Introduction to Complex Analysis MSO 202 A

Sameer Chavan

Semester I, 2016-17

Course Structure

- This course will be conducted in Flipped Classroom Mode.
- Every Friday evening, 3 to 7 videos of total duration 60 minutes will be released.
- The venue and timings of Flipped classrooms: W/Th $09{:}00{-}9{:}50\ \text{L7}$
- The timing of tutorial is M 09:00-9:50.
 - R. Churchill and J. Brown, Complex variables and applications. Fourth edition. McGraw-Hill Book Co., New York, 1984. - an elementary text suitable for a one semester; emphasis on applications.
 - E. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2006.- Modern treatment of the subject, but recommended for second reading.
 - Lecture notes and assignments by P. Shunmugaraj, (strongly recommended for students), http://home.iitk.ac.in/ psraj/
- Please feel free to contact me through chavan@iitk.ac.in

- Complex Numbers, Complex Differentiation and C-R Equations,
- Analytic Functions, Power Series and Derivative of Power Series,
- Complex Exponential, Complex Logarithm and Trigonometric Functions,
- Complex Integration, Cauchy's Theorem and Cauchy's Integral Formulas,
- Taylor series, Laurent series and Cauchy residue theorem,
- Mobius Transformation.

- real line: \mathbb{R} , real plane: \mathbb{R}^2
- A complex number : z = x + iy, where $x, y \in \mathbb{R}$ and i is an imaginary number that satisfies $i^2 + 1 = 0$.
- complex plane: C
- Re : $\mathbb{C} \to \mathbb{R}$ by Re (z) = real part of z = x
- $\operatorname{Re}(z+w) = \operatorname{Re} z + \operatorname{Re} w$, $\operatorname{Re}(a w) = a \operatorname{Re} w$ if $a \in \mathbb{R}$

Remark Same observation holds for Im : $\mathbb{C} \to \mathbb{R}$ defined by Im (z) = imaginary part of z = y.

Definition

A map f from \mathbb{C} is <u> \mathbb{R} -linear</u> if f(z + w) = f(z) + f(w) and f(a z) = a f(z) for all $z, w \in \mathbb{C}$ and $a \in \mathbb{R}$.

Example

- Re and Im are \mathbb{R} -linear maps.
- id(z) = z and $c(z) = \operatorname{Re}(z) i \operatorname{Im}(z)$ are \mathbb{R} -linear maps.
- $H: \mathbb{C} \to \mathbb{R}^2$ defined by $H(z) = (\operatorname{Re}(z), \operatorname{Im}(z))$ is \mathbb{R} -linear.

Remark *H* is an \mathbb{R} -linear bijection from the real vector space \mathbb{C} onto \mathbb{R}^2 .

 $\mathbb C$ (over $\mathbb R)$ and $\mathbb R^2$ are same as vector spaces. But complex multiplication makes $\mathbb C$ different from $\mathbb R^2$:

$$z w := (\operatorname{Re} z \operatorname{Re} w - \operatorname{Im} z \operatorname{Im} w) + i(\operatorname{Re} z \operatorname{Im} w + \operatorname{Im} w \operatorname{Re} w).$$

In particular, any non-zero complex number z has a inverse:

$$\frac{1}{z} = \frac{\bar{z}}{|z|^2},$$

where

•
$$\bar{z} = \operatorname{Re}(z) - i \operatorname{Im}(z)$$

• $|z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$

Any non-zero complex number z can be written in the polar form:

$$z = r e^{i \arg z},$$

where r > 0 and $\arg z \in \mathbb{R}$. Note that

- *r* is unique. Indeed, r = |z|.
- arg z is any real number satisfying

$$\frac{z}{|z|} = \cos(\arg z) + i\sin(\arg z).$$

• arg z is unique up to a multiple of 2π .

For $\theta \in [0, 2\pi)$, define <u>rotation</u> $r_{\theta} : \mathbb{C} \to \mathbb{C}$ by angle θ as

$$r_{\theta}(z) = e^{i\theta}z.$$

For $t\in(0,\infty),$ define <u>dilation</u> $d_t:\mathbb{C} o\mathbb{C}$ of magnitude t as $d_t(z)=t\,z.$

Example

For a non-zero w, define $m_w:\mathbb{C} o\mathbb{C}$ by $m_w(z)=w\,z.$ Then

$$m_w = d_{|w|} \circ r_{\arg w}.$$

Convergence in $\ensuremath{\mathbb{C}}$

Definition

Let $\{z_n\}$ be a sequence of complex numbers. Then

- $\{z_n\}$ is a <u>Cauchy sequence</u> if $|z_m z_n| \to 0$ as $m, n \to \infty$.
- $\{z_n\}$ is a convergent sequence if $|z_n z| \to 0$ for some $z \in \mathbb{C}$.

Theorem (\mathbb{C} is complete)

Every Cauchy sequence in \mathbb{C} is convergent.

Proof.

- $|z_m z_n| \rightarrow 0$ iff $|\operatorname{Re}(z_m z_n)| \rightarrow 0$ and $|\operatorname{Im}(z_m z_n)| \rightarrow 0$.
- But Re and Im are \mathbb{R} -linear. Hence $\{z_n\}$ is Cauchy iff $\{\operatorname{Re}(z_n)\}$ and $\{\operatorname{Im}(z_n)\}$ are Cauchy sequences.
- However, any Cauchy sequence in \mathbb{R} is convergent.

Definition A function f defined on \mathbb{C} is <u>continuous at a</u> if

$$z_n \to a \Longrightarrow f(z_n) \to f(a).$$

f is <u>continuous</u> if it is continuous at every point.

Example

•
$$H(z) = (\operatorname{Re}(z), \operatorname{Im}(z)).$$

•
$$m_w(z) = w z$$
.

•
$$p(z) = a_0 + a_1 z + \cdots + a_n z^n$$
.

•
$$f(z) = |z|$$
.

 $\text{For } a \in \mathbb{C} \text{ and } r > 0 \text{, let } \mathbb{D}_r(a) = \{z \in \mathbb{C} : |z - a| < r\}.$

Definition

A function $f : \mathbb{D}_r(a) \to \mathbb{C}$ is complex differentiable at a if

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=f'(a) \text{ for some } f'(a)\in\mathbb{C}.$$

f is <u>holomorphic</u> if it is complex differentiable at every point.

Remark

$$\lim_{h\to 0}\frac{f(a+h)-f(a)-D_a(h)}{h}=0,$$

where $D_a : \mathbb{C} \to \mathbb{C}$ is given by $D_a(h) = f'(a) h$.

Theorem

Every holomorphic function is continuous.

Example $f(z) = z^n$ is holomorphic. Indeed, $f'(a) = na^{n-1}$: $\frac{(a+h)^n - a^n}{h} = (a+h)^{n-1} + (a+h)^{n-2}a + \dots + a^{n-1} \rightarrow na^{n-1}.$

More generally, $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ is holomorphic.

Example

 $f(z) = \bar{z}$ is not complex differentiable at 0. Indeed, $\frac{\bar{h}}{\bar{h}} \to +1$ along real axis and $\frac{\bar{h}}{\bar{h}} \to -1$ along imaginary axis.

Example

For $b, d \in \mathbb{C}$, define $f(z) = \frac{z+b}{z+d}$. Then f is complex differentiable at any $a \in \mathbb{C} \setminus \{-d\}$.

Write $f : \mathbb{C} \to \mathbb{C}$ as f = u + iv for real valued functions u and v. Assume that the partial derivatives of u and v exists. Consider

$$J_{u,v}(a) = egin{bmatrix} u_x(a) & u_y(a) \ v_x(a) & v_y(a). \end{bmatrix}$$
 (Jacobian matrix).

Recall that $H(z) = (\operatorname{Re}(z), \operatorname{Im}(z))$. Treating $(\operatorname{Re}(z), \operatorname{Im}(z))$ as a column vector, define \mathbb{R} -linear map $F_a : \mathbb{C} \to \mathbb{C}$ by

$$F_a(z) = H^{-1} \circ J_{u,v}(a) \circ H(z)$$

 $=(u_x(a)\operatorname{Re}(z)+u_y(a)\operatorname{Im}(z))+i(v_x(a)\operatorname{Re}(z)+v_y(a)\operatorname{Im}(z)).$

Question When $F_a(\alpha z) = \alpha F_a(z)$ for every $\alpha \in \mathbb{C}$ (or, when F_a is \mathbb{C} -linear) ?

Suppose that $F_a(i z) = iF_a(z)$. Letting z = 1, we obtain

$$F_{a}(i)=u_{y}(a)+iv_{y}(a), \ iF_{a}(1)=-v_{x}(a)+iu_{x}(a).$$

Thus we obtain $u_x = v_y$ and $u_y = -v_x$ (C-R Equations).

Interpretation Let $\nabla u = (u_x, u_y)$ and $\nabla v = (v_x, v_y)$. If f satisfies C-R equations then $\nabla u \cdot \nabla v = 0$. The level curves $u = c_1$ and $v = c_2$ are orthogonal, where they intersect.

- f(z) = z then $u = x = c_1$ and $v = y = c_2$ (pair of lines).
- If $f(z) = z^2$ then $u = x^2 y^2 = c_1$ and $v = 2xy = c_2$ (pair of hyperbolas).

