syllabus

e Complex Numbers, Complex Differentiation and C-R
Equations,

e Analytic Functions, Power Series and Derivative of Power
Series,

e Complex Exponential, Complex Logarithm and Trigonometric
Functions,

e Complex Integration, Cauchy’s Theorem and Cauchy's
Integral Formulas,

e Taylor series, Laurent series and Cauchy residue theorem,

e Mobius Transformation.



Complex Numbers

real line: R, real plane: R?

A complex number : z = x + iy, where x,y € R and i is an
imaginary number that satisfies i2 + 1 = 0.

complex plane: C
e Re : C — R by Re(z) = real part of z = x
e Re(z+w)=Rez+Rew, Re(aw) =aRew ifaeR

Remark Same observation holds for Im : C — R defined by
Im (z) = imaginary part of z=y.



Definition

A map f from C is R-linear if f(z 4+ w) = f(z) + f(w) and
f(az)=af(z)forall zyw € C and a € R.

Example

e Re and Im are R-linear maps.
e id(z) =z and ¢(z) = Re(z) — iIm(z) are R-linear maps.
e H:C — R? defined by H(z) = (Re(z),Im(z)) is R-linear.

Remark H is an R-linear bijection from the real vector space C
onto R?.



C (over R) and R? are same as vector spaces. But complex
multiplication makes C different from R?:

zw:=(RezRew —ImzImw)+i(Rez Imw + Imw Rew).

In particular, any non-zero complex number z has a inverse:

1z

T RE
where

e z=Re(z)—ilm(2)

e |z| = /Re(2)2 +Im(z)2




Polar Decomposition

Any non-zero complex number z can be written in the polar form:
iargz
b

zZ=re

where r > 0 and argz € R. Note that
e ris unique. Indeed, r = |z|.

e arg z is any real number satisfying

‘—Z’ = cos(arg z) + isin(arg z).
zZ

e argz is unique up to a multiple of 27.



For 6 € [0,27), define rotation ry : C — C by angle 6 as
rg(z) = e z.
For t € (0,00), define dilation d; : C — C of magnitude ¢ as

de(z) =tz.

Example
For a non-zero w, define my, : C — C by m,,(z) = wz. Then

My = dy| © fargw-



Convergence in C

Definition
Let {z,} be a sequence of complex numbers. Then

e {z,} is a Cauchy sequence if |z, — z,| — 0 as m,n — co.

e {z,} is a convergent sequence if |z, — z| — 0 for some z € C.

Theorem (C is complete)
Every Cauchy sequence in C is convergent.

Proof.

e |z, — z5| — 0iff [Re(zm — 2z5)| — 0 and |Im (z, — z,)| — 0.

e But Re and Im are R-linear. Hence {z,} is Cauchy iff
{Re(z,)} and {Im(z,)} are Cauchy sequences.

e However, any Cauchy sequence in R is convergent.



Continuity

Definition
A function f defined on C is continuous at a if

z, = a= f(z,) — f(a).
f is continuous if it is continuous at every point.

Example
e H(z) = (Re(z),Im(z)).
e my,(z)=wz.

e p(z)=ap+aiz+---+anz".
o f(z)=|z|.



Complex Differentiability

ForacCandr>0,letD,(a)={z€C:|z—a| <r}.

Definition
A function f : D,(a) — C is complex differentiable at a if

i flath) —(a)
hinO

= f'(a) for some f'(a) € C.
f is holomorphic if it is complex differentiable at every point.

Remark
im f(a+ h) — f(a) — Ds(h)

h—0 h
where D, : C — C is given by D,(h) = f'(a) h.

=0,

Theorem
Every holomorphic function is continuous.



Example

f(z) = z" is holomorphic. Indeed, f'(a) = na"~*:

(a+ h)"—a"

h = (3—|— h)n_l + (a + h)”_2a 4t a”—l s nan—l‘

More generally, f(z) = ap + a1z + --- + a,z" is holomorphic.

Example
f(z) = 2 is not complex differentiable at 0. Indeed, # — +1 along

real axis and 7 — —1 along imaginary axis.

Example
For b,d € C, define f(z) = jig. Then f is complex differentiable
atany a€ C\ {—d}.




Cauchy-Riemann Equations

Write f : C — C as f = u + i v for real valued functions u and v.
Assume that the partial derivatives of v and v exists. Consider

a) = ux(a)  uy(a) acobian matrix
Jnla) = 42 3] tacobian matei)

Recall that H(z) = (Re(z),Im(z)). Treating (Re(z),Im(z)) as a
column vector, define R-linear map F; : C — C by

F.(z) = H o Juv(a)o H(z)

= (ux(a)Re(z) + uy(a)lm(z)) + i(vx(a)Re (z) + vy (a)Im (2)).

Question When F,(a z) = aF,(z) for every o € C (or, when F; is
C-linear) ?



Suppose that F;(i z) = iF,(z). Letting z =1, we obtain
Fa(i) = uy(a) + ivy(a), iFs(1) = —vx(a) + iux(a).

Thus we obtain uy = v, and u, = —v, (C-R Equations).

Interpretation Let V u = (uy, uy) and Vv = (v, v). If f
satisfies C-R equations then Vu - Vv = 0. The level curves u = ¢
and v = ¢ are orthogonal, where they intersect.

e f(z) =z then u=x= ¢ and v =y = ¢, (pair of lines).
o If f(z) = 2z then u = x? — y?> = ¢; and v = 2xy = ¢, (pair of
hyperbolas).



Suppose f : C — C is complex differentiable at a. Note that

Fa(h) = (ux(a) + ivi(a)) h1 + (uy(a) + ivy(a))ho.

However,
. fla+ h1) —f(a) — (ux(a) + ivx(a)) m
lim =0,
h1—>0 hl
. f(a+im)—f(a) — (uy(a) + ivy(a)) ha
lim - =0.
h,—0 Ih2

uy(a)fivy(a)

- , and

By uniqueness of limit, uy(a) + ivy(a) = f'(a) =
Fa(h) = f'(a)h,

and hence F; is C-linear. We have thus proved that the C-R
equations are equivalent to C-linearity of F,!



Theorem (Cauchy-Riemann Equations)

If f = u+4iv and u,v have continuous partial derivatives then f is
complex differentiable if and only if f satisfies C-R equations.

Corollary
If f = u+iv is complex differentiable at a, then

f'(a)|? = det J,.,(a).
In particular, f : C — C is constant if f' = 0.

