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Contributions

This paper describes the experience gained while parallelizing the
global medium range weather forecasting application called TSO on
a PARAM machine based on a distributed memory parallel archi-
tecture. The TSO code employs the spectral method for horizontal
directions and finite differencing in the vertical direction and time
marching. The parallel implementation takes care of the easy porta-
bility of parallel code across various platforms and environments.
The parallel code is optimized using iS60 based assembly routines.
The validation of the parallel code has been accomplished by compar-
ing the parallel TSO results with those of the Cray for 2nd February
1993 initial data.
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1 Introduction
Numerical weather prediction is one of the important disciplines which
requires a large amount of computer resources. There have been on-
going efforts to adapt existing meterological models to the existing range
of supercomputers to get Tflop/s of performance so that predictions JlS-
ing much finer resolution than that currently used can be done. There are
World-wide efforts to port weather forecasting codes on parallel comput-
ers. These include parallelisation of the ECMWF (European Centre for
Medium Range Weather Forecasting) production code IFS (Integrated
forecasting System) by GMD (German National Research Centre for
Computer Science) and ECMWF and CHAMMP (Computer Hardware,
Advanced Mathematics and Model Physics) program sponsored by the
DOE (US Department of Energy), on various supercomputers like the
Cray T3D, Intel Paragon, IBM SP2, Meiko etc. In order to become a
self -reliant weather forecasting base in supercomputing, the Department
of Science and Technology of Government of India decided of providing
a cost-effective high-performance computing solution to the state-of-the-
art models. A feasibility study of porting and developing a few opera-
tional/research codes on scalable parallel computers to compare with the
performance of sequential computer was done. Thus a project to port the
medium-range weather forecasting code T80 for such a purpose was ini-
tiated between National Centre for Medium Range Weather Forecasting
(NCMRWF), Indian Institute of Technology (IIT), Delhi and Centre for
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Pune, India. This required the T80 code to be ported and parallelized on a distributed memory
scalable parallel computer PARAM8600 developed by C-DAC. The main aspect of this project is
to find parallel techniques for the NCMRWF T80 code on a distributed memory parallel machine
and to analyse and optimise the existing Cray code on PARAM. The T80 code is an unsteady
3-D simulation of the atmosphere around the earth which is divided into 128 latitudes, 256
longitudes, and 18 levels in a vertical direction above the surface of the earth. The code employs
the pseudo spectral method in horizontal directions. In our implementaion the approach has been
to understand the forecast model and the spectral algorithm used in the T80 code and specifically
tune the code for PARAM8600, an Intel 860 based distributed memory parallel machine. The
independent computation for FFf, Legendre transform and grid calculations are done across
the latitudes distributed over the processors. In this paper we discuss the parallel strategy and
issues regarding compute to communication ratio, load balancing and portability. In section 2, we
present the spectral algorithm, the governing equations and time integration scheme, in section
3 we describe the sequential code structure and in section 4 the PARAM8600-machine hardware
and software is described, followed by the parallel strategy in section 5. Validation of the results
is done in section 6 and optimisation issues are discussed in section 7. The performance of the
T80 code on PARAM 8600 is presented in section 8.

Governing equations and numerical algorithm

Governing equations for global weather model can be derived from the well known conservation
laws of mass, momentum, and energy. The derivation of these equations are available elsewhere
in the literature [I]. These mainly include vorticity, divergence, temperature, surface pressure and
moisture equations. The derivatives in the vertical direction in these equations are approximated
by using finite difference operators and a semi-implicit time integration scheme is applied to the
coupled equations of divergence, temperature and surface pressure. This is done by applying a
central difference scheme to the time derivative. Furthermore, the T80 model employs the spectral
transform in horizontal direction [2,3] in which the crux of the algorithm lies in obtaining a
spectral representation for all the terms. If it is a linear quantity, then the representations are
straight forward. If it is a non-linear term, spectral transform methods have to be used. The
computations for spectral algorithms are done in three discrete functional spaces: the grid point
domain, Fourier domain and spectral domain. The time integration and the vertical integration are
taking place in the spectral domain. Each time step of algorithm consists of the following steps

Input spectral coefficients U~(Zk) for all m, n and k.Step

.Step 2: Compute Fourier coefficients using inverse Legendre's transform

M

um(Jlj, Zk) = 2::: U~(Zk)P:(Jlj )

n=lml

for all m,j and k. p~ is the Legendre polynomial of degree n and order m

Step 3: Compute Gaussian grid point values U(>.l, /.lj, Zk) using the inverse Fourier trans-
form
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M
U().l,Jlj,Zk)= L U(Jlj,Zk)eimAI

m=-M

for aliI, j and k

.Step 4: Compute non-linear tenus and physics in grid point domain on Gaussian grid

Update U().I,P,j,Zk) for all i,j and k.

