Introduction to Complex Analysis MSO 202 A

Sameer Chavan

Semester I, 2016-17

Course Structure

- This course will be conducted in Flipped Classroom Mode.
- Every Friday evening, 3 to 7 videos of total duration 60 minutes will be released.
- The venue and timings of Flipped classrooms: W/Th 09:00-9:50 L7
- The timing of tutorial is M 09:00-9:50.
- - R. Churchill and J. Brown, Complex variables and applications. Fourth edition. McGraw-Hill Book Co., New York, 1984. - an elementary text suitable for a one semester; emphasis on applications.
- E. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2006.- Modern treatment of the subject, but recommended for second reading.
- Lecture notes and assignments by P. Shunmugaraj, (strongly recommended for students), http://home.iitk.ac.in/ psraj/
- Please feel free to contact me through chavan@iitk.ac.in

Syllabus

- Complex Numbers, Complex Differentiation and C-R Equations,
- Analytic Functions, Power Series and Derivative of Power Series,
- Complex Exponential, Complex Logarithm and Trigonometric Functions,
- Complex Integration, Cauchy's Theorem and Cauchy's Integral Formulas,
- Taylor series, Laurent series and Cauchy residue theorem,
- Mobius Transformation.

Complex Numbers

- real line: \mathbb{R}, real plane: \mathbb{R}^{2}
- A complex number : $z=x+i y$, where $x, y \in \mathbb{R}$ and i is an imaginary number that satisfies $i^{2}+1=0$.
- complex plane: \mathbb{C}
- $\operatorname{Re}: \mathbb{C} \rightarrow \mathbb{R}$ by $\operatorname{Re}(z)=$ real part of $z=x$
- $\operatorname{Re}(z+w)=\operatorname{Re} z+\operatorname{Re} w, \operatorname{Re}(a w)=a \operatorname{Re} w$ if $a \in \mathbb{R}$

Remark Same observation holds for Im : $\mathbb{C} \rightarrow \mathbb{R}$ defined by Im $(z)=$ imaginary part of $z=y$.

Definition

A map f from \mathbb{C} is \mathbb{R}-linear if $f(z+w)=f(z)+f(w)$ and $f(a z)=a f(z)$ for all $z, w \in \mathbb{C}$ and $a \in \mathbb{R}$.

Example

- Re and Im are \mathbb{R}-linear maps.
- $i d(z)=z$ and $c(z)=\operatorname{Re}(z)-i \operatorname{lm}(z)$ are \mathbb{R}-linear maps.
- $H: \mathbb{C} \rightarrow \mathbb{R}^{2}$ defined by $H(z)=(\operatorname{Re}(z), \operatorname{lm}(z))$ is \mathbb{R}-linear.

Remark H is an \mathbb{R}-linear bijection from the real vector space \mathbb{C} onto \mathbb{R}^{2}.
\mathbb{C} (over \mathbb{R}) and \mathbb{R}^{2} are same as vector spaces. But complex multiplication makes \mathbb{C} different from \mathbb{R}^{2} :

$$
z w:=(\operatorname{Re} z \operatorname{Re} w-\operatorname{Im} z \operatorname{lm} w)+i(\operatorname{Re} z \operatorname{Im} w+\operatorname{Im} w \operatorname{Re} w) .
$$

In particular, any non-zero complex number z has a inverse:

$$
\frac{1}{z}=\frac{\bar{z}}{|z|^{2}},
$$

where

- $\bar{z}=\operatorname{Re}(z)-i \operatorname{lm}(z)$
- $|z|=\sqrt{\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2}}$

Polar Decomposition

Any non-zero complex number z can be written in the polar form:

$$
z=r e^{i \arg z}
$$

where $r>0$ and $\arg z \in \mathbb{R}$. Note that

- r is unique. Indeed, $r=|z|$.
- $\arg z$ is any real number satisfying

$$
\frac{z}{|z|}=\cos (\arg z)+i \sin (\arg z)
$$

- $\arg z$ is unique up to a multiple of 2π.

For $\theta \in[0,2 \pi)$, define rotation $r_{\theta}: \mathbb{C} \rightarrow \mathbb{C}$ by angle θ as

$$
r_{\theta}(z)=e^{i \theta} z
$$

For $t \in(0, \infty)$, define dilation $d_{t}: \mathbb{C} \rightarrow \mathbb{C}$ of magnitude t as

$$
d_{t}(z)=t z
$$

Example
For a non-zero w, define $m_{w}: \mathbb{C} \rightarrow \mathbb{C}$ by $m_{w}(z)=w z$. Then

$$
m_{w}=d_{|w|} \circ r_{\arg w}
$$

Convergence in \mathbb{C}

Definition

Let $\left\{z_{n}\right\}$ be a sequence of complex numbers. Then

- $\left\{z_{n}\right\}$ is a Cauchy sequence if $\left|z_{m}-z_{n}\right| \rightarrow 0$ as $m, n \rightarrow \infty$.
- $\left\{z_{n}\right\}$ is a convergent sequence if $\left|z_{n}-z\right| \rightarrow 0$ for some $z \in \mathbb{C}$.

Theorem (\mathbb{C} is complete)

Every Cauchy sequence in \mathbb{C} is convergent.
Proof.

- $\left|z_{m}-z_{n}\right| \rightarrow 0$ iff $\left|\operatorname{Re}\left(z_{m}-z_{n}\right)\right| \rightarrow 0$ and $\left|\operatorname{Im}\left(z_{m}-z_{n}\right)\right| \rightarrow 0$.
- But Re and Im are \mathbb{R}-linear. Hence $\left\{z_{n}\right\}$ is Cauchy iff $\left\{\operatorname{Re}\left(z_{n}\right)\right\}$ and $\left\{\operatorname{lm}\left(z_{n}\right)\right\}$ are Cauchy sequences.
- However, any Cauchy sequence in \mathbb{R} is convergent.

Continuity

Definition

A function f defined on \mathbb{C} is continuous at a if

$$
z_{n} \rightarrow a \Longrightarrow f\left(z_{n}\right) \rightarrow f(a)
$$

f is continuous if it is continuous at every point.
Example

- $H(z)=(\operatorname{Re}(z), \operatorname{Im}(z))$.
- $m_{w}(z)=w z$.
- $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$.
- $f(z)=|z|$.

Complex Differentiability

For $a \in \mathbb{C}$ and $r>0$, let $\mathbb{D}_{r}(a)=\{z \in \mathbb{C}:|z-a|<r\}$.
Definition
A function $f: \mathbb{D}_{r}(a) \rightarrow \mathbb{C}$ is complex differentiable at a if

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a) \text { for some } f^{\prime}(a) \in \mathbb{C}
$$

f is holomorphic if it is complex differentiable at every point. Remark

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-D_{a}(h)}{h}=0
$$

where $D_{a}: \mathbb{C} \rightarrow \mathbb{C}$ is given by $D_{a}(h)=f^{\prime}(a) h$.
Theorem
Every holomorphic function is continuous.

Example

$f(z)=z^{n}$ is holomorphic. Indeed, $f^{\prime}(a)=n a^{n-1}:$

$$
\frac{(a+h)^{n}-a^{n}}{h}=(a+h)^{n-1}+(a+h)^{n-2} a+\cdots+a^{n-1} \rightarrow n a^{n-1}
$$

More generally, $f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ is holomorphic.

Example

$f(z)=\bar{z}$ is not complex differentiable at 0 . Indeed, $\frac{\bar{h}}{h} \rightarrow+1$ along real axis and $\frac{\bar{h}}{h} \rightarrow-1$ along imaginary axis.

Example

For $b, d \in \mathbb{C}$, define $f(z)=\frac{z+b}{z+d}$. Then f is complex differentiable at any $a \in \mathbb{C} \backslash\{-d\}$.

Cauchy-Riemann Equations

Write $f: \mathbb{C} \rightarrow \mathbb{C}$ as $f=u+i v$ for real valued functions u and v. Assume that the partial derivatives of u and v exists. Consider

$$
J_{u, v}(a)=\left[\begin{array}{cc}
u_{x}(a) & u_{y}(a) \\
v_{x}(a) & v_{y}(a) .
\end{array}\right] \text { (Jacobian matrix). }
$$

Recall that $H(z)=(\operatorname{Re}(z), \operatorname{Im}(z))$. Treating $(\operatorname{Re}(z), \operatorname{Im}(z))$ as a column vector, define \mathbb{R}-linear map $F_{a}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
\begin{gathered}
F_{a}(z)=H^{-1} \circ J_{u, v}(a) \circ H(z) \\
=\left(u_{x}(a) \operatorname{Re}(z)+u_{y}(a) \operatorname{lm}(z)\right)+i\left(v_{x}(a) \operatorname{Re}(z)+v_{y}(a) \operatorname{Im}(z)\right) .
\end{gathered}
$$

Question When $F_{a}(\alpha z)=\alpha F_{a}(z)$ for every $\alpha \in \mathbb{C}$ (or, when F_{a} is \mathbb{C}-linear) ?

Suppose that $F_{a}(i z)=i F_{a}(z)$. Letting $z=1$, we obtain

$$
F_{a}(i)=u_{y}(a)+i v_{y}(a), i F_{a}(1)=-v_{x}(a)+i u_{x}(a)
$$

Thus we obtain $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ (C-R Equations).
Interpretation Let $\nabla u=\left(u_{x}, u_{y}\right)$ and $\nabla v=\left(v_{x}, v_{y}\right)$. If f satisfies C-R equations then $\nabla u \cdot \nabla v=0$. The level curves $u=c_{1}$ and $v=c_{2}$ are orthogonal, where they intersect.

- $f(z)=z$ then $u=x=c_{1}$ and $v=y=c_{2}$ (pair of lines).
- If $f(z)=z^{2}$ then $u=x^{2}-y^{2}=c_{1}$ and $v=2 x y=c_{2}$ (pair of hyperbolas).

Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable at a. Note that

$$
F_{a}(h)=\left(u_{x}(a)+i v_{x}(a)\right) h_{1}+\left(u_{y}(a)+i v_{y}(a)\right) h_{2} .
$$

However,

$$
\begin{aligned}
& \lim _{h_{1} \rightarrow 0} \frac{f\left(a+h_{1}\right)-f(a)-\left(u_{x}(a)+i v_{x}(a)\right) h_{1}}{h_{1}}=0, \\
& \lim _{h_{2} \rightarrow 0} \frac{f\left(a+i h_{2}\right)-f(a)-\left(u_{y}(a)+i v_{y}(a)\right) h_{2}}{i h_{2}}=0 .
\end{aligned}
$$

By uniqueness of limit, $u_{x}(a)+i v_{x}(a)=f^{\prime}(a)=\frac{u_{y}(a)+i v_{y}(a)}{i}$, and

$$
F_{a}(h)=f^{\prime}(a) h,
$$

and hence F_{a} is \mathbb{C}-linear. We have thus proved that the C-R equations are equivalent to \mathbb{C}-linearity of F_{a} !

Theorem (Cauchy-Riemann Equations)

If $f=u+i v$ and u, v have continuous partial derivatives then f is complex differentiable if and only if f satisfies $C-R$ equations.

Corollary

If $f=u+i v$ is complex differentiable at a, then

$$
\left|f^{\prime}(a)\right|^{2}=\operatorname{det} J_{u, v}(a)
$$

In particular, $f: \mathbb{C} \rightarrow \mathbb{C}$ is constant if $f^{\prime}=0$.
Proof.
We already noted that $f^{\prime}(a)=u_{x}(a)+i v_{x}(a)$, and hence $\left|f^{\prime}(a)\right|^{2}=u_{x}(a)^{2}+v_{x}(a)^{2}$. However, by the C-R equations,

$$
J_{u, v}(a)=\left[\begin{array}{cc}
u_{x}(a) & -v_{x}(a) \\
v_{x}(a) & u_{x}(a) .
\end{array}\right]
$$

so that $\operatorname{det} J_{u, v}(a)=u_{x}(a)^{2}+v_{x}(a)^{2}=\left|f^{\prime}(a)\right|^{2}$.

Range of a Holomorphic Function

- Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with range contained in the real axis. Then $f=u+i v$ with $v=0$. By C-R equations,

$$
u_{x}=0, u_{y}=0
$$

Hence u is constant, and hence so is f.

- Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with range contained in a line. Note that for some $\theta \in \mathbb{R}$ and $c>0$, the range of $g(z)=e^{i \theta} f(z)+c$ is contained in the real axis. By last case, g, and hence f is constant.

We will see later that the range of any non-constant holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ intersects every disc in the complex plane!

Power Series

Definition

A power series is an expansion of the form

$$
\sum_{n=0}^{\infty} a_{n} z^{n}, \text { where } a_{n} \in \mathbb{C}
$$

$\sum_{n=0}^{\infty} a_{n} z^{n}$ converges absolutely if $\sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}<\infty$.
Definition (Domain of Convergence)
$D:=\left\{w \in \mathbb{C}: \sum_{n=0}^{\infty}\left|a_{n} \| w\right|^{n}<\infty\right\}$.
Note that

- $w_{0} \in D \Longrightarrow e^{i \theta} w_{0} \in D$ for any $\theta \in \mathbb{R}$.
- $w_{0} \in D \Longrightarrow w \in D$ for any $w \in \mathbb{C}$ with $|w| \leqslant\left|w_{0}\right|$.

Conclude that D is either $\mathbb{C}, \mathbb{D}_{R}(0)$ or $\overline{\mathbb{D}}_{R}(0)$ for some $R \geqslant 0$.

Radius of Convergence

Definition

The radius of convergence (for short, RoC) of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is defined as

$$
R:=\sup \left\{|z|: \sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n}<\infty\right\}
$$

Theorem (Hadamard's Formula)
The RoC of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is given by

$$
R=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}},
$$

where we use the convention that $1 / 0=\infty$ and $1 / \infty=0$.

Examples

- $\sum_{n=0}^{k} a_{n} z^{n}, a_{n}=0$ for $n>k, R=\infty$.
- $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, a_{n}=\frac{1}{n!}, \quad R=\infty$.
- $\sum_{n=0}^{\infty} z^{n}, a_{n}=1, R=1$.
- $\sum_{n=0}^{\infty} n!z^{n}, a_{n}=n!, \quad R=0$.

The coefficients of a power series may not be given by a single formula.

Example

Consider the power series $\sum_{n=0}^{\infty} z^{n^{2}}$. Then

$$
a_{k}=1 \text { if } k=n^{2}, \text { and } 0 \text { otherwise. }
$$

Clearly, limsup $\left|a_{n}\right|^{1 / n}=1$, and hence $R=1$.

Theorem

If the RoC of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R then the RoC of the power series $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ is also R.

Proof.

Since $\lim _{n \rightarrow \infty} n^{1 / n}=1, R=\frac{1}{\lim \sup \left|n a_{n}\right|^{1 / n}}=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}}$.

Example

Consider the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$, where a_{n} is number of divisors of n^{1111}. Note that

$$
1 \leq a_{n} \leq n^{1111}
$$

Note that $1 \leq \lim \sup \left|a_{n}\right|^{1 / n} \leq \lim \sup \left(n^{1111}\right)^{1 / n}=1$, and hence the RoC of $\sum_{n=0}^{\infty} a_{n} z^{n}$ equals 1 .

Power series as Holomorphic function

Theorem

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with RoC equal to $R>0$. Define $f: \mathbb{D}_{R} \rightarrow \mathbb{C}$ by $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. Then f is holomorphic with $f^{\prime}(z)=g(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}$.

- For z_{0}, find $h \in \mathbb{C}, r>0$ with $\max \left\{\left|z_{0}\right|,\left|z_{0}+h\right|\right\}<r<R$.
- $S_{k}(z)=\sum_{n=0}^{k} a_{n} z^{n}, E_{k}(z)=\sum_{n=k+1}^{\infty} a_{n} z^{n}$.
- $\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}-g\left(z_{0}\right)=A+\left(S_{k}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)\right)+B$, where

$$
A:=\left(\frac{S_{k}\left(z_{0}+h\right)-S_{k}\left(z_{0}\right)}{h}-S_{k}^{\prime}\left(z_{0}\right)\right), B:=\left(\frac{E_{k}\left(z_{0}+h\right)-E_{k}\left(z_{0}\right)}{h}\right) .
$$

- $|B| \leqslant \sum_{n=k+1}^{\infty}\left|a_{n}\right|\left|\frac{\left(z_{0}+h\right)^{n}-z_{0}^{n}}{h}\right| \leqslant \sum_{n=k+1}^{\infty}\left|a_{n}\right| n r^{n-1}$.

Corollary

A power series is infinitely complex differentiable in the disc of convergence.
Let U be a subset of \mathbb{C}. We say that U is open if for every $z_{0} \in U$, there exists $r>0$ such that $\mathbb{D}_{r}\left(z_{0}\right) \subseteq U$.

Definition

Let $U \subseteq$ be open. A function $f: U \rightarrow \mathbb{C}$ is said to be analytic at z_{0} if there exists a power series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ with positive radius of convergence such that

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for all } z \in \mathbb{D}_{r}\left(z_{0}\right)
$$

for some $r>0$. A function f is analytic if it is analytic at $z_{0} \in U$.

Example (Analyticity of Polynomials and Linear Equations)

Any polynomial $p(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$ is analytic in \mathbb{C}. To see this, fix $z_{0} \in \mathbb{C}$. We show that there exist unique scalars a_{0}, \cdots, a_{n} such that

$$
p(z)=a_{0}+a_{1}\left(z-z_{0}\right)+\cdots+a_{n}\left(z-z_{0}\right)^{n} \text { for every } z \in \mathbb{C} .
$$

Comparing coefficients of $1, z, \cdots, z^{n-1}$ on both sides, we get

$$
\left[\begin{array}{ccccc}
1 & -z_{0} & z_{0}^{2} & \cdots & \\
0 & 1 & -2 z_{0} & \cdots & \\
0 & 0 & 1 & -3 z_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \\
& 0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1} \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1} \\
c_{n}
\end{array}\right] .
$$

Alternatively, the solution is given by $a_{k}=\frac{p^{(k)}\left(z_{0}\right)}{k!}(k=0, \cdots, n)$.

Exponential Function

Appeared $e^{i \arg z}$ in the polar decomposition of z.

Definition

The exponential function e^{z} is the power series given by

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}(z \in \mathbb{C})
$$

Since the radius of convergence of e^{z} is ∞, exponential is holomorphic everywhere in \mathbb{C}. Further,

$$
\left(e^{z}\right)^{\prime}=\sum_{n=1}^{\infty} \frac{n z^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!}=e^{z}
$$

Thus e^{z} is a solution of the differential equation $f^{\prime}=f$. Moreover, e^{z} is the only solution of the IVP: $f^{\prime}=f, f(0)=1$.

Certainly, e^{z} is not surjective as for no $z \in \mathbb{C}, e^{z}=0$. If $w \neq 0$ then by polar decomposition, $w=|w| e^{i \arg w}(0 \leqslant \arg w<2 \pi)$. Also, since $|w|=e^{\log |w|}$, we obtain

$$
w=e^{\log |w|+i \arg w}
$$

Thus the range of e^{z} is the punctured complex plane $\mathbb{C} \backslash\{0\}$. Further, since $\arg z$ is unique up to a multiple of $2 \pi, e^{z}$ is one-one in $\{z \in \mathbb{C}: 0 \leqslant \arg z<2 \pi\}$, but not in \mathbb{C}.
Theorem (Polynomials Vs Exponential)
If p is a polynomial then $\lim _{|z| \rightarrow \infty}|p(z)|=\infty$. However,

$$
\lim _{|z| \rightarrow \infty}\left|e^{z}\right| \neq \infty
$$

Parametrized curves

- A parametrized curve is a function $z:[a, b] \rightarrow \mathbb{C}$. We also say that γ is a curve with parametrization z.
- A parametrized curve z is smooth if $z^{\prime}(t)$ exists and is continuous on $[a, b]$, and $z^{\prime}(t) \neq 0$ for $t \in[a, b]$.
- A parametrized curve z is piecewise smooth if z is continuous on $[a, b]$ and z is smooth on every $\left[a_{k}, a_{k+1}\right]$ for some points $a_{0}=a<a_{1}<\cdots<a_{n}=b$.
- A parametrized curve z is closed if $z(a)=z(b)$.