Proof.
We already noted that f'(a) = ux(a) + ivx(a), and hence
|f"(a)|? = ux(a)? + vx(a)?. However, by the C-R equations,

Sonle) = [42) ],

vi(a)  ux(a).

so that det J,, v (a) = ux(a)? + v (a)? = |f'(a)|>. O



Range of a Holomorphic Function

e Suppose f : C — C be a holomorphic function with range
contained in the real axis. Then f = u+ iv with v =0. By
C-R equations,

ux =20, u, =0.

Hence u is constant, and hence so is f.

e Suppose f : C — C be a holomorphic function with range
contained in a line. Note that for some # € R and ¢ > 0, the
range of g(z) = ef(z) + c is contained in the real axis. By
last case, g, and hence f is constant.

We will see later that the range of any non-constant holomorphic
function f : C — C intersects every disc in the complex plane!



Power Series

Definition
A power series is an expansion of the form

[o¢]
g anz", where a, € C.
n=0

> 2o anz" converges absolutely if Y 0° o |an|[z|" < oo.

Definition (Domain of Convergence)
D:={weC:> 7 lan||w|" < oo}
Note that
e wo € D= e%wy € D for any 6 € R.
e wp € D= w e D for any w € C with |w| < |wp|.
Conclude that D is either C, Dg(0) or Dg(0) for some R > 0.



Radius of Convergence

Definition
The radius of convergence (for short, RoC) of > 7° ; a,z" is
defined as
[e.e]
R :=sup{|z| : Z lan||z|" < o0}
n=0

Theorem (Hadamard's Formula)
The RoC of %1y anz" is given by

_ 1
~ limsup|ap|1/n’

where we use the convention that 1/0 = oo and 1/00 = 0.



° Zﬁzoanz”, ap=0for n>k, R=o0.
° 220:0%- an:%' R = oo.
e > oz an=1 R=1.
o > onlz" a,=nl, R=0.
The coefficients of a power series may not be given by a single

formula.

Example

Consider the power series > z"™ . Then
ax = 1 if k = n?, and 0 otherwise.

Clearly, limsup |a,|*/" = 1, and hence R = 1.



Theorem
If the RoC of ZZO:O anz™ is R then the RoC of the power series
> o0 1 nanz" 1 s also R.

Proof.

: : 1/n _ _ 1 _ 1
Since limp—o0 1 =1L R= limsup |na,|/" ~ limsup|an|t/""

Example

Consider the power series Ziozo anz", where a, is number of
divisors of n'111 Note that

1< a, < ntll,

Note that 1 < limsup |a,|*" < limsup(n**11)Y/" = 1, and hence
the RoC of > 7° ) a,z" equals 1.



Power series as Holomorphic function

Theorem

Let > 7 anz" be a power series with RoC equal to R > 0. Define
f:Dr — C by f(z) =3 72 anz". Then f is holomorphic with
f'(z) = g(z) = 3.0%, na,z" L.

e For zy, find h € C, r > 0 with max{|z|, |z + h|} < r < R.
* Su(z) = Zﬁ:o anz", Ex(z) = Z‘Zim anz".
o Hath=l) _ g(2) = A+ (Sj(20) — g(20)) + B, where

A= <5k(20 + h/), — Sk(ZO)_SI/((ZO)>’ B (Ek(ZO + hz — Ek(z0)>'

(Zo+h ‘

CIBI< Y o S Janlnr

n=k+1 n=k+1



Corollary

A power series is infinitely complex differentiable in the disc of
convergence.

Let U be a subset of C. We say that U is open if for every zy € U,
there exists r > 0 such that D,(z) C U.

Definition

Let U C be open. A function f : U — C is said to be analytic

at zg if there exists a power series > " ; an(z — z9)" with positive
radius of convergence such that

[e.e]
Zan z — z9)" for all z € D,(zp)
n=0

for some r > 0. A function f is analytic if it is analytic at zy € U.



Example (Analyticity of Polynomials and Linear Equations)

Any polynomial p(z) = ¢p + c1z+ - + c,z" is analytic in C. To
see this, fix zzp € C. We show that there exist unique scalars

p(z) =ao+ ai(z — z0) + -+ - + an(z — z0)" for every z € C.

ag, - - ,an such that
Comparing coefficients of 1,z,--- , z
(1 —=z zg i
0 1 —220
0 O 1 -3z
0 0 1

—1 on both sides, we get

ao
ai

dn—1
an

Alternatively, the solution is given by ay =

M(kzo...

o
o]

k!



Exponential Function

Appeared €287 in the polar decomposition of z.

Definition
The exponential function e is the power series given by

e? =3"2,% (z€C).

n=0 n!

Since the radius of convergence of e” is co, exponential is
holomorphic everywhere in C. Further,

(ez)'=§:1 _ Z(n_l e

Thus e is a solution of the differential equation f' = f. Moreover,
e” is the only solution of the IVP: ' =f, f(0) =



Certainly, e* is not surjective as forno z € C, e =0. If w #0
then by polar decomposition, w = |w|e'28"Y (0 < argw < 27).
Also, since |w| = e'°81"I  we obtain

W — e.Iog |w|+iarg w

Thus the range of e is the punctured complex plane C\ {0}.
Further, since arg z is unique up to a multiple of 27, e* is one-one
in{zeC:0<argz < 2r}, but not in C.

Theorem (Polynomials Vs Exponential)

If p is a polynomial then lim |p(z)| = co. However,
Z|—00

lim |e*| # oo.
|z|—o0



Parametrized curves

e A parametrized curve is a function z : [a, b] — C. We also say
that ~ is a curve with parametrization z.

e A parametrized curve z is smooth if Z/(t) exists and is
continuous on [a, b], and Z'(t) # 0 for t € [a, b].

e A parametrized curve z is piecewise smooth if z is continuous
on [a, b] and z is smooth on every [ak, ax+1] for some points
p=a<a<---<ap,=b

e A parametrized curve z is closed if z(a) = z(b).
Example
o z(t) =z + re (0 < t < 2m) (+ve orientation).
z(t) =zp+ re™" (0 < t < 27) (—ve orientation).
e Rectangle with vertices R, R + izg, —R + izg, —R with +ve

orientation is a parametrized curve, which is piecewise smooth
but not smooth.



Integration along curves

Definition
Given a smooth curve « parametrized by z : [a,b] — C, and f a
continuous function on ~, define the integral of f along ~ by

L f(z)dz = / i F(z(1))Z (t)dt.