Suppose $f : \mathbb{C} \to \mathbb{C}$ is complex differentiable at *a*. Note that

$$F_a(h) = (u_x(a) + iv_x(a))h_1 + (u_y(a) + iv_y(a))h_2$$

However,

$$\lim_{h_1 \to 0} \frac{f(a+h_1) - f(a) - (u_x(a) + iv_x(a))h_1}{h_1} = 0,$$
$$\lim_{h_2 \to 0} \frac{f(a+ih_2) - f(a) - (u_y(a) + iv_y(a))h_2}{ih_2} = 0.$$

By uniqueness of limit, $u_x(a) + iv_x(a) = f'(a) = \frac{u_y(a) + iv_y(a)}{i}$, and

$$F_a(h)=f'(a)h,$$

and hence F_a is \mathbb{C} -linear. We have thus proved that the C-R equations are equivalent to \mathbb{C} -linearity of F_a !

Theorem (Cauchy-Riemann Equations)

If f = u + i v and u, v have continuous partial derivatives then f is complex differentiable if and only if f satisfies C-R equations.

Corollary

If f = u + i v is complex differentiable at a, then

$$|f'(a)|^2 = \det J_{u,v}(a).$$

In particular, $f : \mathbb{C} \to \mathbb{C}$ is constant if f' = 0.

Proof.

We already noted that $f'(a) = u_x(a) + iv_x(a)$, and hence $|f'(a)|^2 = u_x(a)^2 + v_x(a)^2$. However, by the C-R equations,

$$J_{u,v}(a) = \begin{bmatrix} u_x(a) & -v_x(a) \\ v_x(a) & u_x(a). \end{bmatrix},$$

so that det $J_{u,v}(a) = u_x(a)^2 + v_x(a)^2 = |f'(a)|^2$.

Suppose f : C → C be a holomorphic function with range contained in the real axis. Then f = u + i v with v = 0. By C-R equations,

$$u_x=0, \ u_y=0.$$

Hence u is constant, and hence so is f.

• Suppose $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function with range contained in a line. Note that for some $\theta \in \mathbb{R}$ and c > 0, the range of $g(z) = e^{i\theta}f(z) + c$ is contained in the real axis. By last case, g, and hence f is constant.

We will see later that the range of any non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C}$ intersects every disc in the complex plane!

Definition

A power series is an expansion of the form

$$\sum_{n=0}^{\infty} a_n z^n, \text{ where } a_n \in \mathbb{C}.$$

 $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely if $\sum_{n=0}^{\infty} |a_n| |z|^n < \infty$.

Definition (Domain of Convergence) $D := \{ w \in \mathbb{C} : \sum_{n=0}^{\infty} |a_n| |w|^n < \infty \}.$ Note that

•
$$w_0 \in D \Longrightarrow e^{i\theta} w_0 \in D$$
 for any $\theta \in \mathbb{R}$

• $w_0 \in D \implies w \in D$ for any $w \in \mathbb{C}$ with $|w| \leq |w_0|$.

Conclude that D is either \mathbb{C} , $\mathbb{D}_R(0)$ or $\overline{\mathbb{D}}_R(0)$ for some $R \ge 0$.

Radius of Convergence

Definition

The radius of convergence (for short, RoC) of $\sum_{n=0}^{\infty} a_n z^n$ is defined as

$$R:=\sup\{|z|:\sum_{n=0}^{\infty}|a_n||z|^n<\infty\}.$$

Theorem (Hadamard's Formula) The RoC of $\sum_{n=0}^{\infty} a_n z^n$ is given by

$$R = \frac{1}{\limsup |a_n|^{1/n}},$$

where we use the convention that $1/0=\infty$ and $1/\infty=0.$

Examples

•
$$\sum_{n=0}^{k} a_n z^n$$
, $a_n = 0$ for $n > k$, $R = \infty$.
• $\sum_{n=0}^{\infty} \frac{z^n}{n!}$, $a_n = \frac{1}{n!}$, $R = \infty$.
• $\sum_{n=0}^{\infty} z^n$, $a_n = 1$, $R = 1$.
• $\sum_{n=0}^{\infty} n! z^n$, $a_n = n!$, $R = 0$.

The coefficients of a power series may not be given by a single formula.

Example

Consider the power series $\sum_{n=0}^{\infty} z^{n^2}$. Then

$$a_k = 1$$
 if $k = n^2$, and 0 otherwise.

Clearly, $\limsup |a_n|^{1/n} = 1$, and hence R = 1.

Theorem

If the RoC of $\sum_{n=0}^{\infty} a_n z^n$ is R then the RoC of the power series $\sum_{n=1}^{\infty} na_n z^{n-1}$ is also R.

Proof.

Since
$$\lim_{n \to \infty} n^{1/n} = 1$$
, $R = \frac{1}{\limsup |na_n|^{1/n}} = \frac{1}{\limsup |a_n|^{1/n}}$.

Example

Consider the power series $\sum_{n=0}^{\infty} a_n z^n$, where a_n is number of divisors of n^{1111} . Note that

$$1\leq a_n\leq n^{1111}.$$

Note that $1 \leq \limsup |a_n|^{1/n} \leq \limsup (n^{1111})^{1/n} = 1$, and hence the RoC of $\sum_{n=0}^{\infty} a_n z^n$ equals 1.

Theorem

Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series with RoC equal to R > 0. Define $f : \mathbb{D}_R \to \mathbb{C}$ by $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Then f is holomorphic with $f'(z) = g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$.

- For z_0 , find $h \in \mathbb{C}$, r > 0 with $\max\{|z_0|, |z_0 + h|\} < r < R$.
- $S_k(z) = \sum_{n=0}^k a_n z^n$, $E_k(z) = \sum_{n=k+1}^\infty a_n z^n$. • $\frac{f(z_0+h)-f(z_0)}{h} - g(z_0) = A + (S'_k(z_0) - g(z_0)) + B$, where

$$A := \Big(\frac{S_k(z_0 + h) - S_k(z_0)}{h} - S'_k(z_0)\Big), B := \Big(\frac{E_k(z_0 + h) - E_k(z_0)}{h}\Big).$$

•
$$|B| \leq \sum_{n=k+1}^{\infty} |a_n| \Big| \frac{(z_0+h)^n - z_0^n}{h} \Big| \leq \sum_{n=k+1}^{\infty} |a_n| n r^{n-1}.$$

Corollary

A power series is infinitely complex differentiable in the disc of convergence.

Let U be a subset of \mathbb{C} . We say that U is <u>open</u> if for every $z_0 \in U$, there exists r > 0 such that $\mathbb{D}_r(z_0) \subseteq U$.

Definition

Let $U \subseteq$ be open. A function $f: U \to \mathbb{C}$ is said to be <u>analytic</u> at z_0 if there exists a power series $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ with positive radius of convergence such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 for all $z \in \mathbb{D}_r(z_0)$

for some r > 0. A function f is analytic if it is analytic at $z_0 \in U$.

Example (Analyticity of Polynomials and Linear Equations) Any polynomial $p(z) = c_0 + c_1 z + \cdots + c_n z^n$ is analytic in \mathbb{C} . To see this, fix $z_0 \in \mathbb{C}$. We show that there exist unique scalars a_0, \cdots, a_n such that

$$p(z) = a_0 + a_1(z - z_0) + \cdots + a_n(z - z_0)^n$$
 for every $z \in \mathbb{C}$.

Comparing coefficients of $1, z, \cdots, z^{n-1}$ on both sides, we get

$$\begin{bmatrix} 1 & -z_0 & z_0^2 & \cdots & & \\ 0 & 1 & -2z_0 & \cdots & & \\ 0 & 0 & 1 & -3z_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & & \\ & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 & & \\ a_1 & & \\ \vdots & \\ a_{n-1} & & \\ a_n \end{bmatrix} = \begin{bmatrix} c_0 & & \\ c_1 & & \\ \vdots & \\ c_{n-1} & & \\ c_n \end{bmatrix}$$

.

Alternatively, the solution is given by $a_k = \frac{p^{(k)}(z_0)}{k!}$ $(k = 0, \dots, n)$.

Appeared $e^{i \arg z}$ in the polar decomposition of z.

Definition

The exponential function e^z is the power series given by

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \ (z \in \mathbb{C}).$$

Since the radius of convergence of e^z is ∞ , exponential is holomorphic everywhere in \mathbb{C} . Further,

$$(e^{z})' = \sum_{n=1}^{\infty} \frac{nz^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = e^{z}.$$

Thus e^z is a solution of the differential equation f' = f. Moreover, e^z is the only solution of the IVP: f' = f, f(0) = 1.

Certainly, e^z is not surjective as for no $z \in \mathbb{C}$, $e^z = 0$. If $w \neq 0$ then by polar decomposition, $w = |w|e^{i \arg w}$ ($0 \leq \arg w < 2\pi$). Also, since $|w| = e^{\log |w|}$, we obtain

$$w = e^{\log |w| + i \arg w}$$

Thus the range of e^z is the punctured complex plane $\mathbb{C} \setminus \{0\}$. Further, since $\arg z$ is unique up to a multiple of 2π , e^z is one-one in $\{z \in \mathbb{C} : 0 \leq \arg z < 2\pi\}$, but not in \mathbb{C} .

Theorem (Polynomials Vs Exponential) If p is a polynomial then $\lim_{|z|\to\infty} |p(z)| = \infty$. However,

$$\lim_{|z|\to\infty} |e^z|\neq\infty.$$

Parametrized curves

- A parametrized curve is a function z : [a, b] → C. We also say that γ is a curve with parametrization z.
- A parametrized curve z is smooth if z'(t) exists and is continuous on [a, b], and z'(t) ≠ 0 for t ∈ [a, b].
- A parametrized curve z is piecewise smooth if z is continuous on [a, b] and z is smooth on every [a_k, a_{k+1}] for some points a₀ = a < a₁ < ··· < a_n = b.
- A parametrized curve z is closed if z(a) = z(b).