Example

- $z(t)=z_{0}+r e^{i t}(0 \leqslant t \leqslant 2 \pi)(+$ ve orientation $)$. $z(t)=z_{0}+r e^{-i t}(0 \leqslant t \leqslant 2 \pi)$ (-ve orientation).
- Rectangle with vertices $R, R+i z_{0},-R+i z_{0},-R$ with + ve orientation is a parametrized curve, which is piecewise smooth but not smooth.

Integration along curves

Definition

Given a smooth curve γ parametrized by $z:[a, b] \rightarrow \mathbb{C}$, and f a continuous function on γ, define the integral of f along γ by

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t .
$$

Remark. If there is another parametrization $\tilde{z}(s)=z(t(s))$ for some continuously differentiable bijection $t:[a, b] \rightarrow[c, d]$ then, $\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{c}^{d} f(\tilde{z}(s)) \tilde{z}^{\prime}(s) d s$.

Definition

In case γ is piecewise smooth, the integral of f along γ is given by

$$
\int_{\gamma} f(z) d z=\sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(z(t)) z^{\prime}(t) d t .
$$

Examples

Example

Let γ be the circle $|z|=1, f(z)=z^{n}$ for an integer n. Note that

$$
\int_{\gamma} f(z) d z=\int_{0}^{2 \pi} f\left(e^{i t}\right)\left(e^{i t}\right)^{\prime} d t=\int_{0}^{2 \pi} e^{i n t} i e^{i t} d t
$$

- $n \neq-1: \int_{\gamma} f(z) d z=\int_{0}^{2 \pi} \frac{d}{d t} \frac{e^{i(n+1) t}}{n+1} d t=\left.\frac{e^{i(n+1) t}}{n+1}\right|_{0} ^{2 \pi}=0$.
- $n=-1: \int_{\gamma} f(z) d z=\int_{0}^{2 \pi} i d t=2 \pi i$.

Theorem (Cauchy's Theorem for Polynomials)
Let γ be the circle $\left|z-z_{0}\right|=R$ and let p be a polynomial. Then

$$
\int_{\gamma} p(z) d z=0
$$

Properties of Integrals over curves

Let $\gamma \subseteq U$ with parametrization z and $f: U \rightarrow \mathbb{C}$ be continuous.

- $\int_{\gamma}(\alpha f(z)+\beta g(z)) d z=\alpha \int_{\gamma} f(z) d z+\beta \int_{\gamma} g(z) d z$.
- If γ^{-}(with parametrization $\left.z^{-}(t)=z(b+a-t)\right)$ is γ with reverse orientation, then

$$
\int_{\gamma^{-}} f(z) d z=-\int_{\gamma} f(z) d z
$$

- If length $(\gamma):=\int_{\gamma}\left|z^{\prime}(t)\right| d t$ then

$$
\left|\int_{\gamma} f(z) d z\right| \leq \sup _{z \in \gamma}|f(z)| \cdot \operatorname{length}(\gamma) .
$$

Theorem (Integral independent of curve)

Let $f: U \rightarrow \mathbb{C}$ be a continuous function such that $f=F^{\prime}$ for a holomorphic function $F: U \rightarrow \mathbb{C}$. Let γ be a piecewise smooth parametrized curve in U such that $\gamma(a)=w_{1}$ and $\gamma(b)=w_{2}$. Then

$$
\int_{\gamma} f(z) d z=F\left(w_{2}\right)-F\left(w_{1}\right) .
$$

In particular, if γ is closed then $\int_{\gamma} f(z) d z=0$.

Proof.

We prove the result for smooth curves only. Note that

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{a}^{b} F^{\prime}(z(t)) z^{\prime}(t) d t \\
= & \int_{a}^{b} \frac{d}{d t} F(z(t)) d t=F(z(b))-F(z(a))=F\left(w_{2}\right)-F\left(w_{1}\right) .
\end{aligned}
$$

If γ is closed then $w_{1}=w_{2}$, and hence $\int_{\gamma} f(z) d z=0$.

Corollary

Let U be an open convex subset of \mathbb{C}. Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. If $f^{\prime}=0$ then f is a constant function.

Proof.
Let $w_{0} \in U$. We must check that $f(w)=f\left(w_{0}\right)$ for any $w \in U$. Let γ be a straight line connecting w_{0} and w. By the last theorem,

$$
0=\int_{\gamma} f^{\prime}(z) d z=f(w)-f\left(w_{0}\right)
$$

and hence f is a constant function.
Example
There is no holomorphic function $F: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ such that

$$
F^{\prime}(z)=\frac{1}{z} \text { for every } z \in \mathbb{C} \backslash\{0\}
$$

Can not define logarithm as a holomorphic function on $\mathbb{C} \backslash\{0\}$!

Logarithm as a Holomorphic Function

Define the logarithm function by

$$
\log (z)=\log (r)+i \theta \text { if } z=r \exp (i \theta), \theta \in(0,2 \pi)
$$

Then \log is holomorphic in the region $r>0$ and $0<\theta<2 \pi$.
Problem (Cauchy-Riemann Equations in Polar Co-ordinates)
The $C-R$ equations are equivalent to $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{1}{r} \frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r}$.
Hint. Treat u, v as functions in r and θ, and apply Chain Rule.

Some Properties of Logarithm.

- $e^{\log z}=e^{\log (|z|)+i \arg z}=|z| e^{i \arg z}=z$.
- $\log z$ can be defined in the region $r>0$ and $0 \leqslant \theta<2 \pi$. But it is not continuous on the positive real axis.

Goursat's Theorem (Without Proof)

Theorem

If U is an open set and T is a triangle with interior contained in U then $\int_{T} f(z) d z=0$ whenever f is holomorphic in U.

Corollary

If U is an open set and R is a rectangle with interior contained in U then $\int_{R} f(z) d z=0$ whenever f is holomorphic in U.
Proof.
E_{1}, \cdots, E_{4} : sides of R, D : diagonal of R with + ve orientation, D^{-}: diagonal with -ve orientation. Since $\int_{D^{-}} f(z) d z=-\int_{D} f(z) d z$,
$\int_{R} f(z) d z=\int_{E_{1} \cup E_{2}} f(z) d z+\int_{E_{3} \cup E_{4}} f(z) d z$
$=\left(\int_{E_{1} \cup E_{2}} f(z) d z+\int_{D} f(z) d z\right)+\left(\int_{E_{3} \cup E_{4}} f(z) d z+\int_{D^{-}} f(z) d z\right)=$
$\int_{T_{1}} f(z) d z+\int_{T_{2}} f(z) d z=0$.

An Application I: $e^{-\pi x^{2}}$ is its own "Fourier transform"

Consider the function $f(z)=e^{-\pi z^{2}}$. For a fixed $x_{0} \in \mathbb{R}$, let γ denote the rectagular curve with parametrization $z(t)$ given by

$$
\begin{gathered}
z(t)=t \text { for }-R \leqslant t \leqslant R, \quad z(t)=R+i t \text { for } 0 \leqslant t \leqslant x_{0} \\
z(t)=-t+i x_{0} \text { for }-R \leqslant t \leqslant R, \quad z(t)=-R-\text { it for }-x_{0} \leqslant t \leqslant 0 .
\end{gathered}
$$

Let $\gamma_{1}, \cdots, \gamma_{4}$ denote sides of γ. Note that $\int_{\gamma} e^{-\pi z^{2}} d z=\sum_{j=1}^{4} \int_{\gamma_{j}} e^{-\pi z^{2}} d z$. Further, as $R \rightarrow \infty$, we obtain

- $\int_{\gamma_{1}} f(z) d z=\int_{-R}^{R} e^{-\pi t^{2}} d t \rightarrow 1$.
- $\left|\int_{\gamma_{2}} f(z) d z\right| \leqslant \int_{0}^{x_{0}} e^{-\pi\left(R^{2}-t^{2}\right)} d t=e^{-\pi R^{2}} \int_{0}^{x_{0}} e^{\pi t^{2}} d t \rightarrow 0$.
- $\int_{\gamma_{3}} f(z) d z=-\int_{-R}^{R} e^{-\pi\left(t^{2}-x_{0}^{2}+2 i t x_{0}\right)} d t \rightarrow$ $-e^{\pi x_{0}^{2}} \int_{-\infty}^{\infty} e^{-\pi t^{2}} e^{-2 i t x_{0}} d t$.
- $\left|\int_{\gamma_{4}} f(z) d z\right| \leq \int_{-x_{0}}^{0} e^{-\pi\left(R^{2}-t^{2}\right)} d t=e^{-\pi R^{2}} \int_{-x_{0}}^{0} e^{\pi t^{2}} d t \rightarrow 0$.

As a consequence of Goursat's Theorem, we see that $\int_{\gamma} e^{-\pi z^{2}} d z=0$, and hence $\int_{-\infty}^{\infty} e^{-\pi t^{2}} e^{-2 i t x_{0}} d t=e^{-\pi x_{0}^{2}}$.

Application II: Existence of a Primitive in disc

Theorem

Let \mathbb{D} denote the unit disc centered at 0 and let $f: \mathbb{D} \rightarrow \mathbb{C}$ be a holomorphic function. Then there exists a holomorphic function $F: \mathbb{D} \rightarrow \mathbb{C}$ such that $F^{\prime}=f$.

Proof.

For $z \in \mathbb{D}$, define $F(z)=\int_{\gamma_{1}} f(w) d w+\int_{\gamma_{2}} f(w) d w$, where $\gamma_{1}(t)=t \operatorname{Re}(z)(0 \leqslant t \leqslant 1), \gamma_{2}(t)=\operatorname{Re}(z)+i t \operatorname{Im}(z)(0 \leqslant t \leqslant 1)$.

Claim: $F^{\prime}(z)=f(z)$. Indeed, for $h \in \mathbb{C}$ such that $z+h \in \mathbb{D}$, by Goursat's Theorem, $F(z+h)-F(z)=\int_{\gamma_{3}} f(w) d w$, where

$$
\gamma_{3}(t)=(1-t) z+t(z+h)(0 \leqslant t \leqslant 1)
$$

However, since f is (uniformly) continuous on γ_{3},
$\frac{1}{h} \int_{\gamma_{3}} f(w) d w=\frac{1}{h} \int_{0}^{1} f\left(\gamma_{3}(t)\right) \gamma_{3}^{\prime}(t) d t=\int_{0}^{1} f\left(\gamma_{3}(t)\right) d t \rightarrow f(z)$.

