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Course Structure

• This course will be conducted in Flipped Classroom Mode.

• Every Friday evening, 3 to 7 videos of total duration 60
minutes will be released.

• The venue and timings of Flipped classrooms: W/Th
09:00-9:50 L7

• The timing of tutorial is M 09:00-9:50.

• • R. Churchill and J. Brown, Complex variables and applications.
Fourth edition. McGraw-Hill Book Co., New York, 1984. - an
elementary text suitable for a one semester; emphasis on
applications.

• E. Stein and R. Shakarchi, Complex Analysis, Princeton
University Press, 2006.- Modern treatment of the subject, but
recommended for second reading.

• Lecture notes and assignments by P. Shunmugaraj, (strongly
recommended for students), http://home.iitk.ac.in/ psraj/

• Please feel free to contact me through chavan@iitk.ac.in



Syllabus

• Complex Numbers, Complex Differentiation and C-R
Equations,

• Analytic Functions, Power Series and Derivative of Power
Series,

• Complex Exponential, Complex Logarithm and Trigonometric
Functions,

• Complex Integration, Cauchy’s Theorem and Cauchy’s
Integral Formulas,

• Taylor series, Laurent series and Cauchy residue theorem,

• Mobius Transformation.



Complex Numbers

• real line: R, real plane: R2

• A complex number : z = x + iy , where x , y ∈ R and i is an
imaginary number that satisfies i2 + 1 = 0.

• complex plane: C
• Re : C→ R by Re (z) = real part of z = x

• Re (z + w) = Re z + Re w , Re (a w) = a Re w if a ∈ R

Remark Same observation holds for Im : C→ R defined by
Im (z) = imaginary part of z = y .



Definition
A map f from C is R-linear if f (z + w) = f (z) + f (w) and
f (a z) = a f (z) for all z ,w ∈ C and a ∈ R.

Example

• Re and Im are R-linear maps.

• id(z) = z and c(z) = Re (z)− i Im (z) are R-linear maps.

• H : C→ R2 defined by H(z) = (Re(z), Im(z)) is R-linear.

Remark H is an R-linear bijection from the real vector space C
onto R2.



C (over R) and R2 are same as vector spaces. But complex
multiplication makes C different from R2:

z w := (Re z Re w − Im z Im w) + i(Re z Im w + Im w Re w).

In particular, any non-zero complex number z has a inverse:

1

z
=

z̄

|z |2
,

where

• z̄ = Re (z)− i Im (z)

• |z | =
√

Re (z)2 + Im (z)2



Polar Decomposition

Any non-zero complex number z can be written in the polar form:

z = r e i arg z ,

where r > 0 and arg z ∈ R. Note that

• r is unique. Indeed, r = |z |.
• arg z is any real number satisfying

z

|z |
= cos(arg z) + i sin(arg z).

• arg z is unique up to a multiple of 2π.



For θ ∈ [0, 2π), define rotation rθ : C→ C by angle θ as

rθ(z) = e iθz .

For t ∈ (0,∞), define dilation dt : C→ C of magnitude t as

dt(z) = t z .

Example

For a non-zero w , define mw : C→ C by mw (z) = w z . Then

mw = d|w | ◦ rarg w .



Convergence in C

Definition
Let {zn} be a sequence of complex numbers. Then

• {zn} is a Cauchy sequence if |zm − zn| → 0 as m, n→∞.
• {zn} is a convergent sequence if |zn − z | → 0 for some z ∈ C.

Theorem (C is complete)

Every Cauchy sequence in C is convergent.

Proof.

• |zm − zn| → 0 iff |Re (zm − zn)| → 0 and |Im (zm − zn)| → 0.

• But Re and Im are R-linear. Hence {zn} is Cauchy iff
{Re (zn)} and {Im (zn)} are Cauchy sequences.

• However, any Cauchy sequence in R is convergent.



Continuity

Definition
A function f defined on C is continuous at a if

zn → a =⇒ f (zn)→ f (a).

f is continuous if it is continuous at every point.

Example

• H(z) = (Re (z), Im (z)).

• mw (z) = w z .

• p(z) = a0 + a1z + · · ·+ anzn.

• f (z) = |z |.



Complex Differentiability

For a ∈ C and r > 0, let Dr (a) = {z ∈ C : |z − a| < r}.

Definition
A function f : Dr (a)→ C is complex differentiable at a if

lim
h→0

f (a + h)− f (a)

h
= f ′(a) for some f ′(a) ∈ C.

f is holomorphic if it is complex differentiable at every point.

Remark

lim
h→0

f (a + h)− f (a)− Da(h)

h
= 0,

where Da : C→ C is given by Da(h) = f ′(a) h.

Theorem
Every holomorphic function is continuous.



Example

f (z) = zn is holomorphic. Indeed, f ′(a) = nan−1:

(a + h)n − an

h
= (a + h)n−1 + (a + h)n−2a + · · ·+ an−1 → nan−1.

More generally, f (z) = a0 + a1z + · · ·+ anzn is holomorphic.

Example

f (z) = z̄ is not complex differentiable at 0. Indeed, h̄
h → +1 along

real axis and h̄
h → −1 along imaginary axis.

Example

For b, d ∈ C, define f (z) = z+b
z+d . Then f is complex differentiable

at any a ∈ C \ {−d}.



Cauchy-Riemann Equations

Write f : C→ C as f = u + i v for real valued functions u and v .
Assume that the partial derivatives of u and v exists. Consider

Ju,v (a) =

[
ux(a) uy (a)
vx(a) vy (a).

]
(Jacobian matrix).

Recall that H(z) = (Re (z), Im (z)). Treating (Re (z), Im (z)) as a
column vector, define R-linear map Fa : C→ C by

Fa(z) = H−1 ◦ Ju,v (a) ◦ H(z)

= (ux(a)Re (z) + uy (a)Im (z)) + i(vx(a)Re (z) + vy (a)Im (z)).

Question When Fa(α z) = αFa(z) for every α ∈ C (or, when Fa is
C-linear) ?



Suppose that Fa(i z) = iFa(z). Letting z = 1, we obtain

Fa(i) = uy (a) + ivy (a), iFa(1) = −vx(a) + iux(a).

Thus we obtain ux = vy and uy = −vx (C-R Equations).

Interpretation Let ∇ u = (ux , uy ) and ∇ v = (vx , vy ). If f
satisfies C-R equations then ∇u · ∇v = 0. The level curves u = c1

and v = c2 are orthogonal, where they intersect.

• f (z) = z then u = x = c1 and v = y = c2 (pair of lines).

• If f (z) = z2 then u = x2 − y 2 = c1 and v = 2xy = c2 (pair of
hyperbolas).



Suppose f : C→ C is complex differentiable at a. Note that

Fa(h) = (ux(a) + ivx(a))h1 + (uy (a) + ivy (a))h2.

However,

lim
h1→0

f (a + h1)− f (a)− (ux(a) + ivx(a))h1

h1
= 0,

lim
h2→0

f (a + ih2)− f (a)− (uy (a) + ivy (a))h2

ih2
= 0.

By uniqueness of limit, ux(a) + ivx(a) = f ′(a) =
uy (a)+ivy (a)

i , and

Fa(h) = f ′(a)h,

and hence Fa is C-linear. We have thus proved that the C-R
equations are equivalent to C-linearity of Fa!



Theorem (Cauchy-Riemann Equations)

If f = u + i v and u, v have continuous partial derivatives then f is
complex differentiable if and only if f satisfies C-R equations.

Corollary

If f = u + i v is complex differentiable at a, then

|f ′(a)|2 = det Ju,v (a).