Example

- $z(t) = z_0 + re^{it}$ $(0 \le t \le 2\pi)$ (+ve orientation). $z(t) = z_0 + re^{-it}$ $(0 \le t \le 2\pi)$ (-ve orientation).
- Rectangle with vertices $R, R + iz_0, -R + iz_0, -R$ with +ve orientation is a parametrized curve, which is piecewise smooth but not smooth.

Definition

Given a smooth curve γ parametrized by $z : [a, b] \to \mathbb{C}$, and f a continuous function on γ , define the integral of f along γ by

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt.$$

Remark. If there is another parametrization $\tilde{z}(s) = z(t(s))$ for some continuously differentiable bijection $t : [a, b] \to [c, d]$ then, $\int_a^b f(z(t))z'(t)dt = \int_c^d f(\tilde{z}(s))\tilde{z}'(s)ds$.

Definition

In case γ is piecewise smooth, the integral of f along γ is given by

$$\int_{\gamma} f(z)dz = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(z(t))z'(t)dt.$$

Examples

Example

Let γ be the circle |z| = 1, $f(z) = z^n$ for an integer n. Note that

$$\int_{\gamma} f(z)dz = \int_0^{2\pi} f(e^{it})(e^{it})'dt = \int_0^{2\pi} e^{int}ie^{it}dt.$$

•
$$n \neq -1$$
: $\int_{\gamma} f(z) dz = \int_{0}^{2\pi} \frac{d}{dt} \frac{e^{i(n+1)t}}{n+1} dt = \frac{e^{i(n+1)t}}{n+1} \Big|_{0}^{2\pi} = 0.$
• $n = -1$: $\int_{\gamma} f(z) dz = \int_{0}^{2\pi} i dt = 2\pi i.$

Theorem (Cauchy's Theorem for Polynomials) Let γ be the circle $|z - z_0| = R$ and let p be a polynomial. Then

$$\int_{\gamma} p(z) dz = 0.$$

Let $\gamma \subseteq U$ with parametrization z and $f: U \to \mathbb{C}$ be continuous.

- $\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz.$
- If γ^- (with parametrization $z^-(t) = z(b + a t)$) is γ with reverse orientation, then

$$\int_{\gamma^-} f(z)dz = -\int_{\gamma} f(z)dz.$$

• If length $(\gamma):=\int_{\gamma}|z'(t)|dt$ then

$$\left|\int_{\gamma} f(z) dz\right| \leq \sup_{z \in \gamma} |f(z)| \cdot \operatorname{length}(\gamma).$$

Theorem (Integral independent of curve)

Let $f : U \to \mathbb{C}$ be a continuous function such that f = F' for a holomorphic function $F : U \to \mathbb{C}$. Let γ be a piecewise smooth parametrized curve in U such that $\gamma(a) = w_1$ and $\gamma(b) = w_2$. Then

$$\int_{\gamma} f(z) dz = F(w_2) - F(w_1).$$

In particular, if γ is closed then $\int_{\gamma} f(z) dz = 0$.

Proof.

We prove the result for smooth curves only. Note that

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \int_{a}^{b} F'(z(t))z'(t)dt$$
$$= \int_{a}^{b} \frac{d}{dt}F(z(t))dt = F(z(b)) - F(z(a)) = F(w_{2}) - F(w_{1}).$$
If γ is closed then $w_{1} = w_{2}$, and hence $\int_{\gamma} f(z)dz = 0$.

Corollary

Let U be an open convex subset of \mathbb{C} . Let $f : U \to \mathbb{C}$ be a holomorphic function. If f' = 0 then f is a constant function.

Proof.

Let $w_0 \in U$. We must check that $f(w) = f(w_0)$ for any $w \in U$. Let γ be a straight line connecting w_0 and w. By the last theorem,

$$0=\int_{\gamma}f'(z)dz=f(w)-f(w_0),$$

and hence f is a constant function.

Example

There is no holomorphic function $F : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that

$$F'(z) = rac{1}{z}$$
 for every $z \in \mathbb{C} \setminus \{0\}.$

Can not define logarithm as a holomorphic function on $\mathbb{C} \setminus \{0\}!$

Define the logarithm function by

$$\log(z) = \log(r) + i\theta$$
 if $z = r \exp(i\theta), \ \theta \in (0, 2\pi).$

Then log is holomorphic in the region r > 0 and $0 < \theta < 2\pi$. Problem (Cauchy-Riemann Equations in Polar Co-ordinates) The C-R equations are equivalent to $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}.$ Hint. Treat u, v as functions in r and θ , and apply Chain Rule.

Some Properties of Logarithm.

- $e^{\log z} = e^{\log(|z|) + i \arg z} = |z|e^{i \arg z} = z.$
- log z can be defined in the region r > 0 and 0 ≤ θ < 2π. But it is not continuous on the positive real axis.

Theorem

If U is an open set and T is a triangle with interior contained in U then $\int_T f(z)dz = 0$ whenever f is holomorphic in U.

Corollary

If U is an open set and R is a rectangle with interior contained in U then $\int_R f(z)dz = 0$ whenever f is holomorphic in U.

Proof.

$$\begin{split} E_1, \cdots, E_4: & \text{sides of } R, D: \text{ diagonal of } R \text{ with } +\text{ve orientation, } D^-: \\ & \text{diagonal with } -\text{ve orientation. Since } \int_{D^-} f(z)dz = -\int_D f(z)dz, \\ & \int_R f(z)dz = \int_{E_1 \cup E_2} f(z)dz + \int_{E_3 \cup E_4} f(z)dz \\ & = \left(\int_{E_1 \cup E_2} f(z)dz + \int_D f(z)dz\right) + \left(\int_{E_3 \cup E_4} f(z)dz + \int_{D^-} f(z)dz\right) = \\ & \int_{T_1} f(z)dz + \int_{T_2} f(z)dz = 0. \end{split}$$

An Application I: $e^{-\pi x^2}$ is its own "Fourier transform"

Consider the function $f(z) = e^{-\pi z^2}$. For a fixed $x_0 \in \mathbb{R}$, let γ denote the rectagular curve with parametrization z(t) given by

$$z(t) = t$$
 for $-R \leqslant t \leqslant R$, $z(t) = R + it$ for $0 \leqslant t \leqslant x_0$,

 $z(t) = -t + ix_0$ for $-R \leqslant t \leqslant R$, z(t) = -R - it for $-x_0 \leqslant t \leqslant 0$.

Let $\gamma_1, \dots, \gamma_4$ denote sides of γ . Note that $\int_{\gamma} e^{-\pi z^2} dz = \sum_{j=1}^4 \int_{\gamma_j} e^{-\pi z^2} dz$. Further, as $R \to \infty$, we obtain • $\int_{\gamma_1} f(z) dz = \int_{-R}^R e^{-\pi t^2} dt \to 1$. • $|\int_{\gamma_2} f(z) dz| \leqslant \int_0^{\chi_0} e^{-\pi (R^2 - t^2)} dt = e^{-\pi R^2} \int_0^{\chi_0} e^{\pi t^2} dt \to 0$. • $\int_{\gamma_3} f(z) dz = -\int_{-R}^R e^{-\pi (t^2 - \chi_0^2 + 2it\chi_0)} dt \to$

$$-e^{\pi x_0^2} \int_{-\infty}^{\infty} e^{-\pi t^2} e^{-2itx_0} dt.$$

• $|\int_{\gamma_4} f(z) dz| \leq \int_{-x_0}^{0} e^{-\pi (R^2 - t^2)} dt = e^{-\pi R^2} \int_{-x_0}^{0} e^{\pi t^2} dt \to 0.$

As a consequence of Goursat's Theorem, we see that $\int_{\gamma} e^{-\pi z^2} dz = 0$, and hence $\int_{-\infty}^{\infty} e^{-\pi t^2} e^{-2itx_0} dt = e^{-\pi x_0^2}$.

Theorem

Let \mathbb{D} denote the unit disc centered at 0 and let $f : \mathbb{D} \to \mathbb{C}$ be a holomorphic function. Then there exists a holomorphic function $F : \mathbb{D} \to \mathbb{C}$ such that F' = f.

Proof.

For
$$z \in \mathbb{D},$$
 define $F(z) = \int_{\gamma_1} f(w) dw + \int_{\gamma_2} f(w) dw$, where

$$\gamma_1(t) = t \operatorname{Re}(z) \ (0 \leqslant t \leqslant 1), \ \gamma_2(t) = \operatorname{Re}(z) + it \operatorname{Im}(z) \ (0 \leqslant t \leqslant 1).$$

Claim: F'(z) = f(z). Indeed, for $h \in \mathbb{C}$ such that $z + h \in \mathbb{D}$, by Goursat's Theorem, $F(z + h) - F(z) = \int_{\gamma_3} f(w) dw$, where

$$\gamma_3(t)=(1-t)z+t(z+h) \ (0\leqslant t\leqslant 1).$$

However, since f is (uniformly) continuous on γ_3 , $\frac{1}{h} \int_{\gamma_3} f(w) dw = \frac{1}{h} \int_0^1 f(\gamma_3(t)) \gamma'_3(t) dt = \int_0^1 f(\gamma_3(t)) dt \to f(z).$
Cauchy's Theorem for a disc

Theorem

If f is a holomorphic function in a disc, then

$$\int_{\gamma} f(z) dz = 0$$

for any piecewise smooth, closed curve γ in that disc.