Cauchy's Theorem for a disc

Theorem
If f is a holomorphic function in a disc, then

$$
\int_{\gamma} f(z) d z=0
$$

for any piecewise smooth, closed curve γ in that disc.
Corollary
If f is a holomorphic function in an open set containing some circle C, then

$$
\int_{C} f(z) d z=0
$$

Proof.
Let D be a disc containing the disc with boundary C. Now apply Cauchy's Theorem.

An Example

Consider $f(z)=\frac{1-e^{i z}}{z^{2}}$. Then f is holomorphic on $\mathbb{C} \backslash\{0\}$. Consider the indented semicircle γ (with $0<r<R$) given by

$$
\begin{gathered}
z_{1}(t)=t(-R \leqslant t \leqslant-r), z_{2}(t)=r e^{-i t}(-\pi \leqslant t \leqslant 0), \\
z_{3}(t)=t(r \leqslant t \leqslant R), z_{4}(t)=\operatorname{Re}^{i t}(0 \leqslant t \leqslant \pi) .
\end{gathered}
$$

Since $z_{1}(-R)=-R=z_{4}(\pi), \gamma$ is closed. By Cauchy's Theorem,

$$
\begin{aligned}
& \int_{-R}^{-r} \frac{1-e^{i t}}{t^{2}} d t+\int_{-\pi}^{0} \frac{1-e^{i z_{2}(t)}}{z_{2}(t)^{2}}\left(-i r e^{-i t}\right) d t \\
+ & \int_{r}^{R} \frac{1-e^{i t}}{t^{2}} d t+\int_{0}^{\pi} \frac{1-e^{i z_{4}(t)}}{z_{4}(t)^{2}}\left(i R e^{i t}\right) d t=0 .
\end{aligned}
$$

Since $|f(x+i y)| \leq \frac{1+e^{-y}}{|z|^{2}} \leq \frac{2}{|z|^{2}}$, the 4th integral $\rightarrow 0$ as $R \rightarrow \infty$.

Thus we obtain

$$
\int_{-\infty}^{-r} \frac{1-e^{i t}}{t^{2}} d t+\int_{-\pi}^{0} \frac{1-e^{i z_{2}(t)}}{z_{2}(t)^{2}}\left(-i r e^{-i t}\right) d t+\int_{r}^{\infty} \frac{1-e^{i t}}{t^{2}} d t=0
$$

Next, note that $\frac{1-e^{i z_{2}(t)}}{z_{2}(t)^{2}}=E\left(z_{2}(t)\right)-\frac{i z_{2}(t)}{z^{2}}$, where $E(z)=\frac{1+i z-e^{i z}}{z^{2}}$ is a bounded function near 0 . It follows that

$$
\int_{-\pi}^{0} \frac{1-e^{i z_{2}(t)}}{z_{2}(t)^{2}}\left(-i r e^{-i t}\right) d t \rightarrow-\int_{-\pi}^{0} d t=-\pi \text { as } r \rightarrow 0 .
$$

This yields the following:

$$
\int_{-\infty}^{0} \frac{1-e^{i t}}{t^{2}} d t+\int_{0}^{\infty} \frac{1-e^{i t}}{t^{2}} d t=\pi
$$

Taking real parts, we obtain

$$
\int_{-\infty}^{\infty} \frac{1-\cos (x)}{x^{2}} d x=\pi
$$

Cauchy Integral Formula I

The values of f at boundary determine its values in the interior!

Theorem

Let U be an set containing the disc $\mathbb{D}_{R}\left(z_{0}\right)$ centred at z_{0} and suppose f is holomorphic in U. If C denotes the circle $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=R\right\}$ of positive orientation, then

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w \text { for any } z \in \mathbb{D}_{R}\left(z_{0}\right)
$$

Example

$$
\text { - } \int_{|w-i|=1} \frac{-w^{2}}{w^{2}+1} d w=\int_{|w-i|=1} \frac{-w^{2} /(w+i)}{w-i} d w=\pi \text {. }
$$

$$
\int_{|w-\pi / 2|=\pi} \frac{\sin (w)}{w(w-\pi / 2)} d w=
$$

$$
\frac{2}{\pi}\left(\int_{|w-\pi / 2|=\pi} \frac{\sin (w)}{w-\pi / 2} d w-\int_{|w-\pi / 2|=\pi} \frac{\sin (w)}{w} d w\right)=4 i
$$

An Application: Fundamental Theorem of Algebra

Corollary

Any non-constant polynomial p has a zero in \mathbb{C}.
Anton R. Schep, Amer. Math. Monthly, 2009 January.
If possible, suppose that p has no zeros, that is, $p(z) \neq 0$ for every $z \in \mathbb{C}$. Let $f(z)=\frac{1}{p(z)}$ and $z_{0}=0$ in CIF:

- $\frac{1}{p(0)}=\frac{1}{2 \pi i} \int_{|w|=R} \frac{1 / p(w)}{w}$,
- $\left|\frac{1}{2 \pi} \int_{|w|=R} \frac{d w}{w p(w)}\right| \leq \max _{|w|=R}\left|\frac{1}{p(w)}\right|=\frac{1}{\min _{|w|=R}|p(w)|}$.
- $\min _{|w|=R}|p(w)| \leq|p(0)|$.
- $|p(z)| \geq|z|^{n}\left(1-\left|a_{n-1}\right| /|z|-\cdots-\left|a_{0}\right| /\left|z^{n}\right|\right)$.
- $\lim _{R \rightarrow \infty} \min _{|w|=R}|p(w)|=\infty$.

This is not possible!

Proof of CIF I

Want to prove: If $f: U \rightarrow \mathbb{C}$ is holomorphic and $\overline{\mathbb{D}}_{R}\left(z_{0}\right) \subseteq U$,

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w \text { for any } z \in \mathbb{D}_{R}\left(z_{0}\right)
$$

For $0<r, \delta<R$, consider the "keyhole" contour $\gamma_{r, \delta}$ with

- a big 'almost' circle $\left|w-z_{0}\right|=R$ of positive orientation,
- a small 'almost' circle $|w-z|=r$ of negative orientation,
- a corridor of width δ with two sides of opposite orientation.
$\frac{f(w)}{w-z}$ is holomorphic in the "interior" of $\gamma_{r, \delta}$. By Cauchy's Theorem,

$$
\int_{\gamma_{r, \delta}} \frac{f(w)}{w-z} d w=0
$$

$\gamma_{r, \delta}$ has three parts: big circle C, small circle C_{r}, and corridor.

- As $\delta \rightarrow 0$, integrals over sides of corridor get cancel.
- Note that

$$
\int_{C_{r}} \frac{f(w)-f(z)}{w-z} d w+\int_{C_{r}} \frac{f(z)}{w-z} d w=\int_{C_{r}} \frac{f(w)}{w-z} d w .
$$

As $r \rightarrow 0,1^{\text {st }}$ integral tends to 0 (since integrand is bounded near z), while $2^{\text {nd }}$ integral is equal to $-f(z)(2 \pi i)$.

- As a result, we obtain

$$
0=\int_{\gamma_{r, \delta}} \frac{f(w)}{w-z} d w=\int_{C} \frac{f(w)}{w-z} d w-f(z)(2 \pi i)
$$

Maximum Modulus Principle for Polynomials

Problem

Let p be a polynomial. Show that if p is non-constant then $\max _{|z| \leq 1}|p(z)|=\max _{|z|=1}|p(z)|$.

Hint. If possible, there is $z_{0} \in \mathbb{D}$ be such that $|p(z)| \leq\left|p\left(z_{0}\right)\right|$ for every $|z| \leq 1$. Write $p(z)=b_{0}+b_{1}\left(z-z_{0}\right)+\cdots+b_{n}\left(z-z_{0}\right)^{n}$. If $0<r<1-\left|z_{0}\right|$ then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|p\left(z_{0}+r e^{i \theta}\right)\right|^{2} d \theta=\left|b_{0}\right|^{2}+\left|b_{1}\right|^{2} r^{2}+\cdots+\left|b_{n}\right|^{2} r^{2 n}
$$

However, $\left|b_{0}\right|^{2}=\left|p\left(z_{0}\right)\right|^{2}$. Try to get a contradiction!

Growth Rate of Derivative

$$
\begin{aligned}
& \frac{f(z+h)-f(z)}{h}=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{h}\left(\frac{1}{w-z-h}-\frac{1}{w-z}\right) d w \\
& =\frac{1}{2 \pi i} \int_{C} f(w)\left(\frac{1}{(w-z-h)(w-z)}\right) d w
\end{aligned}
$$

- Taking limit as $h \rightarrow 0$, we obtain

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{(w-z)^{2}} d w
$$

Corollary (Cauchy Estimates)

Under the hypothesis of CIF I,

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{\max _{\left|z-z_{0}\right|=R}|f(z)|}{R}
$$

Entire Functions

Definition

f is entire if f is complex differentiable at every point in \mathbb{C}.
Theorem (Liouville's Theorem)
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. If there exists $M \geq 0$ such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$, then f is a constant function.

Proof.
By Cauchy estimates, for any $R>0$,

$$
\left|f^{\prime}\left(z_{0}\right)\right| \leqslant \frac{\max _{\left|z-z_{0}\right|=R}|f(z)|}{R} \leqslant \frac{M}{R} \rightarrow 0 \text { as } R \rightarrow \infty
$$

Thus $f^{\prime}\left(z_{0}\right)=0$. But z_{0} was arbitrary, and hence $f^{\prime}=0$.

An Application: Range of Entire Functions

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function. We contend that the range of f intersects every disc in the complex plane.

- On the contrary, assume that some disc $\mathbb{D}_{R}\left(z_{0}\right)$ does not intersect the range of f, that is,

$$
\left|f(z)-z_{0}\right| \geqslant R \text { for all } z \in \mathbb{C} .
$$

- Define $g: \mathbb{C} \rightarrow \mathbb{C}$ by $g(z)=\frac{1}{f(z)-z_{0}}$.
- Note that g is entire such that $|g(z)| \leqslant \frac{1}{R}$ for all $z \in \mathbb{C}$.
- By Liouville's Theorem, g must be a constant function, and hence so is f. This is not possible.