Remark. If there is another parametrization Z(s) = z(t(s)) for
some continuously differentiable bijection t : [a, b] — [c, d] then,

[P £(2(8)2 (t)dt = [? F(2(s5))Z(s)ds.

Definition
In case v is piecewise smooth, the integral of f along ~ is given by

n—1 a1
/f(z)dz = Z/ f(z(t))Z'(t)dt.
v k=0 " 2




Example
Let v be the circle |z] = 1, f(z) = z" for an integer n. Note that

27 . . 2 .
/f(z)dz:/ f(e’t)(e’t)’dt:/ e ie' dt.
0 0 0

ei(nt1)t

o1 7& 1 f,y f(Z)dZ _ 027r d ei(n+1)tdt =

dt n+1

=0.
0
o n=-1 [ f(z)dz = 027ridt:27ri.

Theorem (Cauchy’s Theorem for Polynomials)
Let ~y be the circle |z — zy| = R and let p be a polynomial. Then

Amawzo



Properties of Integrals over curves

Let v C U with parametrization z and f : U — C be continuous.
. fw(af( + Bg(2)) z—af f(z dz—i—ﬁfwg(z)dz

o If v~ (with parametrization z7(t) = z(b+ a — t)) is v with
reverse orientation, then

[y f(z)dz = —/vf(z)dz.

o If length(v) := [ |2/(t)|dt then

/7 f(z)dz

<sup|f(z)| - length(7).
zey




Theorem (Integral independent of curve)

Let f : U — C be a continuous function such that f = F' for a
holomorphic function F : U — C. Let v be a piecewise smooth
parametrized curve in U such that v(a) = wy and y(b) = wy. Then

/ f(z)dz = F(w2) — F(wy).

In particular, if v is closed then f7 f(z)dz =0.
Proof.

We prove the result for smooth curves only. Note that

b b
/ f(z)dz = / F(2(£))Z (£)dt = / F(2(£)7 (£)dt

a

b
= [ 8 Pt = Fo) - Flet) = Fl) — Fl).

If v is closed then wi = w», and hence [ f(z)dz = 0. O



Corollary

Let U be an open convex subset of C. Let f: U — C be a
holomorphic function. If f' =0 then f is a constant function.

Proof.
Let wp € U. We must check that f(w) = f(wp) for any w € U.
Let v be a straight line connecting wy and w. By the last theorem,

0= / f'(z)dz = f(w) — (o),

and hence f is a constant function. O

Example
There is no holomorphic function F : C\ {0} — C such that

F'(z) = % for every z € C\ {0}.

Can not define logarithm as a holomorphic function on C \ {0}!



Logarithm as a Holomorphic Function

Define the logarithm function by

log(z) = log(r) + i if z = rexp(if), 0 € (0,27).

Then log is holomorphic in the region r > 0 and 0 < 0 < 2.

Problem (Cauchy-Riemann Equations in Polar Co-ordinates)

The C-R equations are equivalent to % = %%, %% = —%.
Hint. Treat u, v as functions in r and 6, and apply Chain Rule.
Some Properties of Logarithm.

o elogz — elog(|z\)+iargz — |Z|eiargz — 7

e |log z can be defined in the region r > 0 and 0 < 6 < 27. But
it is not continuous on the positive real axis.



Goursat's Theorem (Without Proof)

Theorem

If U is an open set and T is a triangle with interior contained in U
then [ f + f(z)dz = 0 whenever f is holomorphic in U.

Corollary

If U is an open set and R is a rectangle with interior contained in
U then [, f R dz = 0 whenever f is holomorphic in U.

Proof.

Eq,---, E4: sides of R, D: diagonal of R with +ve orientation, D™:
diagonal with —ve orientation. Since [, f(z)dz = — [, f(z)dz

Jrf(2)dz = fE ug F(2)dz + [g, g, f(2)dz

- <fE UE> dz+fD f(2) dz) + <IE3UE4 f(2)dz+ ]o- f(z)dz):
fT dz+fT )dz = 0. O



An Application I: e ™ is its own “Fourier transform”

Consider the function f(z) = e~™". For a fixed xo € R, let
denote the rectagular curve with parametrization z(t) given by

z(t)=tfor —R<t<R, z(t)=R+itfor0<t< xp,
z(t) = —t+ixofor —-R <t <R, z(t)=—R—itfor —xo <t <0.

Let 71, -+ ,74 denote sides of . Note that
N e " dz = Sy f%‘ e ™2 dz. Further, as R — oo, we obtain

o [, f(z)dz = fRR e ™dt - 1.
o | fw f(z)dz| < —m(R2=t%) gt — —R? fOXO e dt — 0.
° f f(Z dZ — _f—R effr(tzfxg+2itxo)dt N
_’YZTI'XS foo ef7rt2672itX0dt_
o | [, f(2)dz < [0 e ™R =Dt = e R [© emdt — 0.

As a consequence of Goursat's Theorem, we see that

2 2 o 2
[, e ™ dz =0, and hence [*_ e e 20t = "™,
Y — 0o



Application Il: Existence of a Primitive in disc

Theorem

Let D denote the unit disc centered at 0 and let f : D — C be a
holomorphic function. Then there exists a holomorphic function
F :D — C such that F' = f.

Proof.
For z € D, define F(z) = [ f(w)dw + [ f(w)dw, where

71(t) =tRe(z) (0< t < 1), 12(t) =Re(2)+itIm(z) (0 < t < 1).

Claim: F’(z) = f(z). Indeed, for h 6 C such that z+ h € D, by
Goursat's Theorem, F(z + h) — f f(w)dw, where

(t) = (1 1)z + t(z+h) (0< t<1).

However, since f is (uniformly) continuous on -3,
1 1
i Ly Fw)dw = ¢ [5 f(a(t)a(t)dt = [y F(rs(t)dt — f(2). O



Cauchy’s Theorem for a disc

Theorem
If f is a holomorphic function in a disc, then

/ f(z)dz =0

for any piecewise smooth, closed curve v in that disc.

Corollary
If f is a holomorphic function in an open set containing some circle
C, then
/ f(z)dz =0.
c
Proof.

Let D be a disc containing the disc with boundary C. Now apply
Cauchy's Theorem. O



An Example

Consider f(z) = L—¢" Then f is holomorphic on C \ {0}. Consider

z2

the indented semicircle v (with 0 < r < R) given by

a(t) =t (~R<t< —r), z(t) =re” (=7 < t <0),

z(t) =t (r<t<R), z(t) = Re" (0 < t < 7).