.Step 5: Compute Fourier coefficients um(J1,j, Zk) using the direct Fourier transform

K2-1

K L U().I,Jlj,Zk)e-imAI
2 1=0

um(pj, Zk) =

.Step 6: Compute spectral coefficients by direct Legendre's transform.

Kl

U~(Zk) = L (U(P;j )um(p;j , Zk)P:(p;j )

j=l

for all m, n and k, where (.I.!(Jlj ) are the Gaussian weights.

.Step 7: Perform calculations in spectral domain.

where

-truncation number (80)

-number of vertical levels (18)

-number of latitudes (128)

-number of longitudes (256)

-spectral indices and their ranges

-Gaussian latitude

-latitude index and its range

-longitude
-longitude index and its range

-vertical level

-level index and its range

M

Ko
Kl
K2
O ::; m, n ::; M

J1,
1::; j ::; Kl
>.
0 ::; 1 ::; K2 -

Z
1 ::; k ::; Ko



3 The sequential-code structure

The T80 code which is to be parallelised is an operational code running on a Cray machine; it
employs triangular truncation and a spectral resolution of 80 waves. This code has 30,000 lines
of FORTRAN code comprising 200 subroutines. The orginal T80 code supplied by NCMRWF
has many Cray-dependent routines and its FFT part has been written in Cray assembly language.
We have replaced this FFT by Temperton's [4] algorithm. Other Cray-specific routines were also
replaced. In the FORTRAN source the global weather model, numerical algorithm and physics
are integrated. Important components of the T80 code are the I/O, the forecast loop (GLOOPA);
the radiation loop (GLOOPR), and the physics loop (GLOOPB), FFT and Legendre transform.
The input and output data is in the form of sigma and surface data. The quantity called sigma
is nondimensional parameter defined as "pressure at the point/surface pressure". The radiation
routine is called once for every 24 hours simulation, whereas GLOOPA and GLOOPB are called
in each iteration i.e. 96 times for a 24 hours forecast computation.

4 PARAM8600 -machine architecture and the environment

The PARAM 8600 is a back-end machine that can be connected to a PC or a Sparc Workstation
and can be accessed from the front-end machine through a host interface card. PARAM can be
connected to a maximum of 8 users through such cards.

The PARAM 8600 is based on RISC microprocessor Intel i860 XR operating at 33 MHz
with a 4K data cache and a 8K instruction cache. The 64-bit calculations can be performed in
double-precision mode on a i860 processor. In addition to the compute processor i860, PARAM
8600 has another microprocessor called the Transputer which operates at 20 MHz and are used for
communication. Each Transputer has four 20 Mbit/s serial links. There is a 54 Mbyte/s high-speed
bus called DRE (Data Restructuring Engine) between a Transputer and a i860 node. The PARAM
8600 node has one i860 processor with 32 MB memory and four transputers with 4 Mbyte
memory each. Thus for any i860 node the bandwidth to the external world is 320 Mbits/sec. In
all, the target machine for porting T80 has got 16 node cards comprising of 64 Transputers and
16 i860s.

The programming environment for PARAM 8600 is PARAS-MPV (Main Processor View).
The PARAS microkernel is a message based operating system. This kernel is replicated on each
node of the system and supports on each multiple tasks with a paged virtual space and message
based interprocessor communication. Multiple jobs can run on PARAM by sharing nodes and
multiple processes can be placed on the same node. The UNIX cross dependent tool for the i860s
are used to develop an executable image of the user application. The application program is linked
with the system library calls. The compiler used on PARAM8600 is PGI (Portland Group Inc.)

compiler.

s ParalIelization strategy

In deciding the parallelization strategy the crucial part is to identify the nature of the time-
consuming parts in the sequential code and then the parallel overheads due to communication
and extra computation required in parallelizing. Our strategy is based on data decomposition
and conseauentlv on data dependencies. There are many independent variables namely latitude,



longitude, vertical levels and spectral indices m and n which can be considered for data decom-
position. Based on the dependencies of the computations with these variables, we decided for a
data decomposition along the latitudes. Northern and southern latitudes are paired and placed on
one processor due to the symmetry of the spectral transform.