In particular, f : C→ C is constant if f ′ = 0.

Proof.
We already noted that f ′(a) = ux(a) + ivx(a), and hence
|f ′(a)|2 = ux(a)2 + vx(a)2. However, by the C-R equations,

Ju,v (a) =

[
ux(a) −vx(a)
vx(a) ux(a).

]
,

so that det Ju,v (a) = ux(a)2 + vx(a)2 = |f ′(a)|2.



Range of a Holomorphic Function

• Suppose f : C→ C be a holomorphic function with range
contained in the real axis. Then f = u + i v with v = 0. By
C-R equations,

ux = 0, uy = 0.

Hence u is constant, and hence so is f .

• Suppose f : C→ C be a holomorphic function with range
contained in a line. Note that for some θ ∈ R and c > 0, the
range of g(z) = e iθf (z) + c is contained in the real axis. By
last case, g , and hence f is constant.

We will see later that the range of any non-constant holomorphic
function f : C→ C intersects every disc in the complex plane!



Power Series

Definition
A power series is an expansion of the form

∞∑
n=0

anzn, where an ∈ C.

∑∞
n=0 anzn converges absolutely if

∑∞
n=0 |an||z |n <∞.

Definition (Domain of Convergence)

D := {w ∈ C :
∑∞

n=0 |an||w |n <∞}.
Note that

• w0 ∈ D =⇒ e iθw0 ∈ D for any θ ∈ R.
• w0 ∈ D =⇒ w ∈ D for any w ∈ C with |w | 6 |w0|.

Conclude that D is either C, DR(0) or DR(0) for some R > 0.



Radius of Convergence

Definition
The radius of convergence (for short, RoC) of

∑∞
n=0 anzn is

defined as

R := sup{|z | :
∞∑
n=0

|an||z |n <∞}.

Theorem (Hadamard’s Formula)

The RoC of
∑∞

n=0 anzn is given by

R =
1

lim sup |an|1/n
,

where we use the convention that 1/0 =∞ and 1/∞ = 0.



Examples

•
∑k

n=0 anzn, an = 0 for n > k , R =∞.
•
∑∞

n=0
zn

n! , an = 1
n! , R =∞.

•
∑∞

n=0 zn, an = 1, R = 1.

•
∑∞

n=0 n!zn, an = n!, R = 0.

The coefficients of a power series may not be given by a single
formula.

Example

Consider the power series
∑∞

n=0 zn2
. Then

ak = 1 if k = n2, and 0 otherwise.

Clearly, lim sup |an|1/n = 1, and hence R = 1.



Theorem
If the RoC of

∑∞
n=0 anzn is R then the RoC of the power series∑∞

n=1 nanzn−1 is also R.

Proof.
Since limn→∞ n1/n = 1, R = 1

lim sup |nan|1/n
= 1

lim sup |an|1/n
.

Example

Consider the power series
∑∞

n=0 anzn, where an is number of
divisors of n1111. Note that

1 ≤ an ≤ n1111.

Note that 1 ≤ lim sup |an|1/n ≤ lim sup(n1111)1/n = 1, and hence
the RoC of

∑∞
n=0 anzn equals 1.



Power series as Holomorphic function

Theorem
Let

∑∞
n=0 anzn be a power series with RoC equal to R > 0. Define

f : DR → C by f (z) =
∑∞

n=0 anzn. Then f is holomorphic with
f ′(z) = g(z) =

∑∞
n=1 nanzn−1.

• For z0, find h ∈ C, r > 0 with max{|z0|, |z0 + h|} < r < R.

• Sk(z) =
∑k

n=0 anzn, Ek(z) =
∑∞

n=k+1 anzn.

• f (z0+h)−f (z0)
h − g(z0) = A + (S ′k(z0)− g(z0)) + B, where

A :=
(Sk(z0 + h)− Sk(z0)

h
−S ′k(z0)

)
,B :=

(Ek(z0 + h)− Ek(z0)

h

)
.

• |B| 6
∞∑

n=k+1

|an|
∣∣∣(z0 + h)n − zn

0

h

∣∣∣ 6 ∞∑
n=k+1

|an|nrn−1.



Corollary

A power series is infinitely complex differentiable in the disc of
convergence.

Let U be a subset of C. We say that U is open if for every z0 ∈ U,
there exists r > 0 such that Dr (z0) ⊆ U.

Definition
Let U ⊆ be open. A function f : U → C is said to be analytic
at z0 if there exists a power series

∑∞
n=0 an(z − z0)n with positive

radius of convergence such that

f (z) =
∞∑
n=0

an(z − z0)n for all z ∈ Dr (z0)

for some r > 0. A function f is analytic if it is analytic at z0 ∈ U.



Example (Analyticity of Polynomials and Linear Equations)

Any polynomial p(z) = c0 + c1z + · · ·+ cnzn is analytic in C. To
see this, fix z0 ∈ C. We show that there exist unique scalars
a0, · · · , an such that

p(z) = a0 + a1(z − z0) + · · ·+ an(z − z0)n for every z ∈ C.

Comparing coefficients of 1, z , · · · , zn−1 on both sides, we get
1 −z0 z2

0 · · ·
0 1 −2z0 · · ·
0 0 1 −3z0 · · ·
...

...
...

. . .

0 · · · 0 1




a0

a1
...

an−1

an

 =


c0

c1
...

cn−1

cn

 .

Alternatively, the solution is given by ak = p(k)(z0)
k! (k = 0, · · · , n).



Exponential Function

Appeared e i arg z in the polar decomposition of z .

Definition
The exponential function ez is the power series given by

ez =
∑∞

n=0
zn

n! (z ∈ C).

Since the radius of convergence of ez is ∞, exponential is
holomorphic everywhere in C. Further,

(ez)′ =
∞∑
n=1

nzn−1

n!
=
∞∑
n=1

zn−1

(n − 1)!
= ez .

Thus ez is a solution of the differential equation f ′ = f . Moreover,
ez is the only solution of the IVP: f ′ = f , f (0) = 1.



Certainly, ez is not surjective as for no z ∈ C, ez = 0. If w 6= 0
then by polar decomposition, w = |w |e i arg w (0 6 arg w < 2π).
Also, since |w | = e log |w |, we obtain

w = e log |w |+i arg w .

Thus the range of ez is the punctured complex plane C \ {0}.
Further, since arg z is unique up to a multiple of 2π, ez is one-one
in {z ∈ C : 0 6 arg z < 2π}, but not in C.

Theorem (Polynomials Vs Exponential)

If p is a polynomial then lim
|z|→∞

|p(z)| =∞. However,

lim
|z|→∞

|ez | 6=∞.



Parametrized curves

• A parametrized curve is a function z : [a, b]→ C. We also say
that γ is a curve with parametrization z .

• A parametrized curve z is smooth if z ′(t) exists and is
continuous on [a, b], and z ′(t) 6= 0 for t ∈ [a, b].

• A parametrized curve z is piecewise smooth if z is continuous
on [a, b] and z is smooth on every [ak , ak+1] for some points
a0 = a < a1 < · · · < an = b.

• A parametrized curve z is closed if z(a) = z(b).

Example

• z(t) = z0 + re it (0 6 t 6 2π) (+ve orientation).
z(t) = z0 + re−it (0 6 t 6 2π) (−ve orientation).

• Rectangle with vertices R,R + iz0,−R + iz0,−R with +ve
orientation is a parametrized curve, which is piecewise smooth
but not smooth.