Since z1(—R) = —R = z4(7), 7y is closed. By Cauchy's Theorem,

—r1_eft 0 1_ eizz(t) .
——dt — ——(—ire”"")dt
[ [t

R 1 _ it T 1 _ aiza(t) .
l1—e 1— e
—dt = (iRe)dt = 0.
+/r t2 +/o z(t)? (iRe") 0

Since |f(x + iy)| < 18~ < 2, the 4th integral — 0 as R — oo.

lz2 =zl



Thus we obtain

—rq_ it 0 1 _ aiza(t) . 1 _ gt
- dt (—ire”™)dt dt = 0.
/ = _|_/ (1) (—ire™") +/r o)

—00 ™

Next, note that 1:{3? = E(2(t)) — izzz(zt), where E(z) = H';i{elz

is a bounded function near 0. It follows that

0 1— eiZQ(t) " 0
/ ———y—(—ire™")dt — — dt =—masr—0.
- 22(t) -

This yields the following:

0 it 00 it
1—¢ 1-—
/ 2e dt + / 2e dt = .
t t
—00 0

Taking real parts, we obtain

/°° 1 — cos(x) dx
————dx =m.

x2

—00



Cauchy Integral Formula |

The values of f at boundary determine its values in the interior!

Theorem

Let U be an set containing the disc Dg(z) centred at zy and
suppose f is holomorphic in U. If C denotes the circle

{z € C: |z — z| = R} of positive orientation, then

f(z) = i /C LW)dw for any z € Dg(z).

27 w—Zz

Example

.fl Wde:f IS prypppes

w—il=1 v;2+1 |w—i]=1 w—i
sin(w)
[ ] 7dw e
/|w—7r/2|—7r W(W - 7T/2)
5 : .
(/ sin(w) dw/ sm(w)dw) _ 4
T\ Jjw—r/2]=r W —7/2 lw—r/2l=n W




An Application: Fundamental Theorem of Algebra

Corollary
Any non-constant polynomial p has a zero in C.

Anton R. Schep, Amer. Math. Monthly, 2009 January.

If possible, suppose that p has no zeros, that is, p(z) # 0 for every
z € C. Let f(2) L and zp =0 in CIF:

~ ()
o L _ 1 1/p(w)
p(0) 2ri Jlw|=R w
1/ dw < ma 1 ’ 1
o | — < X = — .
210 Jjwj=r wp(w)| ~ [wi=R|p(w)|  min, =g [p(W)|

. |m£1R|P(W)\ < [p(0)I.

o [p(2)] = |2]"(1 = [an-1l/|2] = -+ = |ao| /|2"]).
i . e
*gm mI:anp(W)l 00

This is not possible! O



Proof of CIF |

Want to prove: If f: U — C is holomorphic and Dg(z) C U,

1 f
f(z) = 27“/C (w) dw for any z € Dg(zp).

w—2Zz

For 0 < r,0 < R, consider the “keyhole” contour v, s with
e a big ‘almost’ circle |w — zy| = R of positive orientation,
e a small ‘almost’ circle |w — z| = r of negative orientation,
e a corridor of width § with two sides of opposite orientation.

% is holomorphic in the “interior” of «y, 5. By Cauchy's Theorem,

f
/ (w) dw = 0.
Yr,§ w-—2

Vr,s has three parts: big circle C, small circle C;, and corridor.




e As § — 0, integrals over sides of corridor get cancel.
e Note that

/f(W)_f(z)der/ f(z)dw:/ ) 4,
. w—z cw—z cw—2z

As r — 0, 1% integral tends to 0 (since integrand is bounded
near z), while 2™ integral is equal to —f(z)(27i).

e As a result, we obtain

o:/ f(W)dW:/Cf(W)dw_f(z)(zm.

w—Zz w—Zz



Maximum Modulus Principle for Polynomials

Problem
Let p be a polynomial. Show that if p is non-constant then

max|z <1 |P(2)] = max =1 [p(2)|-

Hint. If possible, there is zp € D be such that |p(z)| < |p(z0)]| for
every |z| < 1. Write p(z) = by + bi(z — z9) + - - - + bp(z — 20)". If
0 <r<1-—]|z] then

1 K

> |p(z0 + rei9)|2d9 = \b0\2 + |b1]2r2 4+ 4 ]b,,\2r2”.

—T

However, |bo|?> = |p(20)|?. Try to get a contradiction!



Growth Rate of Derivative

¢ M 2mfc “h <w z—h Wl—z)dW

1
= ﬁ fC w <(W—z—h)(w—z))dw'
e Taking limit as h — 0, we obtain

F(z) = 1,/ W),

27i Jo (w—2)?

Corollary (Cauchy Estimates)
Under the hypothesis of CIF |,

max |f(z
max_[F(2)

!/
<
F(z0)] < 2



Entire Functions

Definition
f is entire if f is complex differentiable at every point in C.

Theorem (Liouville’s Theorem)

Let f : C — C be an entire function. If there exists M > 0 such
that |f(z)| < M for all z € C, then f is a constant function.

Proof.
By Cauchy estimates, for any R > 0,
max _|f(z)]
IF(z0)] < 28 <M L 0as R
R R

Thus f'(z9) = 0. But zp was arbitrary, and hence ' = 0. O



An Application: Range of Entire Functions

Let f : C — C be a non-constant entire function. We contend that
the range of f intersects every disc in the complex plane.

e On the contrary, assume that some disc Dg(zy) does not
intersect the range of f, that is,

|f(z) — zo| > R for all z € C.

e Define g: C — C by g(z) = m
e Note that g is entire such that |g(z)| < & for all z € C.
e By Liouville's Theorem, g must be a constant function, and

hence so is f. This is not possible.



Cauchy Integral Formula Il

Corollary

Let U be an open set containing the disc Dgr(zy) and suppose f is
holomorphic in U. If C denotes the circle {z € C: |z — zy| = R}
of positive orientation, then

!
FN(z) = = /C (Wf(W)HdW for any z € Dg(zp).

2mi —z)"

We have already seen a proof in case n = 1. Let try case n = 2.
f'(z+h)—f'(z) _ 1 f(w 1 1
o Hlzth-rls) f)1 2 = 7 e %((W_z_h)2 - (w—z)Z)dW
h+2(w—z
= % fC f(W)<(W_Z_/5)2(W)_Z)2)dW.
e Taking limit as h — 0, we obtain

2 f(w)

f”(z) =

= dw.
27i Je (w—2)3 i



Holomorphic function is Analytic

Theorem
Suppose Dr(zy) C U and f : U — C is holomorphic. Then

e}

f(z) = Z an(z — 29)" for all z € Dr(z),
n=0
. f(")(ZO) .
where a, = — = for all integers n > 0.
Proof.
Let z € Dg(zy) and write
1 1 1 1
w—z w-z—(z—2) w-2z1- VZ.,:ZZ%

Since |w — zg| = R and z € Dg(z), there is 0 < r < 1 such that

|z — zo|/|w — 20| < r.