Cauchy Integral Formula II

Corollary

Let U be an open set containing the $\operatorname{disc} \mathbb{D}_{R}\left(z_{0}\right)$ and suppose f is holomorphic in U. If C denotes the circle $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=R\right\}$ of positive orientation, then

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(w)}{(w-z)^{n+1}} d w \text { for any } z \in \mathbb{D}_{R}\left(z_{0}\right)
$$

We have already seen a proof in case $n=1$. Let try case $n=2$.

$$
\begin{aligned}
& \frac{f^{\prime}(z+h)-f^{\prime}(z)}{h}=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{h}\left(\frac{1}{(w-z-h)^{2}}-\frac{1}{(w-z)^{2}}\right) d w \\
& =\frac{1}{2 \pi i} \int_{C} f(w)\left(\frac{h+2(w-z)}{(w-z-h)^{2}(w-z)^{2}}\right) d w
\end{aligned}
$$

- Taking limit as $h \rightarrow 0$, we obtain

$$
f^{\prime \prime}(z)=\frac{2}{2 \pi i} \int_{C} \frac{f(w)}{(w-z)^{3}} d w
$$

Holomorphic function is Analytic

Theorem
Suppose $\overline{\mathbb{D}}_{R}\left(z_{0}\right) \subseteq U$ and $f: U \rightarrow \mathbb{C}$ is holomorphic. Then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for all } z \in \mathbb{D}_{R}\left(z_{0}\right)
$$

where $a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$ for all integers $n \geqslant 0$.
Proof.
Let $z \in \mathbb{D}_{R}\left(z_{0}\right)$ and write

$$
\frac{1}{w-z}=\frac{1}{w-z_{0}-\left(z-z_{0}\right)}=\frac{1}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}}
$$

Since $\left|w-z_{0}\right|=R$ and $z \in \mathbb{D}_{R}\left(z_{0}\right)$, there is $0<r<1$ such that

$$
\left|z-z_{0}\right| /\left|w-z_{0}\right|<r .
$$

Proof Continued.

Thus the series $\frac{1}{1-\frac{z-z_{0}}{w-z_{0}}}=\sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n}$ converges uniformly for any w on $\left|w-z_{0}\right|=R$. We combine this with CIF I

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w \text { for any } z \in \mathbb{D}_{R}\left(z_{0}\right)
$$

to conclude that

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(w)}{w-z} d w=\frac{1}{2 \pi i} \int_{C} \frac{1}{w-z_{0}} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} d w
$$

$$
\stackrel{\text { uni cgn }}{=} \sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{C} \frac{1}{\left(w-z_{0}\right)^{n+1}} d w\right)\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n},
$$

where we used CIF II.
Remark Once complex differentiable function is infinitely complex differentiable!

Taylor Series

We refer to the power series $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ as the Taylor series of f around z_{0}.

Example
Let us compute the Taylor series of $\log z$ in the disc $|z-i|=\frac{1}{2}$. Note that $a_{0}=\log i, a_{1}=\left.\frac{1}{z}\right|_{z=i}=-i$, and more generally

$$
a_{n}=\frac{f^{(n)}(i)}{n!}=(-1)^{n+1} \frac{1}{i^{n}} \frac{1}{n!}(n-1)!=\frac{-i^{n}}{n}
$$

Hence the Taylor series of $\log z$ is given by

$$
\log i+\sum_{n=1}^{\infty} \frac{-i^{n}}{n}(z-i)^{n}\left(z \in \mathbb{D}_{\frac{1}{2}}(i)\right)
$$

Theorem
An entire function f is given by $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$.

Corollary (Identity Theorem for entire functions)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Suppose $\left\{z_{k}\right\}$ of distinct complex numbers converges to $z_{0} \in \mathbb{C}$. If $f\left(z_{k}\right)=0$ for all $k \geqslant 1$ then $f(z)=0$ for all $z \in \mathbb{C}$.

Proof.

Write $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}(z \in \mathbb{C})$. If $f \neq 0$, there is a smallest integer n_{0} such that $f^{\left(n_{0}\right)}\left(z_{0}\right) \neq 0$. Thus $f(z)=$ $\left.\sum_{n=n_{0}}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{n_{0}}\left(z-z_{0}\right)^{n_{0}}\left(1+\sum_{n=1}^{\infty} \frac{a_{n_{0}+n}}{a_{n_{0}}}\left(z-z_{0}\right)^{n}\right)\right)$. Since the "bracketed term" is non-zero at z_{0}, one can find $z_{k} \neq z_{0}$ such that RHS is non-zero at z_{k}. But LHS is 0 at z_{k}. Not possible! \square

Remark. 'Identity Theorem' does not hold for real differentiable functions.

Trigonometric Functions

Define $\sin z$ and $\cos z$ functions as follows:

$$
\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}, \quad \cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n}
$$

Note that $\sin z$ and $\cos z$ are entire functions (since RoC is ∞). We know the fundamental identity relating $\sin x$ and $\cos x$:

$$
\sin ^{2} x+\cos ^{2} x=1 \text { for } x \in \mathbb{R}
$$

In particular, the function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by
$f(z)=\sin ^{2} z+\cos ^{2} z-1$ is entire and satisfies $f(x)=0$ for $x \in \mathbb{R}$. Hence by the previous result,

$$
\sin ^{2} z+\cos ^{2} z=1 \text { for } z \in \mathbb{C}
$$

A Problem

Note that there is an entire function f such that $f(z+1)=f(z)$ for all $z \in \mathbb{C}$, but f is not constant:

$$
f(z)=e^{2 \pi i z}
$$

Similarly, there exists a non-constant entire function f such that $f(z+i)=f(z)$ for all $z \in \mathbb{C}$. However, if an entire function f satisfies both the above conditions, then it must be a constant!

Problem

Does there exist an entire function such that

$$
f(z+1)=f(z), f(z+i)=f(z) \text { for all } z \in \mathbb{C} ?
$$

Hint. Show that f is bounded and apply Liouville's Theorem.

Zeros of a Holomorphic Function

Theorem (Identity Theorem)

Let U be an open connected subset of \mathbb{C} and let $f: U \rightarrow \mathbb{C}$ is a holomorphic function. Suppose $\left\{z_{k}\right\}$ of distinct numbers converges to $z_{0} \in U$. If $f\left(z_{k}\right)=0$ for all $k \geqslant 1$ then $f(z)=0$ for all $z \in U$.

Definition

A complex number $a \in \mathbb{C}$ is a zero for a holomorphic function $f: U \rightarrow \mathbb{C}$ if $a \in U$ and $f(a)=0$.

- The identity theorem says that the zeros of f has "isolated". This means that any closed disc contained in U contains at most finitely many zeros of f.
- However f can have infinitely many zeros: $\sin (z)$.
- The zeros of f is always countable.

Theorem

Suppose that f is a non-zero holomorphic function on a connected set U and $a \in U$ such that $f(a)=0$. Then there exist $R>0$, a holomorphic function $g: \mathbb{D}_{R}(a) \rightarrow \mathbb{C}$ with $g(z) \neq 0$ for all $z \in \mathbb{D}_{R}(a)$ and a unique integer $n>0$ such that

$$
f(z)=(z-a)^{n} g(z) \text { for all } z \in \mathbb{D}_{R}(a) \subseteq U
$$

Proof.

Write $f(z)=\sum_{k=0}^{\infty} a_{k}(z-a)^{k}$, let $n \geqslant 1$ be a smallest integer such that $a_{n} \neq 0$ (which exists by the Identity Theorem). Then $f(z)=(z-a)^{n} g(z)$, where $g(z)=\sum_{k=n}^{\infty} a_{k}(z-a)^{k-n}$. Note that $g(a)=a_{n} \neq 0$, and hence by continuity of g, there exists $R>0$ such that $g(z) \neq 0$ for all $z \in \mathbb{D}_{R}(a)$.

We say that f has zero at a of order (or multiplicity) n. For example, z^{n} has zero at 0 of order n.

Zeros of $\sin (\pi z)$

Example

- $\sin (\pi z)$ has zeros at all integers; all are of order 1 . Indeed, $\sin (\pi k)=0$ and $\left.\frac{d}{d z} \sin (\pi z)\right|_{z=k}=\pi \cos (\pi k) \neq 0$.
- If possible, suppose $\sin \left(\pi z_{0}\right)=0$ for some $z_{0}=x_{0}+i y_{0} \in \mathbb{C}$.
- By Euler's Formula, $\sin (\pi z)=\frac{e^{i \pi z}-e^{-i \pi z}}{2 i}$. Hence $e^{i \pi z_{0}}=e^{-i \pi z_{0}}$, that is, $e^{2 i \pi z_{0}}=1$. Taking modulus on both sides, we obtain $e^{-2 \pi y_{0}}=1$. Since e^{x} is one to one, $y_{0}=0$.
- Thus $e^{2 i \pi x_{0}}=1$, that is, $\cos \left(2 \pi x_{0}\right)+i \sin \left(2 \pi x_{0}\right)=1$, and hence x_{0} is an integer.

Problem

Show that all zeros of $\cos \left(\frac{\pi}{2} z\right)$ are at odd integers.

Singularities of a meromorphic function

By a deleted neighborhood of a, we mean the punctured disc

$$
\mathbb{D}_{R}(a) \backslash\{a\}=\{z \in \mathbb{C}: 0<|z-a|<R\}
$$

Definition

An isolated singularity of a function f is a complex number z_{0} such that f is defined in a deleted neighborhood of z_{0}.
For instance, 0 is an isolated singularity of

- $f(z)=\frac{1}{z}$.
- $f(z)=\frac{\sin z}{z}$
- $f(z)=e^{\frac{1}{z}}$.

The singularities in these examples are different in a way.
Indeed, a holomorphic function can have three kinds of isolated singularities: pole, removable singularity, essential singularity

Poles

Definition

Let f be a function defined in a deleted neighborhood of a. We say that f has a pole at a if the function $\frac{1}{f}$, defined to be 0 at a, is holomorphic on $\mathbb{D}_{R}(a)$.

Example

- $\frac{1}{z-a}$ has a pole at a.
- 0 is not a pole of $\frac{\sin z}{z}\left(\right.$ since $\frac{\sin z}{z} \rightarrow 1$ as $\left.z \rightarrow 0\right)$.
- The poles of a rational function (in a reduced form $\frac{p(z)}{q(z)}$) are precisely the zeros of $q(z)$. For instance, $\frac{z+1}{z+2}$ has only pole at $z=-2$ while the poles of $\frac{(z+1) \cdots(z+5)}{(z+2) \cdots(z+6)}$ are at $z=-1,-6$.