In this strategy, data required by each FFT is available within the processor. Thus we avoid
communication at this stage. We have several FFTs simultaneously running on different processors
and a decomposition of the data for the parallel Legendre transform. As a first step, an equal
number of latitudes are allocated to each processor and accordingly data is distributed among them.
Then each processor computes Fourier coefficients using the inverse Legendre transform and the
Gaussian grid point values using the inverse Fourier transform. Non-linear terms and physics in
grid point domain calculation on the Gaussian grid are done simultaneously on each processor.
Then each processor computes Fourier coefficients only for those latitudes which are assigned to it.
During the Legendre transform for the spectral coefficients calculations, each processor finds the
partial sum for the given bands. These partial sums are then circulated among all the processes to
have global sum on each. This forms the communication structure for latitude-wise parallelisation.
The parallel implementation of the above strategy has a master-worker programming model. The
inital input is distributed among several workers for the time integration scheme. Each worker
works independently until the global sum calculation during Legendre transform. Here all the
workers communicate data to all. At the end all the data is collected by the master for zonal
diagnostics and final output. All the communication calls are in communication library currently
in a software layer on top of PARAS, but can also be replaced by public domain communication

primitives like PVM/MPI.
A feature of the code is the reduced main memory requirement per node. This has been made

possible due to the cutting of the physical arrays as shown in parallel version of GLOOPA. For
T80's sequential version it requires 60 Mbyte while same parallel version of the code requires
23 Mbyte per node for 8 nodes. The UO of parallel T80 and various other control parameters
remains same as in sequential. Full T80 code is in the Fortran language and no assembly coding

has been used.

Validation of the Results

The partial double-precision results of sequential T80 code on PARAM approximate the full
double-precision results of T80 results on Cray. This verifies the correctness of modifications
applied to the Cray code such as additional source modules written, reorganisation of files and
parallelisation. For further verification, the sequential T80 code has been made system independent
and has been run on different platforms. In order to verify parallel T80 forecasts we have compared
our forecasts with Cray forecasts for both a one-day and five-days run. For the one-day run the
difference between the parallel T80 forecast and the Cray forecast remain withina 5% limit.
While for five days forecasts, there are differences which increase with the number of days.
However, the results do not diverge for any variable and remain bounded within a few percent
of acceptable accuracy. It is important here to mention that the one day sequential and parallel
code on PARAM produces almost same results except for very minor differences of precision
order. Therefore the reason for difference between sequential Cray and sequential PARAM can
be attributed to different floating-point standards used in these machines.



Optimisation

Before optimising the code, we first studied the most time-comsuming portion in the latitude
loop, i.e. Legendre, inverse Legendre transform and FFf. In the typical subroutine PL222K-ori
shows a Legendre transform code for the QLN with output in array PLN using PP and PM arrays
as coefficients. If one observes this routine carefully then one can see that there is no need of the
extra array S ( LNT2 ) .Also, because of loop unrolling PM and PP arrays were being fetched again
and again into the limited cash size of i860 processor. In order to avoid this we first made this
code simple by removing intermediate array S and putting output in PLN array directly. Then it
was clear that the PM and PP arrays were being used for computation again and again and should
be available in the cache during the computation of Legendre transform. In order to put these
array in cache, which is 4Kb in case of i860 processor, we created an array for vector registers
vreg(164,6). For this purpose we used strearnin function provided by the POI compiler. Also we
replaced the core time-consuming portion of the loop by some i860 assembly functions supplied
by POI like zxpy and strearnin (see code PL222K-1nod). These routines are easily integrated in
the Fortran code without changing the structure of the loop. A considerable time improvement

was possible due to this exercise.

SUBROUTINE FL222K-ori (FP,FM,FLN,QLN,N)

INTEGER

TWOJl

PARAMETER(
JCAP=80,
JCAP1=JCAP+l,
JCAP2=JCAP+2,
TWOJ1=2*JCAP1,
LNT=JCAP2*JCAP1/2
LNT2=2*LNT)

SAVE

DIMENSION FP(TWOJ1,N) , FM(TWOJ1,N)

1 QL1~(LNT2) , FLN(LNT2,N)

DIMENSION S(LNT2)

cc
NPAIR = (JCAPl-3)/2

CMIC$ DO ALL PRIVATE(S) AUTOSCOPE
DO 2 K=l,N
DO 220 I=l,TWOJl
S(I) = FP(I,K) * QLN(I)

220 CONTINUE
LEN = TWOJl -2

DO 230 I=l,LEN
S(I+TWOJ1) = FM(I,K) * QLN(I+TWOJ1)

