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Introduction  
 

Source localization is extensively used the field of Wireless Sensor Networks (WSN) 

and Cellular Systems. The data obtained through sensor measurements cannot be 

interpreted meaningfully with the information of source location. Installation of GPS to 

the source would be quite expensive and hence impractical. Sensor localization could 

be done through various sensor measurements like Time of Arrival (TOA), Time 

Difference of Arrival (TDOA), Received Signal Strength (RSS), etc. In this paper, RSS 

has been used as it is practically simple and quite inexpensive.  

 

ML estimator is one of the most interesting optimizing methods used previously for 

sensor localization. It achieves CRLB (Cramer-Rao Lower Bound) for sufficiently high 

SNR. It can easily be seen that the cost function is highly non-linear and convex. Also, 

ML estimator has no closed form solution and is solved using iterative algorithms. The 

problem with such approach is that if the initial guess is not taken correctly, function 

could converge to a local minima or a saddle point which could lead to high estimation 

error. Sub-optimal estimators are a solution to this problem. Convex relaxation also 

helps in obtaining a solution.  

 

Another method called the Linear Least Squares (LLS) has also been used. It produces 

a closed form solution but is not as accurate as the ML estimator; erroneous especially 

in case of limited anchor nodes.  

 

SDP and SOCP are also used for sensor localization. In this paper, as pairwise 
distances are not available, localization is done only on the basis of RSS (Received 
Signal Strength). The RSS measurements have been assumed to be correlated. This is 
actually the case when we deal with indoor environments. It has been observed that 
sensors could be localized more accurately if signals are considered correlated; i.e. 
better performance is observed for the case of correlated shadowing. Semi definite 
programming (SDP) approach has been employed by converting the corresponding 
non-convex ML estimator into a convex one. 
 

 

 

 

 

  



Problem Statement 

 

There is a network of sensors, some of whose positions are known (called anchor 

nodes). We wish to estimate the position of the remaining nodes based upon the 

strength of received signal at the anchor nodes. 

 

 

 
 

 

An example of a network with anchor nodes highlighted 

 

  



Algorithm 

 

● Received power in dB-m at ith anchor node: 

          
● Covariance matrix of shadowing terms assuming spatially correlated shadowing: 

                   
σ dB is the standard deviation of the shadowing. ρij is the correlation coefficient 
between the ith and the jth links. 

 

● Initial non-convex minimization problem: 
 

 
where, 

  
and  

           
● Rearranging (1) gives 

 
● (5) after taking power of 10 gives 

 
where 

 
● Using the first order Taylor series approximation gives 

 
● Rearranging (7) gives 

 
where, 

 
 

 



● (8) rearranged gives 

 
where, 

 

 

 
 

● The minimization now boils down to 

 
where 

 
 

● The nonlinear and nonconvex cost function of (10) can be written as 

  
where, 

 
 

● The diagonal elements of the matrix D are 

 
where, 

 
● We need to relax the non-affine terms as follows 

 

 
 

 
 
 



● This leads to the final minimization problem which is an SDP minimization 
problem by relaxing the non-affine terms in (10) 

 

 
 
 
 

  



 

MATLAB Codes 
Main_const_shadowing 
                                                                            

%main file with a fixed value of shadowing, sigma is a scalar 

sigma=4; N=120;                                                             

%takes less than a minute to run 

error=sdp(sigma,N) ;                                                        

%sdp estimator  

[a,b]=ecdf(error);                                                          

%getting the CDF of the localization error 

plot(b,'-ro') 

xlabel('localization error') 

ylabel('CDF') 

hold                                                                        

%ML estimator file, kept in same directory 

error_ml=ml2(sigma,N) 

[a,b]=ecdf(error_ml); 

plot(b,'-.b'); 

 

 

 
 

Main_variable_shadowing 
%main file for varying shadowing, i.e. sigma as vector 

%takes several minutes to run 

sigma=1:5:41; 

N=40; 

rmse=zeros(1,length(sigma));                                                

%rmse initialized to (1 x length(sigma)) to store root mean square values 

for k=1:length(sigma) 

error=sdp(sigma(k),N)                                                       

%solve sdp for variable shadowing 

rmse(k)=norm(error);                                                        

%filling rmse values corresponding to values of shadowing 

end 

plot(sigma,rmse,'-ro') 

xlabel('shadowing(DB)') 

ylabel('RMSE') 

hold 

for k=1:length(sigma) 

error=ml2(sigma(k),N)                                                       