Theorem

Suppose that f has a pole at $a \in U$. Then there exist $R>0$, a holomorphic function $h: \mathbb{D}_{R}(a) \rightarrow \mathbb{C}$ with $h(z) \neq 0$ for all $z \in \mathbb{D}_{R}\left(z_{0}\right)$ and a unique integer $n>0$ such that

$$
f(z)=(z-a)^{-n} h(z) \text { for all } z \in \mathbb{D}_{R}(a) \backslash\{a\} \subseteq U
$$

Proof.

Note that $\frac{1}{f}$, with 0 at a, is a holomorphic function. Hence, by a result on Page 55, there exist $R>0$, a holomorphic function $g: \mathbb{D}_{R}(a) \rightarrow \mathbb{C}$ with $g(z) \neq 0$ for all $z \in \mathbb{D}_{R}(a)$ and a unique integer $n>0$ such that $\frac{1}{f(z)}=(z-a)^{n} g(z)$ for all $z \in \mathbb{D}_{R}(a)$. Now let $h(z)=\frac{1}{g(z)}$.

We say that f has pole at a of order (or multiplicity) n. For example, $\frac{1}{z^{n}}$ has pole at 0 of order n.

Example

Let us find poles of $f(z)=\frac{1}{1+z^{4}}$.

- For this, let us first solve $1+z^{4}=0$. Taking modulus on both sides of $z^{4}=-1$, we obtain $|z|=1$. Thus $z=e^{i \theta}$, and hence $e^{4 i \theta}=e^{i \pi}$. This forces $4 \theta=\pi+2 \pi k$ for integer k. Thus $e^{i \theta}=e^{i \frac{\pi}{4}}, e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}$.
- Note that $\frac{1}{f(z)}=\left(z-e^{i \frac{\pi}{4}}\right)^{-1} h(z)$, where $h(z)=\left(z-e^{i \frac{3 \pi}{4}}\right)\left(z-e^{i \frac{5 \pi}{4}}\right)\left(z-e^{i \frac{7 \pi}{4}}\right)$ is non-zero for every $z \in \mathbb{D}_{R}\left(e^{i \frac{\pi}{4}}\right)$ for some $R>0$. Thus $z=e^{i \frac{\pi}{4}}$ is a pole.
- Similar argument shows that $e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}$ are poles of f.

Principal Part and Residue Part

Suppose that f has a pole of order n at a. By theorem on Page 60, there exist $R>0$, a holomorphic function $h: \mathbb{D}_{R}(a) \rightarrow \mathbb{C}$ with $h(z) \neq 0$ for all $z \in \mathbb{D}_{R}(a)$ and a unique integer $n>0$ such that

$$
f(z)=(z-a)^{-n} h(z) \text { for all } z \in \mathbb{D}_{R}(a) \backslash\{a\} \subseteq U
$$

Since h is holomorphic, $h(z)=b_{0}+b_{1}(z-a)+b_{2}(z-a)^{2}+\cdots$,

$$
f(z)=\frac{b_{0}}{(z-a)^{n}}+\frac{b_{1}}{(z-a)^{n-1}}+\frac{b_{2}}{(z-a)^{n-2}}+\cdots
$$

which can be rewritten as

$$
f(z)=\left(\frac{a_{-n}}{(z-a)^{n}}+\frac{a_{-n+1}}{(z-a)^{n-1}}+\cdots+\frac{a_{-1}}{z-a}\right)+\left(a_{0}+a_{1}(z-a)+\cdots\right),
$$

$=$ Principal part $P(z)$ of f at $a+H(z)$.
Definition
The residue res ${ }_{a} f$ of f at a is defined as the coefficient a_{-1} of $\frac{1}{z-a}$.

The residue res ${ }_{a} f$ is special among all terms in the principal part $P(z)=\frac{a-n}{(z-a)^{n}}+\frac{a-n+1}{(z-a)^{n-1}}+\cdots+\frac{a-1}{z-a}$ in the following sense:

- $\frac{a_{-k}}{(z-a)^{k}}$ has a primitive in a deleted neighborhood of a iff $k \neq 1$.
- If C_{+}is the circle $|z-a|=R$ then $\frac{1}{2 \pi i} \int_{C_{+}} P(z) d z=a_{-1}$.
- If f has a simple pole (pole of order 1) at a then
$(z-a) f(z)=a_{-1}+a_{0}(z-a)+\cdots \rightarrow a_{-1}=\operatorname{res}_{a} f$ as $z \rightarrow a:$

$$
\operatorname{res}_{a} f=\lim _{z \rightarrow a}(z-a) f(z)
$$

- Suppose f has a pole of order 2. Then $(z-a)^{2} f(z)=a_{-2}+a_{-1}(z-a)+a_{0}(z-a)^{2}+\cdots$, and hence

$$
\frac{d}{d z}(z-a)^{2} f(z)=a_{-1}+2 a_{0}(z-a)+\cdots
$$

Thus we obtain res ${ }_{a} f=\lim _{z \rightarrow a} \frac{d}{d z}(z-a)^{2} f(z)$.

Residue at poles of finite order

Theorem
If f has a pole of order n at a, then

$$
\operatorname{res}_{a} f=\lim _{z \rightarrow a} \frac{1}{(n-1)!}\left(\frac{d}{d z}\right)^{n-1}(z-a)^{n} f(z)
$$

Proof.

We already know

$$
\begin{gathered}
f(z)=\left(\frac{a_{-n}}{(z-a)^{n}}+\frac{a_{-n+1}}{(z-a)^{n-1}}+\cdots+\frac{a_{-1}}{z-a}\right)+\left(a_{0}+a_{1}(z-a)+\cdots\right), \\
(z-a)^{n} f(z)=\left(a_{-n}+\frac{a_{-n+1}}{z-a}+\cdots+(z-a)^{n-1} a_{-1}\right) \\
+(z-a)^{n}\left(a_{0}+a_{1}(z-a)+\cdots\right),
\end{gathered}
$$

Now differentiate $(n-1)$ times and take limit as $z \rightarrow a$.

Example

Consider the function $f(z)=\frac{1}{1+z^{2}}$. Then f has simple poles at $z= \pm i$. Recall that

$$
\operatorname{res}_{a} f=\lim _{z \rightarrow a}(z-a) f(z) .
$$

Thus we obtain

$$
\begin{gathered}
\operatorname{res}_{i} f=\lim _{z \rightarrow i}(z-i) f(z)=\lim _{z \rightarrow i} \frac{1}{z+i}=\frac{1}{2 i} . \\
\text { res }_{-i} f=\lim _{z \rightarrow-i}(z+i) f(z)=\lim _{z \rightarrow-i} \frac{1}{z-i}=\frac{1}{-2 i}=2 i .
\end{gathered}
$$

The Residue Formula

Theorem

Suppose that $f: U \rightarrow \mathbb{C}$ is holomorphic except a pole at $a \in U$. Let $C \subseteq U$ be one of the following closed contour enclosing a in U and with "interior" contained in U: A circle, triangle, semicircle union segment etc. Then

$$
\int_{C} f(z) d z=2 \pi i r e s_{a} f
$$

Example

Let $f(z)=\frac{1}{1+z^{2}}$. Let γ_{R} be union of $[-R, R]$ and semicircle C_{R} :

$$
z_{1}(t)=t(-R \leqslant t \leqslant R), z_{2}(t)=\operatorname{Re}^{i t}(0 \leqslant t \leqslant \pi)
$$

i is the only pole in the "interior" of γ_{R} if $R>1$. Also, res $_{i} f=\frac{1}{2 i}$.

By Residue Theorem, $\int_{-R}^{R} \frac{1}{1+x^{2}} d x+\int_{C_{R}} f(z) d z=\pi$. Let $R \rightarrow \infty$,

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x+\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=\pi
$$

We claim that $\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0$. To see that,

$$
\left|\int_{C_{R}} f(z) d z\right| \leqslant \int_{0}^{\pi}\left|\frac{1}{1+R^{2} e^{2 i t}}\right| R d t \leqslant \int_{0}^{\pi}\left|\frac{1}{R^{2}-1}\right| R d t
$$

$=\pi \frac{R}{R^{2}-1} \rightarrow 0$ as $R \rightarrow \infty$. This yields the formula:

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\pi
$$

Proof of Residue Formula

Consider the keyhole contour $\gamma_{r, \delta}$ that avoids the pole a : $\gamma_{r, \delta}$ consists of 'almost' C,

- a circle $C_{r}:|w-a|=r$ of negative orientation, and
- a corridor of width δ with two sides of opposite orientation. Letting $\delta \rightarrow 0$, we obtain by Cauchy's Theorem that

$$
\int_{C} f(z) d z+\int_{C_{r}} f(z) d z=0
$$

However, we know that

$$
f(z)=\left(\frac{a_{-n}}{(z-a)^{n}}+\frac{a_{-n+1}}{(z-a)^{n-1}}+\cdots+\frac{a_{-1}}{z-a}\right)+\left(a_{0}+a_{1}(z-a)+\cdots\right) .
$$

Now apply Cauchy's Integral Formula and Cauchy's Theorem to see that $\int_{C_{r}} f(z) d z=a_{-1}(-2 \pi i)$ (as C_{r} has negative orientation).

Residue Formula: General Version

Theorem

Suppose that $f: U \rightarrow \mathbb{C}$ is holomorphic except pole at a_{1}, \cdots, a_{k} in U. Let $C \subseteq U$ be one of the following closed contour enclosing a_{1}, \cdots, a_{k} in U and with "interior" contained in U : A circle, triangle, semicircle union segment etc. Then

$$
\int_{C} f(z) d z=2 \pi i \sum_{i=1}^{k} \operatorname{res}_{a_{i}} f .
$$

Example

Consider the function $\cosh (z)=\frac{e^{z}+e^{-z}}{2}$. Then $\cosh (\pi z)$ is an entire function with zeros at points z for which $e^{\pi z}=-e^{-\pi z}$, that is, $e^{2 \pi z}=-1$. Solving this for z, we obtain $i / 2$ and $3 i / 2$ as the only zeros of $\cosh (\pi z)$. Note that $\cosh (\pi z)$ is periodic of period $2 i$.

Example Continued ...