.

Corollary

If f is a holomorphic function in an open set containing some circle C, then

$$\int_C f(z)dz = 0.$$

Proof.

Let *D* be a disc containing the disc with boundary *C*. Now apply Cauchy's Theorem.

An Example

Consider $f(z) = \frac{1-e^{iz}}{z^2}$. Then f is holomorphic on $\mathbb{C} \setminus \{0\}$. Consider the indented semicircle γ (with 0 < r < R) given by

$$z_1(t) = t \ (-R \leqslant t \leqslant -r), \ z_2(t) = re^{-it} \ (-\pi \leqslant t \leqslant 0),$$

$$z_3(t) = t \ (r \leqslant t \leqslant R), \ z_4(t) = Re^{it} \ (0 \leqslant t \leqslant \pi).$$

Since $z_1(-R) = -R = z_4(\pi)$, γ is closed. By Cauchy's Theorem,

$$\int_{-R}^{-r} \frac{1 - e^{it}}{t^2} dt + \int_{-\pi}^{0} \frac{1 - e^{iz_2(t)}}{z_2(t)^2} (-ire^{-it}) dt$$

$$+\int_{r}^{R}rac{1-e^{it}}{t^{2}}dt+\int_{0}^{\pi}rac{1-e^{iz_{4}(t)}}{z_{4}(t)^{2}}(iRe^{it})dt=0.$$

Since $|f(x+iy)| \leq \frac{1+e^{-y}}{|z|^2} \leq \frac{2}{|z|^2}$, the 4th integral $\rightarrow 0$ as $R \rightarrow \infty$.

Thus we obtain

$$\int_{-\infty}^{-r} \frac{1-e^{it}}{t^2} dt + \int_{-\pi}^{0} \frac{1-e^{iz_2(t)}}{z_2(t)^2} (-ire^{-it}) dt + \int_{r}^{\infty} \frac{1-e^{it}}{t^2} dt = 0.$$

Next, note that $\frac{1-e^{iz_2(t)}}{z_2(t)^2} = E(z_2(t)) - \frac{iz_2(t)}{z^2}$, where $E(z) = \frac{1+iz-e^{iz}}{z^2}$ is a bounded function near 0. It follows that

$$\int_{-\pi}^{0}rac{1-e^{iz_{2}(t)}}{z_{2}(t)^{2}}(-ire^{-it})dt
ightarrow -\int_{-\pi}^{0}dt=-\pi ext{ as } r
ightarrow 0.$$

This yields the following:

$$\int_{-\infty}^{0}rac{1-e^{it}}{t^2}dt+\int_{0}^{\infty}rac{1-e^{it}}{t^2}dt=\pi.$$

Taking real parts, we obtain

$$\int_{-\infty}^{\infty} \frac{1 - \cos(x)}{x^2} dx = \pi.$$

Cauchy Integral Formula I

The values of f at boundary determine its values in the interior! Theorem

Let U be an set containing the disc $\mathbb{D}_R(z_0)$ centred at z_0 and suppose f is holomorphic in U. If C denotes the circle $\{z \in \mathbb{C} : |z - z_0| = R\}$ of positive orientation, then

$$f(z) = rac{1}{2\pi i} \int_C rac{f(w)}{w-z} dw ext{ for any } z \in \mathbb{D}_R(z_0).$$

Example

•
$$\int_{|w-i|=1} \frac{-w^2}{w^2+1} dw = \int_{|w-i|=1} \frac{-w^2/(w+i)}{w-i} dw = \pi.$$

•
$$\int_{|w-\pi/2|=\pi} \frac{\sin(w)}{w(w-\pi/2)} dw = \frac{2}{\pi} \Big(\int_{|w-\pi/2|=\pi} \frac{\sin(w)}{w-\pi/2} dw - \int_{|w-\pi/2|=\pi} \frac{\sin(w)}{w} dw \Big) = 4i.$$

An Application: Fundamental Theorem of Algebra

Corollary

Any non-constant polynomial p has a zero in $\mathbb{C}.$

Anton R. Schep, Amer. Math. Monthly, 2009 January.

If possible, suppose that p has no zeros, that is, $p(z) \neq 0$ for every $z \in \mathbb{C}$. Let $f(z) = \frac{1}{p(z)}$ and $z_0 = 0$ in CIF:

•
$$\frac{1}{p(0)} = \frac{1}{2\pi i} \int_{|w|=R} \frac{1/p(w)}{w},$$

• $\left| \frac{1}{2\pi} \int_{|w|=R} \frac{dw}{wp(w)} \right| \le \max_{|w|=R} \left| \frac{1}{p(w)} \right| = \frac{1}{\min_{|w|=R} |p(w)|}.$
• $\min_{|w|=R} |p(w)| \le |p(0)|.$
• $|p(z)| \ge |z|^n (1 - |a_{n-1}|/|z| - \dots - |a_0|/|z^n|).$

•
$$\lim_{R\to\infty} \min_{|w|=R} |p(w)| = \infty.$$

This is not possible!

Proof of CIF I

Want to prove: If $f: U \to \mathbb{C}$ is holomorphic and $\overline{\mathbb{D}}_R(z_0) \subseteq U$,

$$f(z) = rac{1}{2\pi i} \int_C rac{f(w)}{w-z} dw$$
 for any $z \in \mathbb{D}_R(z_0).$

For $0 < r, \delta < R$, consider the "keyhole" contour $\gamma_{r,\delta}$ with

- a big 'almost' circle $|w z_0| = R$ of positive orientation,
- a small 'almost' circle |w z| = r of negative orientation,

• a corridor of width δ with two sides of opposite orientation. $\frac{f(w)}{w-z}$ is holomorphic in the "interior" of $\gamma_{r,\delta}$. By Cauchy's Theorem,

$$\int_{\gamma_{r,\delta}}\frac{f(w)}{w-z}dw=0.$$

 $\gamma_{r,\delta}$ has three parts: big circle C, small circle C_r , and corridor.

- As $\delta \rightarrow 0$, integrals over sides of corridor get cancel.
- Note that

$$\int_{C_r} \frac{f(w)-f(z)}{w-z} dw + \int_{C_r} \frac{f(z)}{w-z} dw = \int_{C_r} \frac{f(w)}{w-z} dw.$$

As $r \to 0$, 1st integral tends to 0 (since integrand is bounded near z), while 2nd integral is equal to $-f(z)(2\pi i)$.

• As a result, we obtain

$$0=\int_{\gamma_{r,\delta}}\frac{f(w)}{w-z}dw=\int_C\frac{f(w)}{w-z}dw-f(z)(2\pi i).$$

Problem

Let p be a polynomial. Show that if p is non-constant then $\max_{|z|\leq 1} |p(z)| = \max_{|z|=1} |p(z)|.$

Hint. If possible, there is $z_0 \in \mathbb{D}$ be such that $|p(z)| \leq |p(z_0)|$ for every $|z| \leq 1$. Write $p(z) = b_0 + b_1(z - z_0) + \cdots + b_n(z - z_0)^n$. If $0 < r < 1 - |z_0|$ then

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}|p(z_0+re^{i\theta})|^2d\theta=|b_0|^2+|b_1|^2r^2+\cdots+|b_n|^2r^{2n}.$$

However, $|b_0|^2 = |p(z_0)|^2$. Try to get a contradiction!

Growth Rate of Derivative

•
$$\frac{f(z+h)-f(z)}{h} = \frac{1}{2\pi i} \int_C \frac{f(w)}{h} \left(\frac{1}{w-z-h} - \frac{1}{w-z}\right) dw$$
$$= \frac{1}{2\pi i} \int_C f(w) \left(\frac{1}{(w-z-h)(w-z)}\right) dw.$$

• Taking limit as $h \rightarrow 0$, we obtain

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{(w-z)^2} dw.$$

Corollary (Cauchy Estimates) Under the hypothesis of CIF I,

$$|f'(z_0)| \leq \frac{\max_{|z-z_0|=R} |f(z)|}{R}$$

Definition

f is entire if f is complex differentiable at every point in \mathbb{C} .

Theorem (Liouville's Theorem)

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. If there exists $M \ge 0$ such that $|f(z)| \le M$ for all $z \in \mathbb{C}$, then f is a constant function.

Proof.

By Cauchy estimates, for any R > 0,

$$|f'(z_0)|\leqslant rac{\max\limits_{|z-z_0|=R}|f(z)|}{R}\leqslant rac{M}{R}
ightarrow 0 ext{ as } R
ightarrow \infty.$$

Thus $f'(z_0) = 0$. But z_0 was arbitrary, and hence f' = 0.

Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. We contend that the range of f intersects every disc in the complex plane.

 On the contrary, assume that some disc D_R(z₀) does not intersect the range of f, that is,

$$|f(z) - z_0| \ge R$$
 for all $z \in \mathbb{C}$.

- Define $g: \mathbb{C} \to \mathbb{C}$ by $g(z) = \frac{1}{f(z)-z_0}$.
- Note that g is entire such that $|g(z)| \leq \frac{1}{R}$ for all $z \in \mathbb{C}$.
- By Liouville's Theorem, g must be a constant function, and hence so is f. This is not possible.