Proof Continued

Thus the series i =30 (Vzv 2) converges uniformly for

w— zo

any w on |w — zg| = R. We combine this with CIF |

f(z) = i /C de for any z € Dg(zo)

27 w—2z

to conclude that

f(z):i, f(w) dw— L 1 i(z—z())ndw

2ni Jew—2z 2mi cwW—2 = \w—2
- o0 oo
uni cgn 1 1 n (M) (z) N
N Z (27T'I/C (w — z)"H1 dW) (z=20)" = Z n! (z=2)",
n=0 n=0
where we used CIF II. O]

Remark Once complex differentiable function is infinitely complex
differentiable!



Taylor Series

. £(m)
We refer to the power series f(z) =Y 7 n(,zo)( — z0)" as the
Taylor series of f around zp.

Example
Let us compute the Taylor series of log z in the disc |z — i| = %
Note that ag = log i, a1 = %]z:,- = —i, and more generally

£ () —n

dn =

— oyl =

n! i" n! n’

Hence the Taylor series of log z is given by

Iog/+z

)" (z € Dy (i),



Theorem
f(")(ZO)

n!

[e.9]
An entire function f is given by f(z) = Z (z —z0)".
n=0

Corollary (Identity Theorem for entire functions)

Let f : C — C be an entire function. Suppose {zx} of distinct
complex numbers converges to zyg € C. If f(z,) =0 for all k > 1
then f(z) =0 for all z € C.

Proof. »
Write f(z) => 72, f n(!zo)(z —20)" (z€C). Iff #0, there is a

smallest integer ng such that f(")(zy) # 0. Thus f(z) =

i an(z — 20)" = apy(z — z9)™ (1 + i M(z — zo)”)). Since

n=ng n=1 no
the “bracketed term” is non-zero at zg, one can find z, # zy such
that RHS is non-zero at z,. But LHS is 0 at z;. Not possible! []

Remark. ‘ldentity Theorem' does not hold for real differentiable
functions.



Trigonometric Functions

Define sin z and cos z functions as follows:

. o - (_1)n 2n+1 - - (_1)n 2n
Slnz—;)m_'_l)!z s COSZ—Z (2”)'2 .

n=0

Note that sin z and cos z are entire functions (since RoC is c0).
We know the fundamental identity relating sin x and cos x:

sin? x 4 cos® x = 1 for x € R.
In particular, the function f : C — C given by
f(z) = sin® z 4 cos? z — 1 is entire and satisfies f(x) = 0 for

x € R. Hence by the previous result,

sinz+cos’z=1forze C.



A Problem

Note that there is an entire function f such that f(z + 1) = f(z)
for all z € C, but f is not constant:

f(z)= e2miz,

Similarly, there exists a non-constant entire function f such that
f(z+ i) = f(z) for all z € C. However, if an entire function f
satisfies both the above conditions, then it must be a constant!

Problem
Does there exist an entire function such that

f(z+1)="1(z), f(z+1i)=1f(z) forallze C?

Hint. Show that f is bounded and apply Liouville's Theorem.



Zeros of a Holomorphic Function

Theorem (ldentity Theorem)

Let U be an open connected subset of C and let f : U — C is a
holomorphic function. Suppose {zy} of distinct numbers converges
tozg € U. If f(zx) =0 forall k > 1 then f(z) =0 for all z € U.

Definition

A complex number a € C is a zero for a holomorphic function
f:U—Cifae Uandf(a)=0.

e The identity theorem says that the zeros of f has “isolated”.
This means that any closed disc contained in U contains at
most finitely many zeros of f.

e However f can have infinitely many zeros: sin(z).

e The zeros of f is always countable.



Theorem

Suppose that f is a non-zero holomorphic function on a connected
set U and a € U such that f(a) = 0. Then there exist R > 0, a
holomorphic function g : Dr(a) — C with g(z) # 0 for all

z € Dgr(a) and a unique integer n > 0 such that

f(z) = (z—a)"g(z) for all z € Dg(a) C U.

Proof.

Write f(z) = Y 32 ak(z — a)*, let n > 1 be a smallest integer
such that a, # 0 (which exists by the Identity Theorem). Then
f(z) = (z — a)"g(z), where g(z) = Y32, ak(z — a)*~". Note that
g(a) = a, # 0, and hence by continuity of g, there exists R > 0
such that g(z) # 0 for all z € Dg(a). O

We say that f has zero at a of order (or multiplicity) n. For
example, z" has zero at 0 of order n.



Zeros of sin(7z)

Example

e sin(7z) has zeros at all integers; all are of order 1. Indeed,
sin(mk) = 0 and & sin(7z)|,—x = 7 cos(wk) # 0.

e If possible, suppose sin(mzy) = 0 for some zy = xg + iyo € C.

e By Euler's Formula, sin(nz) = % Hence
e’ = e~iT2 that is, €2 = 1. Taking modulus on both
sides, we obtain e~2™0 = 1. Since €~ is one to one, vo = 0.

e Thus ™0 = 1, that is, cos(27mxg) + isin(27xp) = 1, and
hence xg is an integer.

Problem
Show that all zeros of cos(75z) are at odd integers.



Singularities of a meromorphic function

By a deleted neighborhood of a, we mean the punctured disc

Dg(a)\{a} = {z€C:0< |z—a| < R}.

Definition
An isolated singularity of a function f is a complex number zy such
that f is defined in a deleted neighborhood of zj.

For instance, 0 is an isolated singularity of

° f(z):%..
o f(z) = =2
o f(z)=e:.

The singularities in these examples are different in a way.

Indeed, a holomorphic function can have three kinds of isolated
singularities: pole, removable singularity, essential singularity



Poles

Definition

Let f be a function defined in a deleted neighborhood of a. We say
that f has a pole at a if the function % defined to be 0 at a, is
holomorphic on Dg(a).

Example

1
e -— has a pole at a.
e 0 is not a pole of *12 (since 2% — 1 as z — 0).
e The poles of a rational function (in a reduced form %) are

precisely the zeros of q(z). For instance, % has only pole at

z = —2 while the poles of % are at z = —1, —6.