Integration along curves

Definition
Given a smooth curve γ parametrized by z : [a, b]→ C, and f a
continuous function on γ, define the integral of f along γ by∫

γ
f (z)dz =

∫ b

a
f (z(t))z ′(t)dt.

Remark. If there is another parametrization z̃(s) = z(t(s)) for
some continuously differentiable bijection t : [a, b]→ [c , d ] then,∫ b
a f (z(t))z ′(t)dt =

∫ d
c f (z̃(s))z̃ ′(s)ds.

Definition
In case γ is piecewise smooth, the integral of f along γ is given by∫

γ
f (z)dz =

n−1∑
k=0

∫ ak+1

ak

f (z(t))z ′(t)dt.



Examples

Example

Let γ be the circle |z | = 1, f (z) = zn for an integer n. Note that∫
γ

f (z)dz =

∫ 2π

0
f (e it)(e it)′dt =

∫ 2π

0
e int ie itdt.

• n 6= −1:
∫
γ f (z)dz =

∫ 2π
0

d
dt

e i(n+1)t

n+1 dt = e i(n+1)t

n+1

∣∣∣∣2π
0

= 0.

• n = −1:
∫
γ f (z)dz =

∫ 2π
0 idt = 2πi .

Theorem (Cauchy’s Theorem for Polynomials)

Let γ be the circle |z − z0| = R and let p be a polynomial. Then∫
γ

p(z)dz = 0.



Properties of Integrals over curves

Let γ ⊆ U with parametrization z and f : U → C be continuous.

•
∫
γ(αf (z) + βg(z))dz = α

∫
γ f (z)dz + β

∫
γ g(z)dz .

• If γ− (with parametrization z−(t) = z(b + a− t)) is γ with
reverse orientation, then∫

γ−
f (z)dz = −

∫
γ

f (z)dz .

• If length(γ) :=
∫
γ |z
′(t)|dt then∣∣∣∣∫

γ
f (z)dz

∣∣∣∣ ≤ sup
z∈γ
|f (z)| · length(γ).



Theorem (Integral independent of curve)

Let f : U → C be a continuous function such that f = F ′ for a
holomorphic function F : U → C. Let γ be a piecewise smooth
parametrized curve in U such that γ(a) = w1 and γ(b) = w2. Then∫

γ
f (z)dz = F (w2)− F (w1).

In particular, if γ is closed then
∫
γ f (z)dz = 0.

Proof.
We prove the result for smooth curves only. Note that∫

γ
f (z)dz =

∫ b

a
f (z(t))z ′(t)dt =

∫ b

a
F ′(z(t))z ′(t)dt

=

∫ b

a

d

dt
F (z(t))dt = F (z(b))− F (z(a)) = F (w2)− F (w1).

If γ is closed then w1 = w2, and hence
∫
γ f (z)dz = 0.



Corollary

Let U be an open convex subset of C. Let f : U → C be a
holomorphic function. If f ′ = 0 then f is a constant function.

Proof.
Let w0 ∈ U. We must check that f (w) = f (w0) for any w ∈ U.
Let γ be a straight line connecting w0 and w . By the last theorem,

0 =

∫
γ

f ′(z)dz = f (w)− f (w0),

and hence f is a constant function.

Example

There is no holomorphic function F : C \ {0} → C such that

F ′(z) =
1

z
for every z ∈ C \ {0}.

Can not define logarithm as a holomorphic function on C \ {0}!



Logarithm as a Holomorphic Function

Define the logarithm function by

log(z) = log(r) + iθ if z = r exp(iθ), θ ∈ (0, 2π).

Then log is holomorphic in the region r > 0 and 0 < θ < 2π.

Problem (Cauchy-Riemann Equations in Polar Co-ordinates)

The C-R equations are equivalent to ∂u
∂r = 1

r
∂v
∂θ ,

1
r
∂u
∂θ = −∂v

∂r .

Hint. Treat u, v as functions in r and θ, and apply Chain Rule.

Some Properties of Logarithm.

• e log z = e log(|z|)+i arg z = |z |e i arg z = z .

• log z can be defined in the region r > 0 and 0 6 θ < 2π. But
it is not continuous on the positive real axis.



Goursat’s Theorem (Without Proof)

Theorem
If U is an open set and T is a triangle with interior contained in U
then

∫
T f (z)dz = 0 whenever f is holomorphic in U.

Corollary

If U is an open set and R is a rectangle with interior contained in
U then

∫
R f (z)dz = 0 whenever f is holomorphic in U.

Proof.
E1, · · · ,E4: sides of R, D: diagonal of R with +ve orientation, D−:
diagonal with −ve orientation. Since

∫
D− f (z)dz = −

∫
D f (z)dz ,∫

R f (z)dz =
∫
E1∪E2

f (z)dz +
∫
E3∪E4

f (z)dz

=
( ∫

E1∪E2
f (z)dz +

∫
D f (z)dz

)
+
( ∫

E3∪E4
f (z)dz +

∫
D− f (z)dz

)
=∫

T1
f (z)dz +

∫
T2

f (z)dz = 0.



An Application I: e−πx2

is its own “Fourier transform”

Consider the function f (z) = e−πz
2
. For a fixed x0 ∈ R, let γ

denote the rectagular curve with parametrization z(t) given by

z(t) = t for − R 6 t 6 R, z(t) = R + it for 0 6 t 6 x0,

z(t) = −t+ix0 for −R 6 t 6 R, z(t) = −R−it for −x0 6 t 6 0.

Let γ1, · · · , γ4 denote sides of γ. Note that∫
γ e−πz

2
dz =

∑4
j=1

∫
γj

e−πz
2
dz . Further, as R →∞, we obtain

•
∫
γ1

f (z)dz =
∫ R
−R e−πt

2
dt → 1.

• |
∫
γ2

f (z)dz | 6
∫ x0

0 e−π(R2−t2)dt = e−πR
2 ∫ x0

0 eπt
2
dt → 0.

•
∫
γ3

f (z)dz = −
∫ R
−R e−π(t2−x2

0 +2itx0)dt →
−eπx

2
0
∫∞
−∞ e−πt

2
e−2itx0dt.

• |
∫
γ4

f (z)dz | ≤
∫ 0
−x0

e−π(R2−t2)dt = e−πR
2 ∫ 0
−x0

eπt
2
dt → 0.

As a consequence of Goursat’s Theorem, we see that∫
γ e−πz

2
dz = 0, and hence

∫∞
−∞ e−πt

2
e−2itx0dt = e−πx

2
0 .



Application II: Existence of a Primitive in disc

Theorem
Let D denote the unit disc centered at 0 and let f : D→ C be a
holomorphic function. Then there exists a holomorphic function
F : D→ C such that F ′ = f .

Proof.
For z ∈ D, define F (z) =

∫
γ1

f (w)dw +
∫
γ2

f (w)dw , where

γ1(t) = t Re (z) (0 6 t 6 1), γ2(t) = Re (z)+it Im (z) (0 6 t 6 1).

Claim: F ′(z) = f (z). Indeed, for h ∈ C such that z + h ∈ D, by
Goursat’s Theorem, F (z + h)− F (z) =

∫
γ3

f (w)dw , where

γ3(t) = (1− t)z + t(z + h) (0 6 t 6 1).

However, since f is (uniformly) continuous on γ3,
1
h

∫
γ3

f (w)dw = 1
h

∫ 1
0 f (γ3(t))γ′3(t)dt =

∫ 1
0 f (γ3(t))dt → f (z).



Cauchy’s Theorem for a disc

Theorem
If f is a holomorphic function in a disc, then∫

γ
f (z)dz = 0

for any piecewise smooth, closed curve γ in that disc.