Corollary

Let U be an open set containing the disc $\mathbb{D}_R(z_0)$ and suppose f is holomorphic in U. If C denotes the circle $\{z \in \mathbb{C} : |z - z_0| = R\}$ of positive orientation, then

$$f^{(n)}(z) = rac{n!}{2\pi i} \int_C rac{f(w)}{(w-z)^{n+1}} dw$$
 for any $z \in \mathbb{D}_R(z_0).$

We have already seen a proof in case n = 1. Let try case n = 2.

•
$$\frac{f'(z+h)-f'(z)}{h} = \frac{1}{2\pi i} \int_C \frac{f(w)}{h} \left(\frac{1}{(w-z-h)^2} - \frac{1}{(w-z)^2}\right) dw$$
$$= \frac{1}{2\pi i} \int_C f(w) \left(\frac{h+2(w-z)}{(w-z-h)^2(w-z)^2}\right) dw.$$

• Taking limit as $h \rightarrow 0$, we obtain

$$f''(z)=\frac{2}{2\pi i}\int_C\frac{f(w)}{(w-z)^3}dw.$$

Holomorphic function is Analytic

Theorem

Suppose $\overline{\mathbb{D}}_R(z_0) \subseteq U$ and $f: U \to \mathbb{C}$ is holomorphic. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 for all $z \in \mathbb{D}_R(z_0)$,

where
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$
 for all integers $n \ge 0$.

Proof.

Let $z \in \mathbb{D}_R(z_0)$ and write

$$\frac{1}{w-z} = \frac{1}{w-z_0 - (z-z_0)} = \frac{1}{w-z_0} \frac{1}{1 - \frac{z-z_0}{w-z_0}}.$$

Since $|w - z_0| = R$ and $z \in \mathbb{D}_R(z_0)$, there is 0 < r < 1 such that

$$|z - z_0| / |w - z_0| < r.$$

Proof Continued.

Thus the series $\frac{1}{1-\frac{z-z_0}{w-z_0}} = \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n$ converges <u>uniformly</u> for any w on $|w - z_0| = R$. We combine this with CIF I

$$f(z) = rac{1}{2\pi i} \int_C rac{f(w)}{w-z} dw$$
 for any $z \in \mathbb{D}_R(z_0)$

to conclude that

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_C \frac{1}{w - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0}\right)^n dw$$

$$\stackrel{\text{uni cgn}}{=} \sum_{n=0}^{\infty} \Big(\frac{1}{2\pi i} \int_{C} \frac{1}{(w-z_0)^{n+1}} dw \Big) (z-z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,$$

where we used CIF II.

Remark Once complex differentiable function is infinitely complex differentiable!

Taylor Series

We refer to the power series $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$ as the Taylor series of f around z_0 .

Example

Let us compute the Taylor series of log z in the disc $|z - i| = \frac{1}{2}$. Note that $a_0 = \log i$, $a_1 = \frac{1}{z}|_{z=i} = -i$, and more generally

$$a_n = \frac{f^{(n)}(i)}{n!} = (-1)^{n+1} \frac{1}{i^n} \frac{1}{n!} (n-1)! = \frac{-i^n}{n!}.$$

Hence the Taylor series of $\log z$ is given by

$$\log i + \sum_{n=1}^{\infty} \frac{-i^n}{n} (z-i)^n \ (z \in \mathbb{D}_{\frac{1}{2}}(i)).$$

Theorem

An entire function f is given by
$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$$
.

Corollary (Identity Theorem for entire functions)

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose $\{z_k\}$ of distinct complex numbers converges to $z_0 \in \mathbb{C}$. If $f(z_k) = 0$ for all $k \ge 1$ then f(z) = 0 for all $z \in \mathbb{C}$.

Proof.

Write $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$ $(z \in \mathbb{C})$. If $f \neq 0$, there is a smallest integer n_0 such that $f^{(n_0)}(z_0) \neq 0$. Thus $f(z) = \sum_{n=n_0}^{\infty} a_n(z - z_0)^n = a_{n_0}(z - z_0)^{n_0} \left(1 + \sum_{n=1}^{\infty} \frac{a_{n_0+n}}{a_{n_0}}(z - z_0)^n\right)$. Since the "bracketed term" is non-zero at z_0 , one can find $z_k \neq z_0$ such that RHS is non-zero at z_k . But LHS is 0 at z_k . Not possible!

Remark. 'Identity Theorem' does not hold for real differentiable functions.

Define $\sin z$ and $\cos z$ functions as follows:

$$\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}, \quad \cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}.$$

Note that sin z and cos z are entire functions (since RoC is ∞). We know the fundamental identity relating sin x and cos x:

$$\sin^2 x + \cos^2 x = 1$$
 for $x \in \mathbb{R}$.

In particular, the function $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = \sin^2 z + \cos^2 z - 1$ is entire and satisfies f(x) = 0 for $x \in \mathbb{R}$. Hence by the previous result,

$$\sin^2 z + \cos^2 z = 1$$
 for $z \in \mathbb{C}$.

Note that there is an entire function f such that f(z+1) = f(z) for all $z \in \mathbb{C}$, but f is not constant:

$$f(z)=e^{2\pi i z}.$$

Similarly, there exists a non-constant entire function f such that f(z + i) = f(z) for all $z \in \mathbb{C}$. However, if an entire function f satisfies both the above conditions, then it must be a constant!

Problem

Does there exist an entire function such that

$$f(z+1) = f(z), \ f(z+i) = f(z)$$
 for all $z \in \mathbb{C}$?

Hint. Show that *f* is bounded and apply Liouville's Theorem.

Theorem (Identity Theorem)

Let U be an open connected subset of \mathbb{C} and let $f : U \to \mathbb{C}$ is a holomorphic function. Suppose $\{z_k\}$ of distinct numbers converges to $z_0 \in U$. If $f(z_k) = 0$ for all $k \ge 1$ then f(z) = 0 for all $z \in U$.

Definition

A complex number $a \in \mathbb{C}$ is a zero for a holomorphic function $f: U \to \mathbb{C}$ if $a \in U$ and f(a) = 0.

- The identity theorem says that the zeros of *f* has "isolated". This means that any closed disc contained in *U* contains at most finitely many zeros of *f*.
- However f can have infinitely many zeros: sin(z).
- The zeros of *f* is always countable.

Theorem

Suppose that f is a non-zero holomorphic function on a connected set U and $a \in U$ such that f(a) = 0. Then there exist R > 0, a holomorphic function $g : \mathbb{D}_R(a) \to \mathbb{C}$ with $g(z) \neq 0$ for all $z \in \mathbb{D}_R(a)$ and a unique integer n > 0 such that

$$f(z) = (z - a)^n g(z)$$
 for all $z \in \mathbb{D}_R(a) \subseteq U$.

Proof.

Write $f(z) = \sum_{k=0}^{\infty} a_k (z-a)^k$, let $n \ge 1$ be a smallest integer such that $a_n \ne 0$ (which exists by the Identity Theorem). Then $f(z) = (z-a)^n g(z)$, where $g(z) = \sum_{k=n}^{\infty} a_k (z-a)^{k-n}$. Note that $g(a) = a_n \ne 0$, and hence by continuity of g, there exists R > 0such that $g(z) \ne 0$ for all $z \in \mathbb{D}_R(a)$.

We say that f has zero at a of <u>order</u> (or <u>multiplicity</u>) n. For example, z^n has zero at 0 of order n.

Example

- $\sin(\pi z)$ has zeros at all integers; all are of order 1. Indeed, $\sin(\pi k) = 0$ and $\frac{d}{dz} \sin(\pi z)|_{z=k} = \pi \cos(\pi k) \neq 0$.
- If possible, suppose $sin(\pi z_0) = 0$ for some $z_0 = x_0 + iy_0 \in \mathbb{C}$.
- By Euler's Formula, $\sin(\pi z) = \frac{e^{i\pi z} e^{-i\pi z}}{2i}$. Hence $e^{i\pi z_0} = e^{-i\pi z_0}$, that is, $e^{2i\pi z_0} = 1$. Taking modulus on both sides, we obtain $e^{-2\pi y_0} = 1$. Since e^x is one to one, $y_0 = 0$.
- Thus $e^{2i\pi x_0} = 1$, that is, $\cos(2\pi x_0) + i\sin(2\pi x_0) = 1$, and hence x_0 is an integer.

Problem

Show that all zeros of $\cos(\frac{\pi}{2}z)$ are at odd integers.

Singularities of a meromorphic function

By a deleted neighborhood of *a*, we mean the punctured disc

$$\mathbb{D}_R(a)\setminus\{a\}=\{z\in\mathbb{C}:0<|z-a|< R\}.$$

Definition

An isolated singularity of a function f is a complex number z_0 such that \overline{f} is defined in a deleted neighborhood of z_0 .

For instance, 0 is an isolated singularity of

•
$$f(z) = \frac{1}{z}$$
.

•
$$f(z) = \frac{\sin z}{z}$$

•
$$f(z) = e^{\frac{1}{z}}$$
.

The singularities in these examples are different in a way.

Indeed, a holomorphic function can have three kinds of isolated singularities: pole, removable singularity, essential singularity

Poles

Definition

Let f be a function defined in a deleted neighborhood of a. We say that f has a pole at a if the function $\frac{1}{f}$, defined to be 0 at a, is holomorphic on $\mathbb{D}_R(a)$.

Example

•
$$\frac{1}{z-a}$$
 has a pole at a .