%solve for ml2 to get error vector and resultant rmse values  

rmse(k)=norm(error); 

end 

plot(sigma,rmse,'-.b')                                                      

%plot on same graph 

 
 

 

 

 



SDP
%%The following code implements the paper titled "RECEIVED SIGNAL STRENGTH-

BASED SENSOR LOCALIZATION IN SPATIALLY CORRELATED SHADOWING" by vaghefi, 

buehrer. Most studies for RSS (received signal strength) for sensor 

localization assume that the shadowing components are uncorrelated. However, 

here we assume that the shadowing is spatially correlated. Under this 

condition, it can be shown that the localization accuracy can be improved if 

the correlation among links is taken into consideration. The localization 

problem is formulated as an SDP minimization and solved using the cvx for 
 MatLab. Just run to see results. 
function [error]=sdp(sigma,N) 
%%%%(initializations) 
m=4;                                                    %no. of anchors 
%N=10;                                                  % N = number of test 

cases 
error=zeros(1,N);                                       % localization error 

vector stored the estimation error for each of the N cases 
ml=zeros(1,N); 
X=rand(N,2)-.50;                                        % X is a set of N 

random points in the 2D plane 
%%%% for-loop to estimate location for each of the test cases 
for z = 1:1:N 
    echo off                                            %allowing the 

commands to be viewed as they execute, for debugging 
    %cvx_pause(false); 
   % clc 
     clearvars -except z error X  sigma  N           
      y=.5*[1,-1, 1, -1 0 .25 .1 .2;                                   %4 

anchors 
       1, 1, -1, -1 0 .5 -.1 -.2]; 
    x1=X(z,:);                                          %randomly generated 

sensor point, to be estimated later 
                                                        %taking the z-th 

point for estimation of location 
    p0=-40;                                             % p0 is the power at 

unit length (d0=1) 
    beta=4;                                             % beta = path loss 

exponent, taken here to be 4dB 
    d0=1;  
    %sigma=4;  
    rho=.8; 
        %%%%(initial calculations for L,lambda,d,P all calculated assuming 

known sensor x1) 
    % Shadowing modeled as not-independant identically distributed Gaussian 

random 
    % variables, with the covariance matrix q. For iid (independant 
    % identically distributed Gaussian random variables, q=sigma^2 * eye(4) 
   

    p=p0*ones(1,8);                                                              
    d1=([x1' x1' x1' x1' x1' x1' x1' x1'] - y)'*([x1' x1' x1' x1' x1' x1' x1' 

x1'] - y); d1=sqrt((diag(d1))');  % d1 =Vector of distance of sensor in 

question from each of the anchor nodes  



    p=p-10*beta*log10(d1/d0);                                                   

% p = Vector of Recieved Signal Strenghts at each of the anchor nodes 
    lambda=10.^((p-p0*ones(1,8))/10*beta);                                      

% lambda is a user-defined variable, defined as 10^((P-P0)/10*beta). 
    L=diag(lambda); 
  

    q=ones(8);                                                                  

%Filling the q matrix 
    for i=1:8 
        for j=1:8 
           if(i==j) q(i,j)=sigma^2; 
           else q(i,j)=rho*sigma^2; 
           end 
        end 
    end 
     

    W=((10*beta)^2 / (log(10))^2 )*inv(q);                       % The W is a 

weighting matrix which is proportional to the inverse of the covariance 

matrix 
     

    %%  
    %%%% calculation of d vector, D matrix and final problem formulation in 

cvx(http://cvxr.com/cvx/doc/CVX.pdf) assuming x as a variable 
     

    %cvx_begin quiet sdp 
    cvx_begin sdp 

    variables x(1,2); 
    variable pp(1,1); 
    variable D(8,8); 
    variable d(1,8);                                               
    p=W*L*D*L';                                                             

%p and q are cost functions to be minimized 
    q=2*d'*ones(1,8)*W*L; 
    minimize (trace(p) - trace(q))                                          

%W- m x m; L- m x m; D - m x m; d - m x 1, m=no. of anchors 
  % size(D)  
   %  size(d) 
    subject to                                                              