Theorem

Suppose that f has a pole at a € U. Then there exist R > 0, a
holomorphic function h : Dg(a) — C with h(z) # 0 for all

z € Dr(z0) and a unique integer n > 0 such that

f(z) =(z—a) "h(z) for all z € Dg(a) \ {a} C U.

Proof.
Note that % with 0 at a, is a holomorphic function. Hence, by a
result on Page 55, there exist R > 0, a holomorphic function
g : Dr(a) — C with g(z) # 0 for all z € Dg(a) and a unique
integer n > 0 such that % = (z— a)"g(z) for all z € Dg(a).

_ 1
Now let h(z) = Ok O
We say that f has pole at a of order (or multiplicity) n. For
example, % has pole at 0 of order n.



Example

Let us find poles of f(z) = H%
e For this, Iet us first solve 1 + z* = 0. Taking modulus on both
sides of z* = —1, we obtain |z| = 1. Thus z = e, and hence
e*? = /™. This forces 40 = 1 + 2k for integer k. Thus
19 jz j3m  jdm jIm

=e'r,e'r,eln e,
o Note that % = (z—€'%)71h(z), where

h(z) =(z — e"3T7r)(z - e"sTﬂ)(z - e"7T7r) is non-zero for every
z € Dr(e'%) for some R > 0.Thus z = e'% is a pole.

- j3n 5m Tn
e Similar argument shows that €' 4 ,e' 4 ,e' ¢ are poles of f.



Principal Part and Residue Part

Suppose that f has a pole of order n at a. By theorem on Page 60,
there exist R > 0, a holomorphic function h: Dg(a) — C with
h(z) # 0 for all z € Dg(a) and a unique integer n > 0 such that

f(z) = (z—a) "h(z) for all z € Dgr(a) \ {a} C U.
Since h is holomorphic, h(z) = by + bi(z — a) + ba(z — a)%> + - - -,

bo by b
z-a)y (z—a 1 (z-a)y2

which can be rewritten as

(@)= (Goap gy Trma) (Al

= Principal part P(z) of f at a+ H(z).

f(z) =

_|_...’

Definition
The residue res, f of f at a is defined as the coefficient a_; of i



The residue res, f is special among all terms in the principal part

P(z) = (z = T o a")f,l r 4 -+ 4 2= in the following sense:
° (z a)k has a primitive in a deleted nelghborhood of aiff k # 1.
e If Cy is the circle |z — a| = R then 5L Je. P(2)dz=a_y.

e If f has a simple pole (pole of order 1) at a then
(z—a)f(z)=a_-1+a(z—a)+---—a_1=res,fasz—a:
res, f = zlipa(z —a)f(z).

e Suppose f has a pole of order 2. Then
(z—a)’f(z) =a_2+a_1(z—a)+ao(z—a)?>+---, and hence

:Z(Z—a)2f( ) =a_1+2ap(z—a)+ -

Thus we obtain res, f = lim i(z — a)%*f(2).
z—a az



Residue at poles of finite order

Theorem
If f has a pole of order n at a, then

res, f = ZIgna (n—ll)l (%)nil(z — a)"f(z2).

Proof.
We already know

1) = (ot gt e o) T (aralea+),

—|—(z—a)”<ao—|—al(z—a)—|—---),

Now differentiate (n — 1) times and take limit as z — a. O



Example

Consider the function f(z) =
z = +i. Recall that

ﬁ. Then f has simple poles at

res, f = Ii_r}n (z — a)f(2).

Thus we obtain

1 1

= lim(z — i)f(z) = i _ 1
resj f = lim(z —)f(z) = lim —— = 7.
1 1

res_if = lim (z+i)f(z) = lim

z——i zs—izZz— | —92i



The Residue Formula

Theorem

Suppose that f : U — C is holomorphic except a pole at a € U.
Let C C U be one of the following closed contour enclosing a in U
and with “interior” contained in U: A circle, triangle, semicircle
union segment etc. Then

/ f(z)dz =2mires, f.

C

Example

Let f(z) = ?122 Let v be union of [—R, R] and semicircle Cg:
2(t) =t (~R<t<R), z(t) = Re" (0 <t < 7).

i is the only pole in the “interior” of vg if R > 1. Also, res; f = %



By Residue Theorem, [ ;lodx+ [ f(z)dz = . Let R — oo,

< 1
/ ——dx + lim / f(z)dz = .
— oo 1 —+ X2 R—oc0 Cr

We claim that limp_,o fCR f(z)dz = 0. To see that,

’/ f(z)dz‘ g/ Rdtg/
Cr 0 0

= W% — 0 as R — oo. This yields the formula:

> 1
/ ﬁdX:ﬂ'
oo Lt X

1

1
— ————|Rdt
1+ R2e2it R2—1)




Proof of Residue Formula

Consider the keyhole contour 7, 5 that avoids the pole a:
Vr,s consists of ‘almost’ C,

e acircle C,: |w — a| = r of negative orientation, and
e a corridor of width & with two sides of opposite orientation.

Letting 6 — 0, we obtain by Cauchy's Theorem that

/C F(z)dz + / )z =0

However, we know that

flz) = (<za:';>n+<z"’:2§ifl+' o (aora(z-ay).

Now apply Cauchy’s Integral Formula and Cauchy’s Theorem to
see that fCr f(z)dz = a_1(—2mi) (as C, has negative orientation).



Residue Formula: General Version

Theorem

Suppose that f : U — C is holomorphic except pole at a1, --- , ax
in U. Let C C U be one of the following closed contour enclosing
ai, - ,ak in U and with “interior” contained in U: A circle,

triangle, semicircle union segment etc. Then

K
/ f(z)dz = 2xi Z res,, f.
¢ i=1

Example
Consider the function cosh(z) = €££=. Then cosh(7z) is an
entire function with zeros at points z for which €™ = —e™"™%, that

is, €™ = —1. Solving this for z, we obtain i/2 and 3i/2 as the
only zeros of cosh(wz). Note that cosh(nz) is periodic of period 2i.



Example Continued ...

e—27rlzs

e For s € R, consider now the function f(z) = oh(ra)
e Check that f has simple poles at a; = //2 and ap = 3i/2.
(Verify).