Corollary

If f is a holomorphic function in an open set containing some circle
C , then ∫

C
f (z)dz = 0.

Proof.
Let D be a disc containing the disc with boundary C . Now apply
Cauchy’s Theorem.



An Example

Consider f (z) = 1−e iz
z2 . Then f is holomorphic on C \ {0}. Consider

the indented semicircle γ (with 0 < r < R) given by

z1(t) = t (−R 6 t 6 −r), z2(t) = re−it (−π 6 t 6 0),

z3(t) = t (r 6 t 6 R), z4(t) = Re it (0 6 t 6 π).

Since z1(−R) = −R = z4(π), γ is closed. By Cauchy’s Theorem,∫ −r
−R

1− e it

t2
dt +

∫ 0

−π

1− e iz2(t)

z2(t)2
(−ire−it)dt

+

∫ R

r

1− e it

t2
dt +

∫ π

0

1− e iz4(t)

z4(t)2
(iRe it)dt = 0.

Since |f (x + iy)| ≤ 1+e−y

|z|2 ≤
2
|z|2 , the 4th integral → 0 as R →∞.



Thus we obtain∫ −r
−∞

1− e it

t2
dt +

∫ 0

−π

1− e iz2(t)

z2(t)2
(−ire−it)dt +

∫ ∞
r

1− e it

t2
dt = 0.

Next, note that 1−e iz2(t)

z2(t)2 = E (z2(t))− iz2(t)
z2 , where E (z) = 1+iz−e iz

z2

is a bounded function near 0. It follows that∫ 0

−π

1− e iz2(t)

z2(t)2
(−ire−it)dt → −

∫ 0

−π
dt = −π as r → 0.

This yields the following:∫ 0

−∞

1− e it

t2
dt +

∫ ∞
0

1− e it

t2
dt = π.

Taking real parts, we obtain∫ ∞
−∞

1− cos(x)

x2
dx = π.



Cauchy Integral Formula I

The values of f at boundary determine its values in the interior!

Theorem
Let U be an set containing the disc DR(z0) centred at z0 and
suppose f is holomorphic in U. If C denotes the circle
{z ∈ C : |z − z0| = R} of positive orientation, then

f (z) =
1

2πi

∫
C

f (w)

w − z
dw for any z ∈ DR(z0).

Example

•
∫
|w−i |=1

−w2

w2+1
dw =

∫
|w−i |=1

−w2/(w+i)
w−i dw = π.

•
∫
|w−π/2|=π

sin(w)

w(w − π/2)
dw =

2

π

(∫
|w−π/2|=π

sin(w)

w − π/2
dw −

∫
|w−π/2|=π

sin(w)

w
dw
)

= 4i .



An Application: Fundamental Theorem of Algebra

Corollary

Any non-constant polynomial p has a zero in C.

Anton R. Schep, Amer. Math. Monthly, 2009 January.

If possible, suppose that p has no zeros, that is, p(z) 6= 0 for every
z ∈ C. Let f (z) = 1

p(z) and z0 = 0 in CIF:

• 1
p(0) = 1

2πi

∫
|w |=R

1/p(w)
w ,

•

∣∣∣∣∣ 1

2π

∫
|w |=R

dw

wp(w)

∣∣∣∣∣ ≤ max
|w |=R

∣∣∣∣ 1

p(w)

∣∣∣∣ =
1

min|w |=R |p(w)|
.

• min
|w |=R

|p(w)| ≤ |p(0)|.

• |p(z)| ≥ |z |n(1− |an−1|/|z | − · · · − |a0|/|zn|).
• lim

R→∞
min
|w |=R

|p(w)| =∞.

This is not possible!



Proof of CIF I

Want to prove: If f : U → C is holomorphic and DR(z0) ⊆ U,

f (z) =
1

2πi

∫
C

f (w)

w − z
dw for any z ∈ DR(z0).

For 0 < r , δ < R, consider the “keyhole” contour γr ,δ with

• a big ‘almost’ circle |w − z0| = R of positive orientation,

• a small ‘almost’ circle |w − z | = r of negative orientation,

• a corridor of width δ with two sides of opposite orientation.
f (w)
w−z is holomorphic in the “interior” of γr ,δ. By Cauchy’s Theorem,∫

γr,δ

f (w)

w − z
dw = 0.

γr ,δ has three parts: big circle C , small circle Cr , and corridor.



• As δ → 0, integrals over sides of corridor get cancel.

• Note that∫
Cr

f (w)− f (z)

w − z
dw +

∫
Cr

f (z)

w − z
dw =

∫
Cr

f (w)

w − z
dw .

As r → 0, 1st integral tends to 0 (since integrand is bounded
near z), while 2nd integral is equal to −f (z)(2πi).

• As a result, we obtain

0 =

∫
γr,δ

f (w)

w − z
dw =

∫
C

f (w)

w − z
dw − f (z)(2πi).



Maximum Modulus Principle for Polynomials

Problem
Let p be a polynomial. Show that if p is non-constant then
max|z|≤1 |p(z)| = max|z|=1 |p(z)|.

Hint. If possible, there is z0 ∈ D be such that |p(z)| ≤ |p(z0)| for
every |z | ≤ 1. Write p(z) = b0 + b1(z − z0) + · · ·+ bn(z − z0)n. If
0 < r < 1− |z0| then

1

2π

∫ π

−π
|p(z0 + re iθ)|2dθ = |b0|2 + |b1|2r 2 + · · ·+ |bn|2r 2n.

However, |b0|2 = |p(z0)|2. Try to get a contradiction!



Growth Rate of Derivative

• f (z+h)−f (z)
h = 1

2πi

∫
C

f (w)
h

(
1

w−z−h −
1

w−z

)
dw

= 1
2πi

∫
C f (w)

(
1

(w−z−h)(w−z)

)
dw .

• Taking limit as h→ 0, we obtain

f ′(z) =
1

2πi

∫
C

f (w)

(w − z)2
dw .

Corollary (Cauchy Estimates)

Under the hypothesis of CIF I,

|f ′(z0)| ≤
max
|z−z0|=R

|f (z)|

R
.



Entire Functions

Definition
f is entire if f is complex differentiable at every point in C.

Theorem (Liouville’s Theorem)

Let f : C→ C be an entire function. If there exists M ≥ 0 such
that |f (z)| ≤ M for all z ∈ C, then f is a constant function.

Proof.
By Cauchy estimates, for any R > 0,

|f ′(z0)| 6
max
|z−z0|=R

|f (z)|

R
6

M

R
→ 0 as R →∞.

Thus f ′(z0) = 0. But z0 was arbitrary, and hence f ′ = 0.



An Application: Range of Entire Functions

Let f : C→ C be a non-constant entire function. We contend that
the range of f intersects every disc in the complex plane.

• On the contrary, assume that some disc DR(z0) does not
intersect the range of f , that is,

|f (z)− z0| > R for all z ∈ C.

• Define g : C→ C by g(z) = 1
f (z)−z0

.

• Note that g is entire such that |g(z)| 6 1
R for all z ∈ C.

• By Liouville’s Theorem, g must be a constant function, and
hence so is f . This is not possible.



Cauchy Integral Formula II

Corollary

Let U be an open set containing the disc DR(z0) and suppose f is
holomorphic in U. If C denotes the circle {z ∈ C : |z − z0| = R}
of positive orientation, then

f (n)(z) =
n!

2πi

∫
C

f (w)

(w − z)n+1
dw for any z ∈ DR(z0).

We have already seen a proof in case n = 1. Let try case n = 2.