%constraints 
    [eye(2) x'; x pp] == semidefinite(3) ;  
     

      for j=1:8                                                             

%(eqn #13 in paper 
       D(j,j)>=[y(1,j),y(2,j),-1]*[eye(2) x';  x  pp]*[y(1,j),y(2,j),-1]'; %D 

matrix modeled to help making minimization problem linear and convex  
      end  
       

    [D d'; d 1] == semidefinite(9) ; 
    cvx_end 

    error(z)=norm(x-x1);                                                       

%storing the estimation error due to the z-th point 
end 
%cvx_quiet(s_quiet);  %to avoid getting cvx internal messages on screen 
%cvx_pause(s_pause); 
 

 



ML 
%%(initializations) 
% N = number of test cases 
% error vector stored the estimation error for each of the N cases 
% X is a set of N random points in the 2D plane 
function [error]=ml2(sigma,N) 
error=zeros(1,N); 
ml=zeros(1,N); 
X=rand(N,2)-.50; 
 

% for-loop to estimate location for each of the test cases 
for z = 1:1:N 
    echo off 

    clc 

    clearvars -except z error X sigma  
     

    y=.5*[1,-1, 1, -1 0 .25 .1 .2; ;  
       1, 1, -1, -1 0 .5 -.1 -.2]; 
    x1=X(z,:);            
     

    %taking the z-th point for estimation of location 
    p0=-40; beta=4;d0=1; 
    %sigma=4; 
    rho=.5; 
     

    %% 
    %(initial calculations for L,lambda,d,P all calculated assuming known x1) 
    % p0 is the power at unit length, taken to be 1m here 
    % p = Vector of Recieved Signal Strenghts at each of the anchor nodes 
    % d = Vector of distance of sensor in question from each of the anchor 

nodes 
    % beta = path loss exponent, taken here to be 4dB 
    % lambda is variable defined as 10^((P-P0)/10*beta). 
    % q models the shadowing terms(shadowing is taken to be iid Gaussian 
    % random variables). It is the covariance matrix of the same. 
    %  
    p=p0*ones(1,8); 
    d1=([x1' x1' x1' x1' x1' x1' x1' x1'] - y)'*([x1' x1' x1' x1' x1' x1' x1' 

x1'] - y); d1=sqrt((diag(d1))'); 
    p=p-10*beta*log10(d1/d0); 
    lambda=10.^((p-p0*ones(1,8))/10*beta); 
    L=diag(lambda); 
    %% 
    q=ones(8); 
    for i=1:8 
        for j=1:8 
           if(i==j) q(i,j)=sigma^2; 
           else q(i,j)=rho*sigma^2; 
           end 
        end 
    end 
 

 



     

     

    % The W is a weighting matrix which is proportional to the inverse of 

the covariance matrix 
    W=((10*beta)^2 / (log(10))^2 )*inv(q); 
    x=sym('x',[1,2]); 

    for k=1:8 

       tmp=x' ; 

       tmp=tmp - y(:,k);   

       d(k)=(tmp(1)^2+tmp(2)^2)^0.5;  %d is convex, 4x1 vector of distances 

between x and y(i) 

    end 

    for j=1:8 

       D(j,j)=[y(1,j),y(2,j),-1]*[eye(2) x';  x  x*x']*[y(1,j),y(2,j),-1]'; 

    end 

    p=W*L*D*L'; 

    q=2*d'*ones(1,8)*W*L; 

    F=trace(p)+trace(q); 

    %% calculation of d vector, D matrix and final problem formulation in 

cvx(http://cvxr.com/cvx/doc/CVX.pdf) assuming x as a variable 

    x=fminunc(@(x)F,0); 

    

    error(z)=norm(x-x1); %storing the estimation error due to the z-th 

point 

end 

 
  



 

Results and Inferences 

 

We obtained the following graphs from simulating the algorithm with anchor nodes at  

● (1,1) 

● (1,-1) 

● (-1,1) 

● (-1,-1) 

● (0,0) 

● (0.25,0.5) 

● (0.1,-0.1) 

● (0.2,-0.2) 

 

We encountered problems with the Disciplined Programming paradigm with the CVX 

solver, to ensure every expression inside cvx is convex. We figured out that the non-

diagonal entries of D matrix do not affect the optimal values and hence replaced D=d*d’ 

with corresponding Schur components. 

We obtained the following graph for the Cumulative Distribution Function (CDF) of the 

error of various random test cases. 

 
 

 

 

 

 

 



We have obtained the following graph for the Root Mean Square of the Error (RMSE) 

for different coefficients of shadowing. 

 