Let v denote the rectagular curve with parametrization

TI'S
e Further, res, f = < and res,, f =

m(t)=tfor —R<t<R, (t)=R+itfor0<t<2,
v3(t) = —t+2ifor —R <t < R, a(t)=—R—itfor =2 <t <0.
By Residue Theorem

s e

e 3ms
f(z)dz = 2mi( — — =2(e™ — &¥).
/7 (2)dz 7TI(ﬂ'i i ) (e )

Further, as R — oo, we obtain
—27\'It$
¢ f’Yl f( dZ - f 00 cosh (mt) dt.
° ‘fw f(z)dz| < [, %dt—) 0. Similarly, f f(z)dz — 0.

727rlt5

—2mizs T
of%f(de— fRW(wz)d _>_e4sfooc25h7(7rt)dt




Example Continued ...

We club all terms together to obtain

00 g—2mits . 00 g—2mits 3
————dt—e"™ ————dt = [ f(z)dz =2(e™—e’"*
/Oocosh(wt) ¢ /oocosh(wt) L (2)dz = 2(e™ =),

00 e7271'its 2 3
dt = TS _ g3ms)
/_OO cosh(rt) 1-— e47f5(e )

However, (e™ — e3™)(e™ + e~ ™) = 1 — *", and hence

o e—27rits 2
/ mdt T et fems cosh(s).
7T
oo

Thus the “Fourier transform” of reciprocal of cosine hyperbolic
function is reciprocal of cosine hyperbolic function itself.



Removable Singularity

Definition

Let U be an open subset of C and let a € U. We say that a is a
removable singularity of a holomorphic function f : U\ {a} — C if
there exists a € C such that g : U — C below is holomorphic:

g(2) = f(2) (z# a), gla) =«

Example
Consider the function f : C\ {0} — C given by f(z) = 1‘2%
Then 0 is a removable singularity of f. Indeed, define g : U — C by

8(e) = (=) (2 #0), 8(0) = 3.

l—cosh_ 1
Then g is complex differentiable at O: g(h);g(o) = ”2h 2
Hence g is holomorphic on C.

— 0.




Theorem
Let U be an open subset of C containing a. Let f : U\ {a} — C

be a holomorphic function. If o := lim f(z) exists and for some
zZ—a

holomorphic function F : Dg(a) — C,
f(z) —a=(z—a)F(z) (z € Dg(a)),

then f has removable singularity at a.

Proof.
Define g : U — C by
g(z) =f(2) (z# a), g(a) = a.
We must check that g is complex differentiable at a. However,

g(h) —g(a) _ f(h)—a _
88— DU = F(h) — F(a).

It follows that g is holomorphic on U.



Example
Let a= /2 and f(z) = 1=8"Z Then

Ccosz
n

cosz = Z (jz" cosz\zz,,p) (z—7/2)" = (z—7/2)H(z), H(7w/2) # 0,

1-sinz= Z;) (jznnu —sin z)|z:7r/2)(z—7r/2)” = (z—7/2)%G(2)

It follows that o := lim,_,/» f(z) = 0. Also, for some R > 0,

f(z) —a=(z- 7r/2)z§2 (z € Dr(a)),

and hence z = 7/2 is a removable singularity of f.



Laurent Series and Essential Singularity

Theorem
For0<r <R < oo, let Ay r(z0) : {z€C:r<|z—2z| <R},
suppose f : A, g(20) — C is holomorphic. Then

o0

f(z) = Z an(z — zo)" for all z € Ar,R(ZO))

n=—oo

f .
where ap = 5= flz—zolzp %dz for integers n and r < p < R.

We refer to the series appearing above as the Laurent series of f
around zy.

Outline of the Proof.

One needs Cauchy Integral Formula for the union of |z — z9| = n
and |z — zp| = Ry (can be obtained from Cauchy's Theorem by
choosing appropriate keyhole contour), where r < rp < Ry < R.
Thus for z € A, r(20),



QOutline of the Proof Continued.

=y [ gL MWy,
2mi \Wezo|=Ry W — Z 27mi \wezo|=r, W — Z

One may argue as in the proof of Cauchy Integral Theorem to see
that first integr:ial gives the series Y ° ; an(z — 20)" while second
oneleadsto ) . an(z—2)" O

Definition

Let U be an open set and zy € U be an isolated singularity of the
holomorphic function f : U\ {2z} — C. We say that z is an
essential singularity of f if infinitely many coefficients among

a_1,a_p, -+, in the Laurent series of f are non-zero.
e The Laurent series of f(z) = e/ around 0 is
1+ 1 222 3‘ 23 + ---. Hence 0 is an essential singularity.

° Slmllarly, 0 is an essential singularity of z?sin(1/z).



Let us examine the Laurent series of f around zy:

o0

f(z) = Z an(z — 29)" for all z € A, r(20),

n=—oo

e Zy is a removable singularity if and only if a_, = 0 for
n=12---

e zy is a pole of order k if and only if a_, = 0 for
n=k+1,k+2,---,and a_, #0.

e zj is an essential singularity if and only if a_, # 0 for infinitely
many values of n > 1.

In particular, an isolated singularity is essential if it is neither a
removable singularity nor a pole.



Counting Zeros and Poles

In an effort to understand “logarithm” of a holomorphic function
f: U — C\ {0}, we must understand the change in the argument

f‘/
/ (2) ,
- f(2)
of f as z traverses the curve . The argument principle says that
for the unit circle ~, this is completely determined by the zeros and

poles of f inside . We prove this in a rather special case, under the
additional assumption that f has finitely many zeroes and poles.




Theorem (Argument Principle)
Suppose f is holomorphic except at poles in an open set containing
a circle C and its interior. If f has no poles and zeros on C, then
1 f'(z)
2ri Jc f(2)

dz = (number of zeros of f inside C)

— (number of poles of f inside C).

Here the number of zeros and poles of f are counted with their
multiplicities.

Proof.
Let zi,- -, zx (of multiplicities ny,--- , ng) and p1,---, p; (of
multiplicities my, - - - , my) denote the zeros and poles of f inside C

respectively. If f has a zero at z; of order n; then

f(2) = (z = 21)"g(2)

in the interior of C for a non-vanishing function g near z.



Proof Continued.

f(z) _ m(z—z1)" lg(2)+(z—z1)"g'(z) _ »n '(2)
Note that () = mE=alf g5maliels) - oo 4 £,
Integrating both sides, we obtain
! /
1 (@, L [8@),
27i Jco f(2) 27i Jc g(2)

Now g has a zero at z of multiplicity no. By same argument to
g(z) = (z — z2)"™h(z), we obtain
1 (82 1 [ H(z2)

il dz — i
27i Jc g(2) i n2+27ri c h(z)

Continuing this we obtain

1@, L [
omi Jo Fz) T ™ “Tori e F(2)

dz (%),

where F(z) has no zeros.