• f ′(z+h)−f ′(z)
h = 1

2πi

∫
C

f (w)
h

(
1

(w−z−h)2 − 1
(w−z)2

)
dw

= 1
2πi

∫
C f (w)

(
h+2(w−z)

(w−z−h)2(w−z)2

)
dw .

• Taking limit as h→ 0, we obtain

f ′′(z) =
2

2πi

∫
C

f (w)

(w − z)3
dw .



Holomorphic function is Analytic

Theorem
Suppose DR(z0) ⊆ U and f : U → C is holomorphic. Then

f (z) =
∞∑
n=0

an(z − z0)n for all z ∈ DR(z0),

where an = f (n)(z0)
n! for all integers n > 0.

Proof.
Let z ∈ DR(z0) and write

1

w − z
=

1

w − z0 − (z − z0)
=

1

w − z0

1

1− z−z0
w−z0

.

Since |w − z0| = R and z ∈ DR(z0), there is 0 < r < 1 such that

|z − z0|/|w − z0| < r .



Proof Continued.
Thus the series 1

1− z−z0
w−z0

=
∑∞

n=0

(
z−z0
w−z0

)n
converges uniformly for

any w on |w − z0| = R. We combine this with CIF I

f (z) =
1

2πi

∫
C

f (w)

w − z
dw for any z ∈ DR(z0)

to conclude that

f (z) =
1

2πi

∫
C

f (w)

w − z
dw =

1

2πi

∫
C

1

w − z0

∞∑
n=0

( z − z0

w − z0

)n
dw

uni cgn
=

∞∑
n=0

( 1

2πi

∫
C

1

(w − z0)n+1
dw
)

(z−z0)n =
∞∑
n=0

f (n)(z0)

n!
(z−z0)n,

where we used CIF II.

Remark Once complex differentiable function is infinitely complex
differentiable!



Taylor Series

We refer to the power series f (z) =
∑∞

n=0
f (n)(z0)

n! (z − z0)n as the
Taylor series of f around z0.

Example

Let us compute the Taylor series of log z in the disc |z − i | = 1
2 .

Note that a0 = log i , a1 = 1
z |z=i = −i , and more generally

an =
f (n)(i)

n!
= (−1)n+1 1

in
1

n!
(n − 1)! =

−in

n
.

Hence the Taylor series of log z is given by

log i +
∞∑
n=1

−in

n
(z − i)n (z ∈ D 1

2
(i)).



Theorem

An entire function f is given by f (z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

Corollary (Identity Theorem for entire functions)

Let f : C→ C be an entire function. Suppose {zk} of distinct
complex numbers converges to z0 ∈ C. If f (zk) = 0 for all k > 1
then f (z) = 0 for all z ∈ C.

Proof.
Write f (z) =

∑∞
n=0

f (n)(z0)
n! (z − z0)n (z ∈ C). If f 6= 0, there is a

smallest integer n0 such that f (n0)(z0) 6= 0. Thus f (z) =
∞∑

n=n0

an(z − z0)n = an0(z − z0)n0

(
1 +

∞∑
n=1

an0+n

an0

(z − z0)n)
)
. Since

the “bracketed term” is non-zero at z0, one can find zk 6= z0 such
that RHS is non-zero at zk . But LHS is 0 at zk . Not possible!

Remark. ‘Identity Theorem’ does not hold for real differentiable
functions.



Trigonometric Functions

Define sin z and cos z functions as follows:

sin z =
∞∑
n=0

(−1)n

(2n + 1)!
z2n+1, cos z =

∞∑
n=0

(−1)n

(2n)!
z2n.

Note that sin z and cos z are entire functions (since RoC is ∞).
We know the fundamental identity relating sin x and cos x :

sin2 x + cos2 x = 1 for x ∈ R.

In particular, the function f : C→ C given by
f (z) = sin2 z + cos2 z − 1 is entire and satisfies f (x) = 0 for
x ∈ R. Hence by the previous result,

sin2 z + cos2 z = 1 for z ∈ C.



A Problem

Note that there is an entire function f such that f (z + 1) = f (z)
for all z ∈ C, but f is not constant:

f (z) = e2πiz .

Similarly, there exists a non-constant entire function f such that
f (z + i) = f (z) for all z ∈ C. However, if an entire function f
satisfies both the above conditions, then it must be a constant!

Problem
Does there exist an entire function such that

f (z + 1) = f (z), f (z + i) = f (z) for all z ∈ C ?

Hint. Show that f is bounded and apply Liouville’s Theorem.



Zeros of a Holomorphic Function

Theorem (Identity Theorem)

Let U be an open connected subset of C and let f : U → C is a
holomorphic function. Suppose {zk} of distinct numbers converges
to z0 ∈ U. If f (zk) = 0 for all k > 1 then f (z) = 0 for all z ∈ U.

Definition
A complex number a ∈ C is a zero for a holomorphic function
f : U → C if a ∈ U and f (a) = 0.

• The identity theorem says that the zeros of f has “isolated”.
This means that any closed disc contained in U contains at
most finitely many zeros of f .

• However f can have infinitely many zeros: sin(z).

• The zeros of f is always countable.



Theorem
Suppose that f is a non-zero holomorphic function on a connected
set U and a ∈ U such that f (a) = 0. Then there exist R > 0, a
holomorphic function g : DR(a)→ C with g(z) 6= 0 for all
z ∈ DR(a) and a unique integer n > 0 such that

f (z) = (z − a)ng(z) for all z ∈ DR(a) ⊆ U.

Proof.
Write f (z) =

∑∞
k=0 ak(z − a)k , let n > 1 be a smallest integer

such that an 6= 0 (which exists by the Identity Theorem). Then
f (z) = (z − a)ng(z), where g(z) =

∑∞
k=n ak(z − a)k−n. Note that

g(a) = an 6= 0, and hence by continuity of g , there exists R > 0
such that g(z) 6= 0 for all z ∈ DR(a).

We say that f has zero at a of order (or multiplicity) n. For
example, zn has zero at 0 of order n.



Zeros of sin(πz)

Example

• sin(πz) has zeros at all integers; all are of order 1. Indeed,
sin(πk) = 0 and d

dz sin(πz)|z=k = π cos(πk) 6= 0.

• If possible, suppose sin(πz0) = 0 for some z0 = x0 + iy0 ∈ C.
• By Euler’s Formula, sin(πz) = e iπz−e−iπz

2i . Hence
e iπz0 = e−iπz0 , that is, e2iπz0 = 1. Taking modulus on both
sides, we obtain e−2πy0 = 1. Since ex is one to one, y0 = 0.

• Thus e2iπx0 = 1, that is, cos(2πx0) + i sin(2πx0) = 1, and
hence x0 is an integer.

Problem
Show that all zeros of cos(π2 z) are at odd integers.



Singularities of a meromorphic function

By a deleted neighborhood of a, we mean the punctured disc

DR(a) \ {a} = {z ∈ C : 0 < |z − a| < R}.

Definition
An isolated singularity of a function f is a complex number z0 such
that f is defined in a deleted neighborhood of z0.

For instance, 0 is an isolated singularity of

• f (z) = 1
z .

• f (z) = sin z
z

• f (z) = e
1
z .

The singularities in these examples are different in a way.

Indeed, a holomorphic function can have three kinds of isolated
singularities: pole, removable singularity, essential singularity



Poles

Definition
Let f be a function defined in a deleted neighborhood of a. We say
that f has a pole at a if the function 1

f , defined to be 0 at a, is
holomorphic on DR(a).

Example

• 1
z−a has a pole at a.

• 0 is not a pole of sin z
z (since sin z

z → 1 as z → 0).