- For $s \in \mathbb{R}$, consider now the function $f(z)=\frac{e^{-2 \pi i z s}}{\cosh (\pi z)}$.
- Check that f has simple poles at $a_{1}=i / 2$ and $a_{2}=3 i / 2$.
- Further, $\operatorname{res}_{a_{1}} f=\frac{e^{\pi s}}{\pi i}$ and $\operatorname{res}_{a_{2}} f=-\frac{e^{3 \pi s}}{\pi i}$ (Verify).

Let γ denote the rectagular curve with parametrization

$$
\gamma_{1}(t)=t \text { for }-R \leqslant t \leqslant R, \quad \gamma_{2}(t)=R+\text { it for } 0 \leqslant t \leqslant 2
$$

$\gamma_{3}(t)=-t+2 i$ for $-R \leqslant t \leqslant R, \quad \gamma_{4}(t)=-R-i t$ for $-2 \leqslant t \leqslant 0$.
By Residue Theorem

$$
\int_{\gamma} f(z) d z=2 \pi i\left(\frac{e^{\pi s}}{\pi i}-\frac{e^{3 \pi s}}{\pi i}\right)=2\left(e^{\pi s}-e^{3 \pi s}\right)
$$

Further, as $R \rightarrow \infty$, we obtain

- $\int_{\gamma_{1}} f(z) d z \rightarrow \int_{-\infty}^{\infty} \frac{e^{-2 \pi i t s}}{\cosh (\pi t)} d t$.
- $\left|\int_{\gamma_{2}} f(z) d z\right| \leqslant \int_{0}^{2} \frac{2 e^{4 \pi|s|}}{e^{\pi R}-e^{-\pi R}} d t \rightarrow 0$. Similarly, $\int_{\gamma_{4}} f(z) d z \rightarrow 0$.
- $\int_{\gamma_{3}} f(z) d z=-\int_{-R}^{R} \frac{e^{-2 \pi i z s}}{\cosh (\pi z)} d t \rightarrow-e^{4 \pi s} \int_{-\infty}^{\infty} \frac{e^{-2 \pi i t s}}{\cosh (\pi t)} d t$.

Example Continued ...

We club all terms together to obtain

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{e^{-2 \pi i t s}}{\cosh (\pi t)} d t-e^{4 \pi s} \int_{-\infty}^{\infty} \frac{e^{-2 \pi i t s}}{\cosh (\pi t)} d t=\int_{\gamma} f(z) d z=2\left(e^{\pi s}-e^{3 \pi s}\right) \\
\int_{-\infty}^{\infty} \frac{e^{-2 \pi i t s}}{\cosh (\pi t)} d t=\frac{2}{1-e^{4 \pi s}}\left(e^{\pi s}-e^{3 \pi s}\right)
\end{gathered}
$$

However, $\left(e^{\pi s}-e^{3 \pi s}\right)\left(e^{\pi s}+e^{-\pi s}\right)=1-e^{4 \pi s}$, and hence

$$
\int_{-\infty}^{\infty} \frac{e^{-2 \pi i t s}}{\cosh (\pi t)} d t=\frac{2}{e^{\pi s}+e^{-\pi s}}=\cosh (\pi s)
$$

Thus the "Fourier transform" of reciprocal of cosine hyperbolic function is reciprocal of cosine hyperbolic function itself.

Removable Singularity

Definition

Let U be an open subset of \mathbb{C} and let $a \in U$. We say that a is a removable singularity of a holomorphic function $f: U \backslash\{a\} \rightarrow \mathbb{C}$ if there exists $\alpha \in \mathbb{C}$ such that $g: U \rightarrow \mathbb{C}$ below is holomorphic:

$$
g(z)=f(z)(z \neq a), g(a)=\alpha
$$

Example

Consider the function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ given by $f(z)=\frac{1-\cos z}{z^{2}}$. Then 0 is a removable singularity of f. Indeed, define $g: U \rightarrow \mathbb{C}$ by

$$
g(z)=f(z)(z \neq 0), g(0)=\frac{1}{2} .
$$

Then g is complex differentiable at $0: \frac{g(h)-g(0)}{h}=\frac{\frac{1-\cos h}{h^{2}}-\frac{1}{2}}{h} \rightarrow 0$. Hence g is holomorphic on \mathbb{C}.

Theorem

Let U be an open subset of \mathbb{C} containing a. Let $f: U \backslash\{a\} \rightarrow \mathbb{C}$ be a holomorphic function. If $\alpha:=\lim _{z \rightarrow a} f(z)$ exists and for some holomorphic function $F: \mathbb{D}_{R}(a) \rightarrow \mathbb{C}$,

$$
f(z)-\alpha=(z-a) F(z)\left(z \in \mathbb{D}_{R}(a)\right),
$$

then f has removable singularity at a.
Proof.
Define $g: U \rightarrow \mathbb{C}$ by

$$
g(z)=f(z)(z \neq a), g(a)=\alpha .
$$

We must check that g is complex differentiable at a. However,

$$
\frac{g(h)-g(a)}{h-a}=\frac{f(h)-\alpha}{h-a}=F(h) \rightarrow F(a) .
$$

It follows that g is holomorphic on U.

Example

Let $a=\pi / 2$ and $f(z)=\frac{1-\sin z}{\cos z}$. Then
$\cos z=\sum_{n=0}^{\infty}\left(\left.\frac{d^{n}}{d z^{n}} \cos z\right|_{z=\pi / 2}\right)(z-\pi / 2)^{n}=(z-\pi / 2) H(z), H(\pi / 2) \neq 0$,
$1-\sin z=\sum_{n=0}^{\infty}\left(\left.\frac{d^{n}}{d z^{n}}(1-\sin z)\right|_{z=\pi / 2}\right)(z-\pi / 2)^{n}=(z-\pi / 2)^{2} G(z)$
It follows that $\alpha:=\lim _{z \rightarrow \pi / 2} f(z)=0$. Also, for some $R>0$,

$$
f(z)-\alpha=(z-\pi / 2) \frac{G(z)}{H(z)}\left(z \in \mathbb{D}_{R}(a)\right)
$$

and hence $z=\pi / 2$ is a removable singularity of f.

Laurent Series and Essential Singularity

Theorem
For $0<r<R<\infty$, let $\mathbb{A}_{r, R}\left(z_{0}\right):\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$, suppose $f: \mathbb{A}_{r, R}\left(z_{0}\right) \rightarrow \mathbb{C}$ is holomorphic. Then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for all } z \in \mathbb{A}_{r, R}\left(z_{0}\right)
$$

where $a_{n}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=\rho} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$ for integers n and $r<\rho<R$.
We refer to the series appearing above as the Laurent series of f around z_{0}.

Outline of the Proof.

One needs Cauchy Integral Formula for the union of $\left|z-z_{0}\right|=r_{1}$ and $\left|z-z_{0}\right|=R_{1}$ (can be obtained from Cauchy's Theorem by choosing appropriate keyhole contour), where $r<r_{1}<R_{1}<R$.
Thus for $z \in \mathbb{A}_{r, R}\left(z_{0}\right)$,

Outline of the Proof Continued.

$$
f(z)=\frac{1}{2 \pi i} \int_{\left|w-z_{0}\right|=R_{1}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \int_{\left|w-z_{0}\right|=r_{1}} \frac{f(w)}{w-z} d w .
$$

One may argue as in the proof of Cauchy Integral Theorem to see that first integral gives the series $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ while second one leads to $\sum_{n=-\infty}^{1} a_{n}\left(z-z_{0}\right)^{n}$.

Definition

Let U be an open set and $z_{0} \in U$ be an isolated singularity of the holomorphic function $f: U \backslash\left\{z_{0}\right\} \rightarrow \mathbb{C}$. We say that z_{0} is an essential singularity of f if infinitely many coefficients among a_{-1}, a_{-2}, \cdots, in the Laurent series of f are non-zero.

- The Laurent series of $f(z)=e^{1 / z}$ around 0 is $1+\frac{1}{z}+\frac{1}{2} \frac{1}{z^{2}}+\frac{1}{3!} \frac{1}{z^{3}}+\cdots$. Hence 0 is an essential singularity.
- Similarly, 0 is an essential singularity of $z^{2} \sin (1 / z)$.

Let us examine the Laurent series of f around z_{0} :

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for all } z \in \mathbb{A}_{r, R}\left(z_{0}\right)
$$

- z_{0} is a removable singularity if and only if $a_{-n}=0$ for $n=1,2, \cdots$,
- z_{0} is a pole of order k if and only if $a_{-n}=0$ for $n=k+1, k+2, \cdots$, and $a_{-k} \neq 0$.
- z_{0} is an essential singularity if and only if $a_{-n} \neq 0$ for infinitely many values of $n \geq 1$.
In particular, an isolated singularity is essential if it is neither a removable singularity nor a pole.

Counting Zeros and Poles

In an effort to understand "logarithm" of a holomorphic function $f: U \rightarrow \mathbb{C} \backslash\{0\}$, we must understand the change in the argument

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

of f as z traverses the curve γ. The argument principle says that for the unit circle γ, this is completely determined by the zeros and poles of f inside γ. We prove this in a rather special case, under the additional assumption that f has finitely many zeroes and poles.

Theorem (Argument Principle)

Suppose f is holomorphic except at poles in an open set containing a circle C and its interior. If f has no poles and zeros on C, then

$$
\begin{gathered}
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=(\text { number of zeros of } f \text { inside } C) \\
-(\text { number of poles of } f \text { inside } C) .
\end{gathered}
$$

Here the number of zeros and poles of f are counted with their multiplicities.

Proof.

Let z_{1}, \cdots, z_{k} (of multiplicities n_{1}, \cdots, n_{k}) and p_{1}, \cdots, p_{l} (of multiplicities m_{1}, \cdots, m_{k}) denote the zeros and poles of f inside C respectively. If f has a zero at z_{1} of order n_{1} then

$$
f(z)=\left(z-z_{1}\right)^{n_{1}} g(z)
$$

in the interior of C for a non-vanishing function g near z_{1}.

Proof Continued.