Proof Continued.
Note that F has poles at p1,--- , p; (of multiplicities my,-- -, my)
respectively. Write F(z) = (z — p1)""™ G(z) and note that

F'(z) _ —m(z—21)"™71G(2) +(z— p1)"™G'(2)
F(z) (z=p1)"™G(2)
_—m G2
z—p  G(2)

It follows that [~ F’/F = —my. Continuing this we obtain

1 [ FR
2mi C F(Z)

dz=—-—-m; —---—m

(we need Cauchy’s Theorem here). Now substitute this in (x). [



Applications

Corollary

Suppose f is holomorphic in an open set containing a circle C and
its interior. If f has no zeros on C, then

1 f'(2)

27i Jc f(2)

dz = (number of zeros of f inside C).

Here the number of zeros of f are counted with their multiplicities.

Theorem (Rouché’s Theorem)

Suppose that f and g are holomorphic in an open set containing a
circle C and its interior. If |f(z)| > |g(z)| for all z € C, then f and
f + g have the same number of zeros inside the circle C.



Outline of Proof of Rouché’s Theorem.
Let F¢(z) ;= f + tg for t € [0, 1]. By the corollary above,

/
Number of zeros of F;(z) = / fe(2) dz
c fi(z)

is an integer-valued, continuous function of t, and hence by
Intermediate Value Theorem,

Number of zeros of Fy(z) = Number of zeros of Fi(z).

But Fo(z) = f and Fi(z) = f(z) + g(2).

Example

Consider the polynomial p(z) = 220 + 422 + 1. Then p(z) has
exactly 2 zeros in the open unit disc D. Indeed, apply Rouché’s
Theorem to f(z) = 4z% and g(z) =221 + 1:

1f(2)| =4 > 221 + 1| = |g(2)| on |z| = 1.



Example
Let p be non-constant polynomial. If |p(z)| = 1 whenever |z| =1
then the following hold true:

e p(z) =0 for z in the open unit disc. Indeed, by Maximum

Modulus Principle, |p(z)| < 1. Hence, if p(z) # 0 then

len > 1 with maximum inside the disc, which is not possible.

e p(z) = wo has a root for every |wp| < 1, that is, the range of
p contains the unit disc. To see this, apply Rouché’s Theorem
to f(z) = p(z) and g(z) = —wp to conclude that

f(z) +g(z) = p(z) — wo
has a zero inside the disc.

Problem
Show that the functional equation A\ = z + e~% (A > 1) has
exactly one (real) solution in the right half plane.



Mobius Transformations

A Mobius transformation is a function of the form

az+b
cz+d’

f(z) = a,b,c,d € C such that ad — bc # 0.

Note that f is holomorphic with derivative
ad — bc
fl(z2) = ——5.
(2) (cz + d)?
This also shows that f’(z) # 0, and hence f is non-constant.

Example

e If c=0and d =1 then f(z) = az+ b is a linear polynomial.

e Ifa=0and b=1then f(z) = Cz—id is a rational function.



az+b
cz+d

The Mdbius transformation f(z) = is bijective with inverse

B —dz+ b

glz)=———

Indeed, f o g(z) = z = g o f(z) wherever f and g are defined.

Example

Let f(z) = 2L and g(z) = ZZEE be Mébius transformations.

Then f o g is a also a Mobius transformation given by

_az+f

5=l o)

where



Lemma
If v is a circle or a line and f(z) = L then f(v) is a circle or line.

Proof.

Suppose 7 is the circle |z — a| = r (We leave the case of line as an
exercise). Then f(7) is obtained by replacing z by w = 1:
|1/w —a| = r, thatis, 1/|w|?> — 2Re(a/w) = r? — |a|2.
e If r = |a| (that is, v passes through 0), then Re(aw) = 1/2,
which gives the line Re(w)Re(a) — Im(w)Im(a) = 1.

o If r # |a| then 1/(r2 — [af?) — 2% ‘a‘QRe(a/w) \w|2. Thus

1/(r* —al?) = |w|* + 2Re(w(a/(r* — |a]*))
= [w|*+2Re(w(a/(r* —[a|*))+|al?/(r* — |a]*)>~[a?/(r* — |a]*)?
=|w —a/(r* — |a]*)]* — |a|*/(r* — |a]*)*.

Thus f(7) is the circle |w — a/(r? — |a|?)| = r/|r? — |a|?|.
L]



Theorem

Any Mobius transformation f maps circles and lines onto circles
and lines.

Proof.

We consider two cases:

e ¢ = 0: In this case f is linear and sends line to a line and
circle to a circle.

e c#0: Then f(z) = f; o f 0 f3(2), where

a (ad—bc

1
c )27 f(z) = ;, and f3(z) = cz + d.

Since f1, f, f3 map circles and lines onto circles and lines (by
Lemma and Case ¢ = 0), so does f.



Schwarz's Lemma (without Proof)

Theorem
If f : D — D is a holomorphic map such that f(0) = 0 then
|f(z)| < |z| for every z € D.

Problem

What are all the bijective holomorphic maps from D onto D 7
o f(z) = az for |a| = 1.
e ,(z) = == (Hint. By Cauchy Integral Formula,

1-3az

[9a(z)] < maxy=1 [¢a(w)], which is 1).

Corollary

If f(0) =0 and f : D — D is a holomorphic bijective map then f is
a rotation: f(z) = e’z for some 6 € R.

Proof.
By Schwarz's Lemma, |f(z)| < |z|. However, same argument
applies to f~1: |f71(z)| < |z|. Replacing z by f(z), we obtain



Proof Continued.

|z| < |f(z)| implying |f(z)| = |z|. But then f(z)/z attains max
value 1 in D. Hence f(z)/z must be a constant function of
modulus 1, that is, f(z) = elfz. O

Theorem
If f : D — D is a holomorphic bijective map then f is a Mobius
transformation:

f(z) = e"ela;f for some a € D and § € R.
—az

Proof.

Note that f(a) = 0 for some a € D. Consider f o 1), for

¥a(z) = ==, and note that f 01,(0) = 0. Also, f 0 ¢, is a
holomorphic function on D. Further, since [1,(z)| < 1 whenever
|z| <1, fotp, maps D — D. By last corollary, f o ¢,(z) = ez,
that is, f(z) == e/ 1(z). However, by a routine calculation,

U3 (2) = 1a(2). ]
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