• The poles of a rational function (in a reduced form p(z)
q(z) ) are

precisely the zeros of q(z). For instance, z+1
z+2 has only pole at

z = −2 while the poles of (z+1)···(z+5)
(z+2)···(z+6) are at z = −1,−6.



Theorem
Suppose that f has a pole at a ∈ U. Then there exist R > 0, a
holomorphic function h : DR(a)→ C with h(z) 6= 0 for all
z ∈ DR(z0) and a unique integer n > 0 such that

f (z) = (z − a)−nh(z) for all z ∈ DR(a) \ {a} ⊆ U.

Proof.
Note that 1

f , with 0 at a, is a holomorphic function. Hence, by a
result on Page 55, there exist R > 0, a holomorphic function
g : DR(a)→ C with g(z) 6= 0 for all z ∈ DR(a) and a unique
integer n > 0 such that 1

f (z) = (z − a)ng(z) for all z ∈ DR(a).

Now let h(z) = 1
g(z) .

We say that f has pole at a of order (or multiplicity) n. For

example, 1
zn has pole at 0 of order n.



Example

Let us find poles of f (z) = 1
1+z4 .

• For this, let us first solve 1 + z4 = 0. Taking modulus on both
sides of z4 = −1, we obtain |z | = 1. Thus z = e iθ, and hence
e4iθ = e iπ. This forces 4θ = π + 2πk for integer k . Thus

e iθ = e i
π
4 , e i

3π
4 , e i

5π
4 , e i

7π
4 .

• Note that 1
f (z) = (z − e i

π
4 )−1h(z), where

h(z) = (z − e i
3π
4 )(z − e i

5π
4 )(z − e i

7π
4 ) is non-zero for every

z ∈ DR(e i
π
4 ) for some R > 0.Thus z = e i

π
4 is a pole.

• Similar argument shows that e i
3π
4 , e i

5π
4 , e i

7π
4 are poles of f .



Principal Part and Residue Part

Suppose that f has a pole of order n at a. By theorem on Page 60,
there exist R > 0, a holomorphic function h : DR(a)→ C with
h(z) 6= 0 for all z ∈ DR(a) and a unique integer n > 0 such that

f (z) = (z − a)−nh(z) for all z ∈ DR(a) \ {a} ⊆ U.

Since h is holomorphic, h(z) = b0 + b1(z − a) + b2(z − a)2 + · · · ,

f (z) =
b0

(z − a)n
+

b1

(z − a)n−1
+

b2

(z − a)n−2
+ · · · ,

which can be rewritten as

f (z) =
( a−n

(z − a)n
+

a−n+1

(z − a)n−1
+· · ·+ a−1

z − a

)
+
(

a0+a1(z−a)+· · ·
)
,

= Principal part P(z) of f at a + H(z).

Definition
The residue resa f of f at a is defined as the coefficient a−1 of 1

z−a .



The residue resa f is special among all terms in the principal part
P(z) = a−n

(z−a)n + a−n+1

(z−a)n−1 + · · ·+ a−1

z−a in the following sense:

• a−k

(z−a)k
has a primitive in a deleted neighborhood of a iff k 6= 1.

• If C+ is the circle |z − a| = R then 1
2πi

∫
C+

P(z)dz = a−1.

• If f has a simple pole (pole of order 1) at a then
(z − a)f (z) = a−1 + a0(z − a) + · · · → a−1 = resa f as z → a :

resa f = lim
z→a

(z − a)f (z).

• Suppose f has a pole of order 2. Then
(z − a)2f (z) = a−2 + a−1(z − a) + a0(z − a)2 + · · · , and hence

d

dz
(z − a)2f (z) = a−1 + 2a0(z − a) + · · ·

Thus we obtain resa f = lim
z→a

d

dz
(z − a)2f (z).



Residue at poles of finite order

Theorem
If f has a pole of order n at a, then

resa f = lim
z→a

1

(n − 1)!

( d

dz

)n−1
(z − a)nf (z).

Proof.
We already know

f (z) =
( a−n

(z − a)n
+

a−n+1

(z − a)n−1
+· · ·+ a−1

z − a

)
+
(

a0+a1(z−a)+· · ·
)
,

(z − a)nf (z) =
(

a−n +
a−n+1

z − a
+ · · ·+ (z − a)n−1a−1

)
+(z − a)n

(
a0 + a1(z − a) + · · ·

)
,

Now differentiate (n − 1) times and take limit as z → a.



Example

Consider the function f (z) = 1
1+z2 . Then f has simple poles at

z = ±i . Recall that

resa f = lim
z→a

(z − a)f (z).

Thus we obtain

resi f = lim
z→i

(z − i)f (z) = lim
z→i

1

z + i
=

1

2i
.

res−i f = lim
z→−i

(z + i)f (z) = lim
z→−i

1

z − i
=

1

−2i
= 2i .



The Residue Formula

Theorem
Suppose that f : U → C is holomorphic except a pole at a ∈ U.
Let C ⊆ U be one of the following closed contour enclosing a in U
and with “interior” contained in U: A circle, triangle, semicircle
union segment etc. Then∫

C
f (z)dz = 2πi resa f .

Example

Let f (z) = 1
1+z2 . Let γR be union of [−R,R] and semicircle CR :

z1(t) = t (−R 6 t 6 R), z2(t) = Re it (0 6 t 6 π).

i is the only pole in the “interior” of γR if R > 1. Also, resi f = 1
2i .



By Residue Theorem,
∫ R
−R

1
1+x2 dx +

∫
CR

f (z)dz = π. Let R →∞,∫ ∞
−∞

1

1 + x2
dx + lim

R→∞

∫
CR

f (z)dz = π.

We claim that limR→∞
∫
CR

f (z)dz = 0. To see that,∣∣∣ ∫
CR

f (z)dz
∣∣∣ 6 ∫ π

0

∣∣∣ 1

1 + R2e2it

∣∣∣Rdt 6
∫ π

0

∣∣∣ 1

R2 − 1

∣∣∣Rdt

= π R
R2−1

→ 0 as R →∞. This yields the formula:∫ ∞
−∞

1

1 + x2
dx = π.



Proof of Residue Formula

Consider the keyhole contour γr ,δ that avoids the pole a:
γr ,δ consists of ‘almost’ C ,

• a circle Cr : |w − a| = r of negative orientation, and

• a corridor of width δ with two sides of opposite orientation.

Letting δ → 0, we obtain by Cauchy’s Theorem that∫
C

f (z)dz +

∫
Cr

f (z)dz = 0.

However, we know that

f (z) =
( a−n

(z − a)n
+

a−n+1

(z − a)n−1
+· · ·+ a−1

z − a

)
+
(

a0+a1(z−a)+· · ·
)
.

Now apply Cauchy’s Integral Formula and Cauchy’s Theorem to
see that

∫
Cr

f (z)dz = a−1(−2πi) (as Cr has negative orientation).



Residue Formula: General Version

Theorem
Suppose that f : U → C is holomorphic except pole at a1, · · · , ak
in U. Let C ⊆ U be one of the following closed contour enclosing
a1, · · · , ak in U and with “interior” contained in U: A circle,
triangle, semicircle union segment etc. Then∫

C
f (z)dz = 2πi

k∑
i=1

resai f .

Example

Consider the function cosh(z) = ez+e−z

2 . Then cosh(πz) is an
entire function with zeros at points z for which eπz = −e−πz , that
is, e2πz = −1. Solving this for z , we obtain i/2 and 3i/2 as the
only zeros of cosh(πz). Note that cosh(πz) is periodic of period 2i .



Example Continued ...