Note that $\frac{f^{\prime}(z)}{f(z)}=\frac{n_{1}\left(z-z_{1}\right)^{n_{1}-1} g(z)+\left(z-z_{1}\right)^{n_{1}} g^{\prime}(z)}{\left(z-z_{1}\right)^{n_{1}} g(z)}=\frac{n_{1}}{z-z_{1}}+\frac{g^{\prime}(z)}{g(z)}$. Integrating both sides, we obtain

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=n_{1}+\frac{1}{2 \pi i} \int_{C} \frac{g^{\prime}(z)}{g(z)} d z .
$$

Now g has a zero at z_{2} of multiplicity n_{2}. By same argument to $g(z)=\left(z-z_{2}\right)^{n_{2}} h(z)$, we obtain

$$
\frac{1}{2 \pi i} \int_{C} \frac{g^{\prime}(z)}{g(z)} d z=n_{2}+\frac{1}{2 \pi i} \int_{C} \frac{h^{\prime}(z)}{h(z)} d z .
$$

Continuing this we obtain

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=n_{1}+\cdots+n_{k}+\frac{1}{2 \pi i} \int_{C} \frac{F^{\prime}(z)}{F(z)} d z \quad(\star)
$$

where $F(z)$ has no zeros.

Proof Continued.

Note that F has poles at p_{1}, \cdots, p_{l} (of multiplicities m_{1}, \cdots, m_{k}) respectively. Write $F(z)=\left(z-p_{1}\right)^{-m_{1}} G(z)$ and note that

$$
\begin{gathered}
\frac{F^{\prime}(z)}{F(z)}=\frac{-m_{1}\left(z-z_{1}\right)^{-m_{1}-1} G(z)+\left(z-p_{1}\right)^{-m_{1}} G^{\prime}(z)}{\left(z-p_{1}\right)^{-m_{1}} G(z)} \\
=\frac{-m_{1}}{z-p_{1}}+\frac{G^{\prime}(z)}{G(z)}
\end{gathered}
$$

It follows that $\int_{C} F^{\prime} / F=-m_{1}$. Continuing this we obtain

$$
\frac{1}{2 \pi i} \int_{C} \frac{F^{\prime}(z)}{F(z)} d z=-m_{1}-\cdots-m_{l}
$$

(we need Cauchy's Theorem here). Now substitute this in (\star).

Applications

Corollary

Suppose f is holomorphic in an open set containing a circle C and its interior. If f has no zeros on C, then

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=\text { (number of zeros of } f \text { inside } C \text {). }
$$

Here the number of zeros of f are counted with their multiplicities.

Theorem (Rouché's Theorem)

Suppose that f and g are holomorphic in an open set containing a circle C and its interior. If $|f(z)|>|g(z)|$ for all $z \in C$, then f and $f+g$ have the same number of zeros inside the circle C.

Outline of Proof of Rouché's Theorem.

Let $F_{t}(z):=f+t g$ for $t \in[0,1]$. By the corollary above,

$$
\text { Number of zeros of } F_{t}(z)=\int_{C} \frac{f_{t}^{\prime}(z)}{f_{t}(z)} d z
$$

is an integer-valued, continuous function of t, and hence by Intermediate Value Theorem,

Number of zeros of $F_{0}(z)=$ Number of zeros of $F_{1}(z)$.
But $F_{0}(z)=f$ and $F_{1}(z)=f(z)+g(z)$.
Example
Consider the polynomial $p(z)=2 z^{10}+4 z^{2}+1$. Then $p(z)$ has exactly 2 zeros in the open unit disc \mathbb{D}. Indeed, apply Rouché's Theorem to $f(z)=4 z^{2}$ and $g(z)=2 z^{10}+1$:

$$
|f(z)|=4>\left|2 z^{10}+1\right|=|g(z)| \text { on }|z|=1
$$

Example

Let p be non-constant polynomial. If $|p(z)|=1$ whenever $|z|=1$ then the following hold true:

- $p(z)=0$ for z in the open unit disc. Indeed, by Maximum Modulus Principle, $|p(z)| \leq 1$. Hence, if $p(z) \neq 0$ then $\frac{1}{|p(z)|} \geq 1$ with maximum inside the disc, which is not possible.
- $p(z)=w_{0}$ has a root for every $\left|w_{0}\right|<1$, that is, the range of p contains the unit disc. To see this, apply Rouché's Theorem to $f(z)=p(z)$ and $g(z)=-w_{0}$ to conclude that

$$
f(z)+g(z)=p(z)-w_{0}
$$

has a zero inside the disc.

Problem

Show that the functional equation $\lambda=z+e^{-z}(\lambda>1)$ has exactly one (real) solution in the right half plane.

Möbius Transformations

A Möbius transformation is a function of the form

$$
f(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C} \text { such that } a d-b c \neq 0
$$

Note that f is holomorphic with derivative

$$
f^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}} .
$$

This also shows that $f^{\prime}(z) \neq 0$, and hence f is non-constant.
Example

- If $c=0$ and $d=1$ then $f(z)=a z+b$ is a linear polynomial.
- If $a=0$ and $b=1$ then $f(z)=\frac{1}{c z+d}$ is a rational function.

The Möbius transformation $f(z)=\frac{a z+b}{c z+d}$ is bijective with inverse

$$
g(z)=\frac{-d z+b}{c z-a}
$$

Indeed, $f \circ g(z)=z=g \circ f(z)$ wherever f and g are defined.
Example
Let $f(z)=\frac{a z+b}{c z+d}$ and $g(z)=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}$ be Möbius transformations. Then $f \circ g$ is a also a Möbius transformation given by

$$
f \circ g(z)=\frac{\alpha z+\beta}{\gamma z+\delta}
$$

where

$$
\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right] .
$$

Lemma

If γ is a circle or a line and $f(z)=\frac{1}{z}$ then $f(\gamma)$ is a circle or line.

Proof.

Suppose γ is the circle $|z-a|=r$ (We leave the case of line as an exercise). Then $f(\gamma)$ is obtained by replacing z by $w=\frac{1}{z}$: $|1 / w-a|=r$, that is, $1 /|w|^{2}-2 \operatorname{Re}(a / \bar{w})=r^{2}-|a|^{2}$.

- If $r=|a|$ (that is, γ passes through 0), then $\operatorname{Re}(a w)=1 / 2$, which gives the line $\operatorname{Re}(w) \operatorname{Re}(a)-\operatorname{Im}(w) \operatorname{Im}(a)=\frac{1}{2}$.
- If $r \neq|a|$ then $1 /\left(r^{2}-|a|^{2}\right)-2 \frac{|w|^{2}}{r^{2}-|a|^{2}} \operatorname{Re}(a / \bar{w})=|w|^{2}$. Thus

$$
\begin{gathered}
1 /\left(r^{2}-|a|^{2}\right)=|w|^{2}+2 \operatorname{Re}\left(w\left(a /\left(r^{2}-|a|^{2}\right)\right)\right. \\
=|w|^{2}+2 \operatorname{Re}\left(w\left(a /\left(r^{2}-|a|^{2}\right)\right)+|a|^{2} /\left(r^{2}-|a|^{2}\right)^{2}-|a|^{2} /\left(r^{2}-|a|^{2}\right)^{2}\right. \\
=\left|w-a /\left(r^{2}-|a|^{2}\right)\right|^{2}-|a|^{2} /\left(r^{2}-|a|^{2}\right)^{2} .
\end{gathered}
$$

Thus $f(\gamma)$ is the circle $\left|w-a /\left(r^{2}-|a|^{2}\right)\right|=r /\left|r^{2}-|a|^{2}\right|$.

Theorem

Any Möbius transformation f maps circles and lines onto circles and lines.

Proof.
We consider two cases:

- $c=0$: In this case f is linear and sends line to a line and circle to a circle.
- $c \neq 0$: Then $f(z)=f_{1} \circ f_{2} \circ f_{3}(z)$, where

$$
f_{1}(z)=\frac{a}{c}-\left(\frac{a d-b c}{c}\right) z, f_{2}(z)=\frac{1}{z}, \text { and } f_{3}(z)=c z+d
$$

Since f_{1}, f_{2}, f_{3} map circles and lines onto circles and lines (by Lemma and Case $c=0$), so does f.

Schwarz's Lemma (without Proof)

Theorem
If $f: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic map such that $f(0)=0$ then $|f(z)| \leq|z|$ for every $z \in \mathbb{D}$.

Problem

What are all the bijective holomorphic maps from \mathbb{D} onto \mathbb{D} ?

- $f(z)=a z$ for $|a|=1$.
- $\psi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ (Hint. By Cauchy Integral Formula, $\left|\psi_{a}(z)\right| \leq \max _{|w|=1}\left|\psi_{a}(w)\right|$, which is 1$)$.

Corollary

If $f(0)=0$ and $f: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic bijective map then f is a rotation: $f(z)=e^{i \theta} z$ for some $\theta \in \mathbb{R}$.
Proof.
By Schwarz's Lemma, $|f(z)| \leq|z|$. However, same argument applies to $f^{-1}:\left|f^{-1}(z)\right| \leq|z|$. Replacing z by $f(z)$, we obtain

Proof Continued.

$|z| \leq|f(z)|$ implying $|f(z)|=|z|$. But then $f(z) / z$ attains max value 1 in \mathbb{D}. Hence $f(z) / z$ must be a constant function of modulus 1 , that is, $f(z)=e^{i \theta} z$.
Theorem
If $f: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic bijective map then f is a Möbius transformation:

$$
f(z)=e^{i \theta} \frac{a-z}{1-\bar{a} z} \text { for some } a \in \mathbb{D} \text { and } \theta \in \mathbb{R}
$$

Proof.

Note that $f(a)=0$ for some $a \in \mathbb{D}$. Consider $f \circ \psi_{a}$ for $\psi_{a}(z)=\frac{a-z}{1-\bar{a} z}$, and note that $f \circ \psi_{a}(0)=0$. Also, $f \circ \psi_{a}$ is a holomorphic function on \mathbb{D}. Further, since $\left|\psi_{a}(z)\right|<1$ whenever $|z|<1, f \circ \psi_{a}$ maps $\mathbb{D} \rightarrow \mathbb{D}$. By last corollary, $f \circ \psi_{a}(z)=e^{i \theta} z$, that is, $f(z)==e^{i \theta} \psi_{a}^{-1}(z)$. However, by a routine calculation, $\psi_{a}^{-1}(z)=\psi_{a}(z)$.

References

[A] E. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2006.
[B] P. Shunmugaraj, Lecture notes on Complex analysis, available online, http://home.iitk.ac.in/ psraj/mth102/lecture-notes.html