- 0 is not a pole of $\frac{\sin z}{z}$ (since $\frac{\sin z}{z} \to 1$ as $z \to 0$).
- The poles of a rational function (in a reduced form \$\frac{p(z)}{q(z)}\$) are precisely the zeros of \$q(z)\$. For instance, \$\frac{z+1}{z+2}\$ has only pole at \$z = -2\$ while the poles of \$\frac{(z+1)\cdots(z+5)}{(z+2)\cdots(z+6)}\$ are at \$z = -1\$, -6\$.

Theorem

Suppose that f has a pole at $a \in U$. Then there exist R > 0, a holomorphic function $h : \mathbb{D}_R(a) \to \mathbb{C}$ with $h(z) \neq 0$ for all $z \in \mathbb{D}_R(z_0)$ and a unique integer n > 0 such that

$$f(z) = (z - a)^{-n}h(z)$$
 for all $z \in \mathbb{D}_R(a) \setminus \{a\} \subseteq U$.

Proof.

Note that $\frac{1}{f}$, with 0 at a, is a holomorphic function. Hence, by a result on Page 55, there exist R > 0, a holomorphic function $g : \mathbb{D}_R(a) \to \mathbb{C}$ with $g(z) \neq 0$ for all $z \in \mathbb{D}_R(a)$ and a unique integer n > 0 such that $\frac{1}{f(z)} = (z - a)^n g(z)$ for all $z \in \mathbb{D}_R(a)$. Now let $h(z) = \frac{1}{g(z)}$.

We say that f has pole at a of <u>order</u> (or <u>multiplicity</u>) n. For example, $\frac{1}{z^n}$ has pole at 0 of order n.

Example

Let us find poles of $f(z) = \frac{1}{1+z^4}$.

- For this, let us first solve $1 + z^4 = 0$. Taking modulus on both sides of $z^4 = -1$, we obtain |z| = 1. Thus $z = e^{i\theta}$, and hence $e^{4i\theta} = e^{i\pi}$. This forces $4\theta = \pi + 2\pi k$ for integer k. Thus $e^{i\theta} = e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}$.
- Note that $\frac{1}{f(z)} = (z e^{i\frac{\pi}{4}})^{-1}h(z)$, where $h(z) = (z - e^{i\frac{3\pi}{4}})(z - e^{i\frac{5\pi}{4}})(z - e^{i\frac{7\pi}{4}})$ is non-zero for every $z \in \mathbb{D}_R(e^{i\frac{\pi}{4}})$ for some R > 0. Thus $z = e^{i\frac{\pi}{4}}$ is a pole.
- Similar argument shows that $e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}}$ are poles of f.

Principal Part and Residue Part

Suppose that f has a pole of order n at a. By theorem on Page 60, there exist R > 0, a holomorphic function $h : \mathbb{D}_R(a) \to \mathbb{C}$ with $h(z) \neq 0$ for all $z \in \mathbb{D}_R(a)$ and a unique integer n > 0 such that

$$f(z) = (z - a)^{-n}h(z)$$
 for all $z \in \mathbb{D}_R(a) \setminus \{a\} \subseteq U.$

Since h is holomorphic, $h(z) = b_0 + b_1(z-a) + b_2(z-a)^2 + \cdots$,

$$f(z) = \frac{b_0}{(z-a)^n} + \frac{b_1}{(z-a)^{n-1}} + \frac{b_2}{(z-a)^{n-2}} + \cdots$$

which can be rewritten as

$$f(z) = \left(\frac{a_{-n}}{(z-a)^n} + \frac{a_{-n+1}}{(z-a)^{n-1}} + \dots + \frac{a_{-1}}{z-a}\right) + \left(a_0 + a_1(z-a) + \dots\right),$$

= Principal part
$$P(z)$$
 of f at $a + H(z)$.

Definition

The residue res_a f of f at a is defined as the coefficient a_{-1} of $\frac{1}{z_{-a}}$.

The residue res_a f is special among all terms in the principal part

$$P(z) = \frac{a_{-n}}{(z-a)^n} + \frac{a_{-n+1}}{(z-a)^{n-1}} + \dots + \frac{a_{-1}}{z-a}$$
 in the following sense:
• $\frac{a_{-k}}{(z-a)^k}$ has a primitive in a deleted neighborhood of a iff $k \neq 1$.
• If C_+ is the circle $|z - a| = R$ then $\frac{1}{2\pi i} \int_{C_+} P(z) dz = a_{-1}$.
• If f has a simple pole (pole of order 1) at a then
 $(z-a)f(z) = a_{-1} + a_0(z-a) + \dots \rightarrow a_{-1} = \operatorname{res}_a f$ as $z \to a$:

$$\operatorname{res}_a f = \lim_{z \to a} (z - a) f(z).$$

• Suppose
$$f$$
 has a pole of order 2. Then
 $(z-a)^2 f(z) = a_{-2} + a_{-1}(z-a) + a_0(z-a)^2 + \cdots$, and hence

$$\frac{d}{dz}(z-a)^2f(z)=a_{-1}+2a_0(z-a)+\cdots$$

Thus we obtain res_a $f = \lim_{z \to a} \frac{d}{dz}(z-a)^2 f(z)$.

Residue at poles of finite order

Theorem

If f has a pole of order n at a, then

$$\operatorname{res}_{a} f = \lim_{z \to a} \frac{1}{(n-1)!} \left(\frac{d}{dz}\right)^{n-1} (z-a)^n f(z).$$

Proof.

We already know

$$f(z) = \left(\frac{a_{-n}}{(z-a)^n} + \frac{a_{-n+1}}{(z-a)^{n-1}} + \dots + \frac{a_{-1}}{z-a}\right) + \left(a_0 + a_1(z-a) + \dots\right),$$
$$(z-a)^n f(z) = \left(a_{-n} + \frac{a_{-n+1}}{z-a} + \dots + (z-a)^{n-1}a_{-1}\right)$$
$$+ (z-a)^n \left(a_0 + a_1(z-a) + \dots\right),$$

Now differentiate (n-1) times and take limit as $z \rightarrow a$.

Example

Consider the function $f(z) = \frac{1}{1+z^2}$. Then f has simple poles at $z = \pm i$. Recall that

$$\operatorname{res}_a f = \lim_{z \to a} (z - a) f(z).$$

Thus we obtain

$$\operatorname{res}_{i} f = \lim_{z \to i} (z - i) f(z) = \lim_{z \to i} \frac{1}{z + i} = \frac{1}{2i}.$$
$$\operatorname{res}_{-i} f = \lim_{z \to -i} (z + i) f(z) = \lim_{z \to -i} \frac{1}{z - i} = \frac{1}{-2i} = 2i.$$

Theorem

Suppose that $f : U \to \mathbb{C}$ is holomorphic except a pole at $a \in U$. Let $C \subseteq U$ be one of the following closed contour enclosing a in U and with "interior" contained in U: A circle, triangle, semicircle union segment etc. Then

$$\int_C f(z) dz = 2\pi i \operatorname{res}_a f.$$

Example

Let $f(z) = \frac{1}{1+z^2}$. Let γ_R be union of [-R, R] and semicircle C_R : $z_1(t) = t \ (-R \leq t \leq R), \ z_2(t) = Re^{it} \ (0 \leq t \leq \pi).$

i is the only pole in the "interior" of γ_R if R > 1. Also, res_i $f = \frac{1}{2i}$.

By Residue Theorem, $\int_{-R}^{R} \frac{1}{1+x^2} dx + \int_{C_R} f(z) dz = \pi$. Let $R \to \infty$,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx + \lim_{R \to \infty} \int_{C_R} f(z) dz = \pi.$$

We claim that $\lim_{R\to\infty}\int_{C_R}f(z)dz=0$. To see that,

$$\Big|\int_{C_R} f(z)dz\Big| \leqslant \int_0^{\pi} \Big|\frac{1}{1+R^2e^{2it}}\Big|Rdt\leqslant \int_0^{\pi} \Big|\frac{1}{R^2-1}\Big|Rdt$$

 $=\pi \frac{R}{R^2-1}
ightarrow 0$ as $R
ightarrow \infty$. This yields the formula:

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi.$$

Proof of Residue Formula

Consider the keyhole contour $\gamma_{r,\delta}$ that avoids the pole *a*: $\gamma_{r,\delta}$ consists of 'almost' *C*,

- a circle C_r : |w a| = r of negative orientation, and
- a corridor of width δ with two sides of opposite orientation.

Letting $\delta \rightarrow 0$, we obtain by Cauchy's Theorem that

$$\int_C f(z)dz + \int_{C_r} f(z)dz = 0.$$

However, we know that

$$f(z) = \left(\frac{a_{-n}}{(z-a)^n} + \frac{a_{-n+1}}{(z-a)^{n-1}} + \dots + \frac{a_{-1}}{z-a}\right) + \left(a_0 + a_1(z-a) + \dots\right).$$

Now apply Cauchy's Integral Formula and Cauchy's Theorem to see that $\int_{C_r} f(z)dz = a_{-1}(-2\pi i)$ (as C_r has negative orientation).

Theorem

Suppose that $f : U \to \mathbb{C}$ is holomorphic except pole at a_1, \dots, a_k in U. Let $C \subseteq U$ be one of the following closed contour enclosing a_1, \dots, a_k in U and with "interior" contained in U: A circle, triangle, semicircle union segment etc. Then

$$\int_C f(z)dz = 2\pi i \sum_{i=1}^k \operatorname{res}_{a_i} f.$$

Example

Consider the function $\cosh(z) = \frac{e^z + e^{-z}}{2}$. Then $\cosh(\pi z)$ is an entire function with zeros at points z for which $e^{\pi z} = -e^{-\pi z}$, that is, $e^{2\pi z} = -1$. Solving this for z, we obtain i/2 and 3i/2 as the only zeros of $\cosh(\pi z)$. Note that $\cosh(\pi z)$ is periodic of period 2i.