• For s ∈ R, consider now the function f (z) = e−2πizs

cosh(πz) .

• Check that f has simple poles at a1 = i/2 and a2 = 3i/2.

• Further, resa1 f = eπs

πi and resa2 f = − e3πs

πi (Verify).

Let γ denote the rectagular curve with parametrization

γ1(t) = t for − R 6 t 6 R, γ2(t) = R + it for 0 6 t 6 2,

γ3(t) = −t+2i for −R 6 t 6 R, γ4(t) = −R−it for −2 6 t 6 0.

By Residue Theorem∫
γ

f (z)dz = 2πi
(eπs

πi
− e3πs

πi

)
= 2(eπs − e3πs).

Further, as R →∞, we obtain

•
∫
γ1

f (z)dz →
∫∞
−∞

e−2πits

cosh(πt) dt.

• |
∫
γ2

f (z)dz | 6
∫ 2

0
2e4π|s|

eπR−e−πR dt → 0. Similarly,
∫
γ4

f (z)dz → 0.

•
∫
γ3

f (z)dz = −
∫ R
−R

e−2πizs

cosh(πz) dt → −e4πs
∫∞
−∞

e−2πits

cosh(πt) dt.



Example Continued ...

We club all terms together to obtain∫ ∞
−∞

e−2πits

cosh(πt)
dt−e4πs

∫ ∞
−∞

e−2πits

cosh(πt)
dt =

∫
γ

f (z)dz = 2(eπs−e3πs),

∫ ∞
−∞

e−2πits

cosh(πt)
dt =

2

1− e4πs
(eπs − e3πs).

However, (eπs − e3πs)(eπs + e−πs) = 1− e4πs , and hence∫ ∞
−∞

e−2πits

cosh(πt)
dt =

2

eπs + e−πs
= cosh(πs).

Thus the “Fourier transform” of reciprocal of cosine hyperbolic
function is reciprocal of cosine hyperbolic function itself.



Removable Singularity

Definition
Let U be an open subset of C and let a ∈ U. We say that a is a
removable singularity of a holomorphic function f : U \ {a} → C if
there exists α ∈ C such that g : U → C below is holomorphic:

g(z) = f (z) (z 6= a), g(a) = α

Example

Consider the function f : C \ {0} → C given by f (z) = 1−cos z
z2 .

Then 0 is a removable singularity of f . Indeed, define g : U → C by

g(z) = f (z) (z 6= 0), g(0) =
1

2
.

Then g is complex differentiable at 0: g(h)−g(0)
h =

1−cos h
h2 − 1

2

h → 0.
Hence g is holomorphic on C.



Theorem
Let U be an open subset of C containing a. Let f : U \ {a} → C
be a holomorphic function. If α := lim

z→a
f (z) exists and for some

holomorphic function F : DR(a)→ C,

f (z)− α = (z − a)F (z) (z ∈ DR(a)),

then f has removable singularity at a.

Proof.
Define g : U → C by

g(z) = f (z) (z 6= a), g(a) = α.

We must check that g is complex differentiable at a. However,

g(h)− g(a)

h − a
=

f (h)− α
h − a

= F (h)→ F (a).

It follows that g is holomorphic on U.



Example

Let a = π/2 and f (z) = 1−sin z
cos z . Then

cos z =
∞∑
n=0

( dn

dzn
cos z |z=π/2

)
(z−π/2)n = (z−π/2)H(z), H(π/2) 6= 0,

1− sin z =
∞∑
n=0

( dn

dzn
(1− sin z)|z=π/2

)
(z−π/2)n = (z−π/2)2G (z)

It follows that α := limz→π/2 f (z) = 0. Also, for some R > 0,

f (z)− α = (z − π/2)
G (z)

H(z)
(z ∈ DR(a)),

and hence z = π/2 is a removable singularity of f .



Laurent Series and Essential Singularity

Theorem
For 0 < r < R <∞, let Ar ,R(z0) : {z ∈ C : r < |z − z0| < R},
suppose f : Ar ,R(z0)→ C is holomorphic. Then

f (z) =
∞∑

n=−∞
an(z − z0)n for all z ∈ Ar ,R(z0),

where an = 1
2πi

∫
|z−z0|=ρ

f (z)
(z−z0)n+1 dz for integers n and r < ρ < R.

We refer to the series appearing above as the Laurent series of f
around z0.

Outline of the Proof.
One needs Cauchy Integral Formula for the union of |z − z0| = r1

and |z − z0| = R1 (can be obtained from Cauchy’s Theorem by
choosing appropriate keyhole contour), where r < r1 < R1 < R.
Thus for z ∈ Ar ,R(z0),



Outline of the Proof Continued.

f (z) =
1

2πi

∫
|w−z0|=R1

f (w)

w − z
dw − 1

2πi

∫
|w−z0|=r1

f (w)

w − z
dw .

One may argue as in the proof of Cauchy Integral Theorem to see
that first integral gives the series

∑∞
n=0 an(z − z0)n while second

one leads to
∑1

n=−∞ an(z − z0)n.

Definition
Let U be an open set and z0 ∈ U be an isolated singularity of the
holomorphic function f : U \ {z0} → C. We say that z0 is an
essential singularity of f if infinitely many coefficients among
a−1, a−2, · · · , in the Laurent series of f are non-zero.

• The Laurent series of f (z) = e1/z around 0 is
1 + 1

z + 1
2

1
z2 + 1

3!
1
z3 + · · · . Hence 0 is an essential singularity.

• Similarly, 0 is an essential singularity of z2 sin(1/z).



Let us examine the Laurent series of f around z0:

f (z) =
∞∑

n=−∞
an(z − z0)n for all z ∈ Ar ,R(z0),

• z0 is a removable singularity if and only if a−n = 0 for
n = 1, 2, · · · ,
• z0 is a pole of order k if and only if a−n = 0 for

n = k + 1, k + 2, · · · , and a−k 6= 0.

• z0 is an essential singularity if and only if a−n 6= 0 for infinitely
many values of n ≥ 1.

In particular, an isolated singularity is essential if it is neither a
removable singularity nor a pole.



Counting Zeros and Poles

In an effort to understand “logarithm” of a holomorphic function
f : U → C \ {0}, we must understand the change in the argument∫

γ

f ′(z)

f (z)
dz

of f as z traverses the curve γ. The argument principle says that
for the unit circle γ, this is completely determined by the zeros and
poles of f inside γ. We prove this in a rather special case, under the
additional assumption that f has finitely many zeroes and poles.



Theorem (Argument Principle)

Suppose f is holomorphic except at poles in an open set containing
a circle C and its interior. If f has no poles and zeros on C , then

1

2πi

∫
C

f ′(z)

f (z)
dz = (number of zeros of f inside C)

− (number of poles of f inside C).

Here the number of zeros and poles of f are counted with their
multiplicities.

Proof.
Let z1, · · · , zk (of multiplicities n1, · · · , nk) and p1, · · · , pl (of
multiplicities m1, · · · ,mk) denote the zeros and poles of f inside C
respectively. If f has a zero at z1 of order n1 then

f (z) = (z − z1)n1g(z)

in the interior of C for a non-vanishing function g near z1.



Proof Continued.
Note that f ′(z)

f (z) = n1(z−z1)n1−1g(z)+(z−z1)n1g ′(z)
(z−z1)n1g(z) = n1

z−z1
+ g ′(z)

g(z) .
Integrating both sides, we obtain

1

2πi

∫
C

f ′(z)

f (z)
dz = n1 +

1

2πi

∫
C

g ′(z)

g(z)
dz .