Example Continued ...

• For $s \in \mathbb{R}$, consider now the function $f(z) = \frac{e^{-2\pi i z s}}{\cosh(\pi z)}$.

• Check that f has simple poles at $a_1 = i/2$ and $a_2 = 3i/2$.

• Further,
$$\operatorname{res}_{a_1} f = \frac{e^{\pi s}}{\pi i}$$
 and $\operatorname{res}_{a_2} f = -\frac{e^{3\pi s}}{\pi i}$ (Verify).

Let γ denote the rectagular curve with parametrization

 $\gamma_1(t) = t \text{ for } -R \leq t \leq R, \quad \gamma_2(t) = R + it \text{ for } 0 \leq t \leq 2,$ $\gamma_3(t) = -t + 2i \text{ for } -R \leq t \leq R, \quad \gamma_4(t) = -R - it \text{ for } -2 \leq t \leq 0.$ By Residue Theorem

$$\int_{\gamma} f(z)dz = 2\pi i \left(\frac{e^{\pi s}}{\pi i} - \frac{e^{3\pi s}}{\pi i}\right) = 2(e^{\pi s} - e^{3\pi s}).$$

Further, as $R o \infty$, we obtain

•
$$\int_{\gamma_1} f(z)dz \to \int_{-\infty}^{\infty} \frac{e^{-2\pi i ts}}{\cosh(\pi t)} dt.$$

•
$$|\int_{\gamma_2} f(z)dz| \leqslant \int_0^2 \frac{2e^{4\pi |s|}}{e^{\pi R} - e^{-\pi R}} dt \to 0.$$
 Similarly, $\int_{\gamma_4} f(z)dz \to 0.$
•
$$\int_{\gamma_3} f(z)dz = -\int_{-R}^R \frac{e^{-2\pi i zs}}{\cosh(\pi z)} dt \to -e^{4\pi s} \int_{-\infty}^{\infty} \frac{e^{-2\pi i ts}}{\cosh(\pi t)} dt.$$

Example Continued ...

We club all terms together to obtain

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i ts}}{\cosh(\pi t)} dt - e^{4\pi s} \int_{-\infty}^{\infty} \frac{e^{-2\pi i ts}}{\cosh(\pi t)} dt = \int_{\gamma} f(z) dz = 2(e^{\pi s} - e^{3\pi s}),$$

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i ts}}{\cosh(\pi t)} dt = \frac{2}{1 - e^{4\pi s}} (e^{\pi s} - e^{3\pi s}).$$

However, $(e^{\pi s} - e^{3\pi s})(e^{\pi s} + e^{-\pi s}) = 1 - e^{4\pi s}$, and hence

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i ts}}{\cosh(\pi t)} dt = \frac{2}{e^{\pi s} + e^{-\pi s}} = \cosh(\pi s).$$

Thus the "Fourier transform" of reciprocal of cosine hyperbolic function is reciprocal of cosine hyperbolic function itself.

Definition

Let U be an open subset of \mathbb{C} and let $a \in U$. We say that a is a removable singularity of a holomorphic function $f : U \setminus \{a\} \to \mathbb{C}$ if there exists $\alpha \in \mathbb{C}$ such that $g : U \to \mathbb{C}$ below is holomorphic:

$$g(z) = f(z) \ (z \neq a), \ g(a) = \alpha$$

Example

Consider the function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ given by $f(z) = \frac{1-\cos z}{z^2}$. Then 0 is a removable singularity of f. Indeed, define $g : U \to \mathbb{C}$ by

$$g(z) = f(z) \ (z \neq 0), \ g(0) = \frac{1}{2}$$

Then g is complex differentiable at 0: $\frac{g(h)-g(0)}{h} = \frac{\frac{1-\cos h}{h^2} - \frac{1}{2}}{h} \to 0.$ Hence g is holomorphic on \mathbb{C} .
Theorem

Let U be an open subset of \mathbb{C} containing a. Let $f : U \setminus \{a\} \to \mathbb{C}$ be a holomorphic function. If $\alpha := \lim_{z \to a} f(z)$ exists and for some holomorphic function $F : \mathbb{D}_R(a) \to \mathbb{C}$,

$$f(z) - \alpha = (z - a)F(z) \ (z \in \mathbb{D}_R(a)),$$

then f has removable singularity at a.

Proof.

Define $g: U \to \mathbb{C}$ by

$$g(z) = f(z) \ (z \neq a), \ g(a) = \alpha.$$

We must check that g is complex differentiable at a. However,

$$\frac{g(h)-g(a)}{h-a}=\frac{f(h)-\alpha}{h-a}=F(h)\to F(a).$$

It follows that g is holomorphic on U.

Example Let $a = \pi/2$ and $f(z) = \frac{1-\sin z}{\cos z}$. Then

$$\cos z = \sum_{n=0}^{\infty} \left(\frac{d^n}{dz^n} \cos z |_{z=\pi/2} \right) (z-\pi/2)^n = (z-\pi/2) H(z), \ H(\pi/2) \neq 0,$$

$$1 - \sin z = \sum_{n=0}^{\infty} \left(\frac{d^n}{dz^n} (1 - \sin z) |_{z=\pi/2} \right) (z - \pi/2)^n = (z - \pi/2)^2 G(z)$$

It follows that $\alpha := \lim_{z \to \pi/2} f(z) = 0$. Also, for some R > 0,

$$f(z) - \alpha = (z - \pi/2) \frac{G(z)}{H(z)} \ (z \in \mathbb{D}_R(a)),$$

and hence $z = \pi/2$ is a removable singularity of f.

Laurent Series and Essential Singularity

Theorem

For $0 < r < R < \infty$, let $\mathbb{A}_{r,R}(z_0) : \{z \in \mathbb{C} : r < |z - z_0| < R\}$, suppose $f : \mathbb{A}_{r,R}(z_0) \to \mathbb{C}$ is holomorphic. Then

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$
 for all $z \in \mathbb{A}_{r,R}(z_0)$,

where $a_n = \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(z)}{(z-z_0)^{n+1}} dz$ for integers n and $r < \rho < R$. We refer to the series appearing above as the Laurent series of f around z_0 .

Outline of the Proof.

One needs Cauchy Integral Formula for the union of $|z - z_0| = r_1$ and $|z - z_0| = R_1$ (can be obtained from Cauchy's Theorem by choosing appropriate keyhole contour), where $r < r_1 < R_1 < R$. Thus for $z \in A_{r,R}(z_0)$, Outline of the Proof Continued.

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=R_1} \frac{f(w)}{w-z} dw - \frac{1}{2\pi i} \int_{|w-z_0|=r_1} \frac{f(w)}{w-z} dw.$$

One may argue as in the proof of Cauchy Integral Theorem to see that first integral gives the series $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ while second one leads to $\sum_{n=-\infty}^{1} a_n(z-z_0)^n$.

Definition

Let U be an open set and $z_0 \in U$ be an isolated singularity of the holomorphic function $f : U \setminus \{z_0\} \to \mathbb{C}$. We say that z_0 is an essential singularity of f if infinitely many coefficients among $\overline{a_{-1}, a_{-2}, \cdots}$, in the Laurent series of f are non-zero.

- The Laurent series of $f(z) = e^{1/z}$ around 0 is $1 + \frac{1}{z} + \frac{1}{2}\frac{1}{z^2} + \frac{1}{3!}\frac{1}{z^3} + \cdots$. Hence 0 is an essential singularity.
- Similarly, 0 is an essential singularity of $z^2 \sin(1/z)$.

Let us examine the Laurent series of f around z_0 :

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$
 for all $z \in \mathbb{A}_{r,R}(z_0)$,

- z_0 is a removable singularity if and only if $a_{-n} = 0$ for $n = 1, 2, \cdots$,
- z_0 is a pole of order k if and only if $a_{-n} = 0$ for $n = k + 1, k + 2, \cdots$, and $a_{-k} \neq 0$.
- z_0 is an essential singularity if and only if $a_{-n} \neq 0$ for infinitely many values of $n \ge 1$.

In particular, an isolated singularity is essential if it is neither a removable singularity nor a pole.

In an effort to understand "logarithm" of a holomorphic function $f: U \to \mathbb{C} \setminus \{0\}$, we must understand the change in the argument

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz$$

of f as z traverses the curve γ . The argument principle says that for the unit circle γ , this is completely determined by the zeros and poles of f inside γ . We prove this in a rather special case, under the additional assumption that f has finitely many zeroes and poles.

Theorem (Argument Principle)

Suppose f is holomorphic except at poles in an open set containing a circle C and its interior. If f has no poles and zeros on C, then

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = (number of zeros of f inside C)$$

- (number of poles of f inside C).

Here the number of zeros and poles of f are counted with their multiplicities.

Proof.

Let z_1, \dots, z_k (of multiplicities n_1, \dots, n_k) and p_1, \dots, p_l (of multiplicities m_1, \dots, m_k) denote the zeros and poles of f inside C respectively. If f has a zero at z_1 of order n_1 then

$$f(z) = (z - z_1)^{n_1}g(z)$$

in the interior of C for a non-vanishing function g near z_1 .