Now g has a zero at z2 of multiplicity n2. By same argument to
g(z) = (z − z2)n2h(z), we obtain

1

2πi

∫
C

g ′(z)

g(z)
dz = n2 +

1

2πi

∫
C

h′(z)

h(z)
dz .

Continuing this we obtain

1

2πi

∫
C

f ′(z)

f (z)
dz = n1 + · · ·+ nk +

1

2πi

∫
C

F ′(z)

F (z)
dz (?),

where F (z) has no zeros.



Proof Continued.
Note that F has poles at p1, · · · , pl (of multiplicities m1, · · · ,mk)
respectively. Write F (z) = (z − p1)−m1G (z) and note that

F ′(z)

F (z)
=
−m1(z − z1)−m1−1G (z) + (z − p1)−m1G ′(z)

(z − p1)−m1G (z)

=
−m1

z − p1
+

G ′(z)

G (z)
.

It follows that
∫
C F ′/F = −m1. Continuing this we obtain

1

2πi

∫
C

F ′(z)

F (z)
dz = −m1 − · · · −ml

(we need Cauchy’s Theorem here). Now substitute this in (?).



Applications

Corollary

Suppose f is holomorphic in an open set containing a circle C and
its interior. If f has no zeros on C , then

1

2πi

∫
C

f ′(z)

f (z)
dz = (number of zeros of f inside C).

Here the number of zeros of f are counted with their multiplicities.

Theorem (Rouché’s Theorem)

Suppose that f and g are holomorphic in an open set containing a
circle C and its interior. If |f (z)| > |g(z)| for all z ∈ C , then f and
f + g have the same number of zeros inside the circle C .



Outline of Proof of Rouché’s Theorem.
Let Ft(z) := f + tg for t ∈ [0, 1]. By the corollary above,

Number of zeros of Ft(z) =

∫
C

f ′t (z)

ft(z)
dz

is an integer-valued, continuous function of t, and hence by
Intermediate Value Theorem,

Number of zeros of F0(z) = Number of zeros of F1(z).

But F0(z) = f and F1(z) = f (z) + g(z).

Example

Consider the polynomial p(z) = 2z10 + 4z2 + 1. Then p(z) has
exactly 2 zeros in the open unit disc D. Indeed, apply Rouché’s
Theorem to f (z) = 4z2 and g(z) = 2z10 + 1:

|f (z)| = 4 > |2z10 + 1| = |g(z)| on |z | = 1.



Example

Let p be non-constant polynomial. If |p(z)| = 1 whenever |z | = 1
then the following hold true:

• p(z) = 0 for z in the open unit disc. Indeed, by Maximum
Modulus Principle, |p(z)| ≤ 1. Hence, if p(z) 6= 0 then

1
|p(z)| ≥ 1 with maximum inside the disc, which is not possible.

• p(z) = w0 has a root for every |w0| < 1, that is, the range of
p contains the unit disc. To see this, apply Rouché’s Theorem
to f (z) = p(z) and g(z) = −w0 to conclude that

f (z) + g(z) = p(z)− w0

has a zero inside the disc.

Problem
Show that the functional equation λ = z + e−z (λ > 1) has
exactly one (real) solution in the right half plane.



Möbius Transformations

A Möbius transformation is a function of the form

f (z) =
az + b

cz + d
, a, b, c , d ∈ C such that ad − bc 6= 0.

Note that f is holomorphic with derivative

f ′(z) =
ad − bc

(cz + d)2
.

This also shows that f ′(z) 6= 0, and hence f is non-constant.

Example

• If c = 0 and d = 1 then f (z) = az + b is a linear polynomial.

• If a = 0 and b = 1 then f (z) = 1
cz+d is a rational function.



The Möbius transformation f (z) = az+b
cz+d is bijective with inverse

g(z) =
−dz + b

cz − a
.

Indeed, f ◦ g(z) = z = g ◦ f (z) wherever f and g are defined.

Example

Let f (z) = az+b
cz+d and g(z) = a′z+b′

c ′z+d ′ be Möbius transformations.
Then f ◦ g is a also a Möbius transformation given by

f ◦ g(z) =
αz + β

γz + δ
,

where [
α β
γ δ

]
=

[
a b
c d

] [
a′ b′

c ′ d ′

]
.



Lemma
If γ is a circle or a line and f (z) = 1

z then f (γ) is a circle or line.

Proof.
Suppose γ is the circle |z − a| = r (We leave the case of line as an
exercise). Then f (γ) is obtained by replacing z by w = 1

z :
|1/w − a| = r , that is, 1/|w |2 − 2Re(a/w̄) = r 2 − |a|2.
• If r = |a| (that is, γ passes through 0), then Re(aw) = 1/2,

which gives the line Re(w)Re(a)− Im(w)Im(a) = 1
2 .

• If r 6= |a| then 1/(r 2 − |a|2)− 2 |w |2
r2−|a|2 Re(a/w̄) = |w |2. Thus

1/(r 2 − |a|2) = |w |2 + 2Re(w(a/(r 2 − |a|2))

= |w |2+2Re(w(a/(r 2 − |a|2))+|a|2/(r 2 − |a|2)2−|a|2/(r 2 − |a|2)2

= |w − a/(r 2 − |a|2)|2 − |a|2/(r 2 − |a|2)2.

Thus f (γ) is the circle |w − a/(r 2 − |a|2)| = r/|r 2 − |a|2|.



Theorem
Any Möbius transformation f maps circles and lines onto circles
and lines.

Proof.
We consider two cases:

• c = 0: In this case f is linear and sends line to a line and
circle to a circle.

• c 6= 0 : Then f (z) = f1 ◦ f2 ◦ f3(z), where

f1(z) =
a

c
−
(ad − bc

c

)
z , f2(z) =

1

z
, and f3(z) = cz + d .

Since f1, f2, f3 map circles and lines onto circles and lines (by
Lemma and Case c = 0), so does f .



Schwarz’s Lemma (without Proof)

Theorem
If f : D→ D is a holomorphic map such that f (0) = 0 then
|f (z)| ≤ |z | for every z ∈ D.

Problem
What are all the bijective holomorphic maps from D onto D ?

• f (z) = az for |a| = 1.
• ψa(z) = a−z

1−az (Hint. By Cauchy Integral Formula,
|ψa(z)| ≤ max|w |=1 |ψa(w)|, which is 1).

Corollary

If f (0) = 0 and f : D→ D is a holomorphic bijective map then f is
a rotation: f (z) = e iθz for some θ ∈ R.

Proof.
By Schwarz’s Lemma, |f (z)| ≤ |z |. However, same argument
applies to f −1: |f −1(z)| ≤ |z |. Replacing z by f (z), we obtain



Proof Continued.
|z | ≤ |f (z)| implying |f (z)| = |z |. But then f (z)/z attains max
value 1 in D. Hence f (z)/z must be a constant function of
modulus 1, that is, f (z) = e iθz .

Theorem
If f : D→ D is a holomorphic bijective map then f is a Möbius
transformation:

f (z) = e iθ
a− z

1− az
for some a ∈ D and θ ∈ R.

Proof.
Note that f (a) = 0 for some a ∈ D. Consider f ◦ ψa for
ψa(z) = a−z

1−az , and note that f ◦ ψa(0) = 0. Also, f ◦ ψa is a
holomorphic function on D. Further, since |ψa(z)| < 1 whenever
|z | < 1, f ◦ ψa maps D→ D. By last corollary, f ◦ ψa(z) = e iθz ,
that is, f (z) == e iθψ−1

a (z). However, by a routine calculation,
ψ−1
a (z) = ψa(z).
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