Proof Continued. Note that $\frac{f'(z)}{f(z)} = \frac{n_1(z-z_1)^{n_1-1}g(z)+(z-z_1)^{n_1}g'(z)}{(z-z_1)^{n_1}g(z)} = \frac{n_1}{z-z_1} + \frac{g'(z)}{g(z)}$. Integrating both sides, we obtain

$$\frac{1}{2\pi i}\int_C \frac{f'(z)}{f(z)}dz = n_1 + \frac{1}{2\pi i}\int_C \frac{g'(z)}{g(z)}dz.$$

Now g has a zero at z_2 of multiplicity n_2 . By same argument to $g(z) = (z - z_2)^{n_2} h(z)$, we obtain

$$\frac{1}{2\pi i}\int_C \frac{g'(z)}{g(z)}dz = n_2 + \frac{1}{2\pi i}\int_C \frac{h'(z)}{h(z)}dz.$$

Continuing this we obtain

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = n_1 + \dots + n_k + \frac{1}{2\pi i} \int_C \frac{F'(z)}{F(z)} dz \quad (\star),$$

where F(z) has no zeros.

Proof Continued.

Note that F has poles at p_1, \dots, p_l (of multiplicities m_1, \dots, m_k) respectively. Write $F(z) = (z - p_1)^{-m_1}G(z)$ and note that

$$\frac{F'(z)}{F(z)} = \frac{-m_1(z-z_1)^{-m_1-1}G(z) + (z-p_1)^{-m_1}G'(z)}{(z-p_1)^{-m_1}G(z)}$$
$$= \frac{-m_1}{z-p_1} + \frac{G'(z)}{G(z)}.$$

It follows that $\int_C F'/F = -m_1$. Continuing this we obtain

$$\frac{1}{2\pi i}\int_C \frac{F'(z)}{F(z)}dz = -m_1 - \cdots - m_l$$

(we need Cauchy's Theorem here). Now substitute this in (\star) .

Corollary

Suppose f is holomorphic in an open set containing a circle C and its interior. If f has no zeros on C, then

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = (number of zeros of f inside C).$$

Here the number of zeros of f are counted with their multiplicities.

Theorem (Rouché's Theorem)

Suppose that f and g are holomorphic in an open set containing a circle C and its interior. If |f(z)| > |g(z)| for all $z \in C$, then f and f + g have the same number of zeros inside the circle C.

Outline of Proof of Rouché's Theorem. Let $F_t(z) := f + tg$ for $t \in [0, 1]$. By the corollary above,

Number of zeros of
$$F_t(z) = \int_C \frac{f'_t(z)}{f_t(z)} dz$$

is an integer-valued, continuous function of t, and hence by Intermediate Value Theorem,

Number of zeros of $F_0(z)$ = Number of zeros of $F_1(z)$.

But
$$F_0(z) = f$$
 and $F_1(z) = f(z) + g(z)$.

Example

Consider the polynomial $p(z) = 2z^{10} + 4z^2 + 1$. Then p(z) has exactly 2 zeros in the open unit disc \mathbb{D} . Indeed, apply Rouché's Theorem to $f(z) = 4z^2$ and $g(z) = 2z^{10} + 1$:

$$|f(z)| = 4 > |2z^{10} + 1| = |g(z)|$$
 on $|z| = 1$.

Example

Let p be non-constant polynomial. If |p(z)| = 1 whenever |z| = 1 then the following hold true:

- p(z) = 0 for z in the open unit disc. Indeed, by Maximum Modulus Principle, $|p(z)| \le 1$. Hence, if $p(z) \ne 0$ then $\frac{1}{|p(z)|} \ge 1$ with maximum inside the disc, which is not possible.
- $p(z) = w_0$ has a root for every $|w_0| < 1$, that is, the range of p contains the unit disc. To see this, apply Rouché's Theorem to f(z) = p(z) and $g(z) = -w_0$ to conclude that

$$f(z) + g(z) = p(z) - w_0$$

has a zero inside the disc.

Problem

Show that the functional equation $\lambda = z + e^{-z}$ ($\lambda > 1$) has exactly one (real) solution in the right half plane.

A Möbius transformation is a function of the form

$$f(z)=rac{az+b}{cz+d}, \,\, a,b,c,d\in \mathbb{C} \,\, ext{such that} \,\, ad-bc
eq 0.$$

Note that f is holomorphic with derivative

$$f'(z)=\frac{ad-bc}{(cz+d)^2}.$$

This also shows that $f'(z) \neq 0$, and hence f is non-constant.

Example

- If c = 0 and d = 1 then f(z) = az + b is a linear polynomial.
- If a = 0 and b = 1 then $f(z) = \frac{1}{cz+d}$ is a rational function.

The Möbius transformation $f(z) = \frac{az+b}{cz+d}$ is bijective with inverse

$$g(z)=\frac{-dz+b}{cz-a}.$$

Indeed, $f \circ g(z) = z = g \circ f(z)$ wherever f and g are defined.

Example

Let $f(z) = \frac{az+b}{cz+d}$ and $g(z) = \frac{a'z+b'}{c'z+d'}$ be Möbius transformations. Then $f \circ g$ is a also a Möbius transformation given by

$$f \circ g(z) = \frac{\alpha z + \beta}{\gamma z + \delta},$$

where

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}.$$

Lemma

If γ is a circle or a line and $f(z) = \frac{1}{z}$ then $f(\gamma)$ is a circle or line.

Proof.

Suppose γ is the circle |z - a| = r (We leave the case of line as an exercise). Then $f(\gamma)$ is obtained by replacing z by $w = \frac{1}{z}$: |1/w - a| = r, that is, $1/|w|^2 - 2\operatorname{Re}(a/\bar{w}) = r^2 - |a|^2$.

• If r = |a| (that is, γ passes through 0), then $\operatorname{Re}(aw) = 1/2$, which gives the line $\operatorname{Re}(w)\operatorname{Re}(a) - \operatorname{Im}(w)\operatorname{Im}(a) = \frac{1}{2}$.

• If
$$r \neq |a|$$
 then $1/(r^2 - |a|^2) - 2\frac{|w|^2}{r^2 - |a|^2} \operatorname{Re}(a/\bar{w}) = |w|^2$. Thus

$$1/(r^2 - |a|^2) = |w|^2 + 2\text{Re}(w(a/(r^2 - |a|^2)))$$

$$= |w|^{2} + 2\operatorname{Re}(w(a/(r^{2} - |a|^{2})) + |a|^{2}/(r^{2} - |a|^{2})^{2} - |a|^{2}/(r^{2} - |a|^{2})^{2}$$
$$= |w - a/(r^{2} - |a|^{2})|^{2} - |a|^{2}/(r^{2} - |a|^{2})^{2}.$$

Thus $f(\gamma)$ is the circle $|w - a/(r^2 - |a|^2)| = r/|r^2 - |a|^2|$.

Theorem

Any Möbius transformation f maps circles and lines onto circles and lines.

Proof.

We consider two cases:

• c = 0: In this case f is linear and sends line to a line and circle to a circle.

•
$$c \neq 0$$
: Then $f(z) = f_1 \circ f_2 \circ f_3(z)$, where

$$f_1(z) = rac{a}{c} - \left(rac{ad-bc}{c}
ight)z, \ f_2(z) = rac{1}{z}, \ ext{and} \ f_3(z) = cz+d.$$

Since f_1, f_2, f_3 map circles and lines onto circles and lines (by Lemma and Case c = 0), so does f.

Theorem

If $f : \mathbb{D} \to \mathbb{D}$ is a holomorphic map such that f(0) = 0 then $|f(z)| \le |z|$ for every $z \in \mathbb{D}$.

Problem

What are <u>all</u> the bijective holomorphic maps from $\mathbb D$ onto $\mathbb D$?

Corollary

If f(0) = 0 and $f : \mathbb{D} \to \mathbb{D}$ is a holomorphic bijective map then f is a rotation: $f(z) = e^{i\theta}z$ for some $\theta \in \mathbb{R}$.

Proof.

By Schwarz's Lemma, $|f(z)| \le |z|$. However, same argument applies to f^{-1} : $|f^{-1}(z)| \le |z|$. Replacing z by f(z), we obtain

Proof Continued.

 $|z| \leq |f(z)|$ implying |f(z)| = |z|. But then f(z)/z attains max value 1 in \mathbb{D} . Hence f(z)/z must be a constant function of modulus 1, that is, $f(z) = e^{i\theta}z$.

Theorem

If $f : \mathbb{D} \to \mathbb{D}$ is a holomorphic bijective map then f is a Möbius transformation:

$$f(z) = e^{i heta} rac{a-z}{1-\overline{a}z}$$
 for some $a \in \mathbb{D}$ and $heta \in \mathbb{R}.$

Proof.

Note that f(a) = 0 for some $a \in \mathbb{D}$. Consider $f \circ \psi_a$ for $\psi_a(z) = \frac{a-z}{1-\overline{az}}$, and note that $f \circ \psi_a(0) = 0$. Also, $f \circ \psi_a$ is a holomorphic function on \mathbb{D} . Further, since $|\psi_a(z)| < 1$ whenever |z| < 1, $f \circ \psi_a$ maps $\mathbb{D} \to \mathbb{D}$. By last corollary, $f \circ \psi_a(z) = e^{i\theta}z$, that is, $f(z) == e^{i\theta}\psi_a^{-1}(z)$. However, by a routine calculation, $\psi_a^{-1}(z) = \psi_a(z)$.

[A] E. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2006.
[B] P. Shunmugaraj, Lecture notes on Complex analysis, available online,

http://home.iitk.ac.in/ psraj/mth102/lecture-notes.html