230 CONTINUE
IPLUS = TWOJ1*2 -2



LEN = TWOJl -4

DO 260 J=l,NPAIR
DO 240 I=l,LEN
S(I+IPLUS) = FP(I,K) * QLN(I+IPLUS)

240 CONTINUE
IPLUS = IPLUS + LEN
LEN = LEN -2

DO 250 I=l,LEN
S(I+IPLUS) = FM(I,K) * QLN(I+IPLUS)

250 CONTINUE
IPLUS = IPLUS + LEN
LEN = LEN -2

260 CONTINUE

DO 270 I=l,LEN
S(I+IPLUS) = FP(I,K) * QLN(I+IPLUS)

270 CONTINUE

DO 280 I=1,LNT2
FLN(I,K) = FLN(I,K) + 5(1

280 CONTINUE
2 CONTINUE

RETURN
END

The routine after optimisation

SUBROUTINE FL222K-mod(FP,FM,FLN,QLN,N)
INTEGER

TWOJl

PARAMETER(
JCAP=80,
JCAP1=JCAP+l,
JCAP2=JCAP+2,
TWOJ1=2*JCAP1,
LNT=JCAP2*JCAP1/2,
LNT2=2*LNT)

SAVE

DIMENSION FP(TWOJ1,N) , FM(TWOJ1,N)

1 QLN(LNT2) , FLN(LNT2,N)

common /optimise/vreg(164,6)



NPAIR = (JCAPl-3)/2

DO 2 K=l,N

cc
iplus = O

len = twojl

maxlen = len

call --streamin4(fp(l,k),vreg(l,l),%val(maxlen) ,%val(l) )

call --streamin4(fm(l,k),vreg(l,2),%val(maxlen) ,%val(l) )

DO 260 J=l, (NPAIR+l

call

call

call

.streamin4 (fln(l+iplus, k) ,vreg (1, 3) , %val (len) , %val (1) )

.streamin4(qln(l+iplus),vreg(I,4) ,%val (len) ,%val(I))

.zxpy4 (fln(l+iplus,k) ,vreg (1,3) ,vreg (1,1) ,vreg(l, 4) , %va

IPLUS = IPLUS + LEN
LEN = LEN -2

cc
call

call

call

.streamin4 (fln (l+iplus, k) , vreg ( 1,3 ) , %val (len) , %val (1) )

.streamin4(qln(1+iplus),vreg(1,4),%val(len) ,%val(l) )

.zxpy4 ( fln ( l+iplus , k) , vreg ( 1,3 ) , vreg ( 1,2 ) , vreg ( 1,4 ) , %va

IPLUS = IPLUS + LEN
LEN = LEN -2

260 CONTINUE
cc

DO 270 I=l,LEN
fln(I+IPLUS,k) = fln(i+iplus,k)+FP(I,K) * QLN(I+IPLUS

270 CONTINUE
cc

2 CON']

RETl

END

This exercise was first checked on a small module of T80 code and then integrated in the
full code. Validity of the results was checked at each stage. This way all the time-consuming
Legendre and inverse Legendre transform routines were inserted in GLOOPA, GLOOPB, and in
GLOOPR and then integrated with the main T80 code. The performance was improved by 40 %
with this modification.

Performance

The sequential performance depends on the architecture of the processor and the parallel perfor-
mance depends on the architecture of the system. The parallel TSO code that has been developed
is portable and is user friendly in the sense that the general structure of original TSO is not
changed, making it easy for atmospheric scientists to enhance and modify the code. Table 1 gives

~INUE

JRN
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the performance of parallel T80 on different numbers of nodes.

Perfonnance of the portable T80 code on different number of node.Table

9 Conclusion

In this paper we have presented the preliminary work done towards parallelisation of the spectral
method based weather forecast code on an MIMD type distributed memory supercomputer. The
partial double-precision results of parallel T80 code on PARAM scientifically approximates the
full double-precision results of T80 on Cray. The parallel T80 is portable and can be made
available on different platforms. It is scalable over the number of processors and over different
size models. When we were benchmarking the Cray code on the PARAM, we found that many
critical modules in T80 have been tuned for the Cray. If we want to perform FFf on each 64
independent data sets, then Cray performs a vector operation on all data sets and a major portion
of this is written in Cray Assembly Language. We had to exploited the proper features of the
i860 for the computation-intensive parts and to get better performance and by using fast global
communication routines, communication overheads can be reduced to get better performance.
Further work is going to port this parallel T80 code on different platforms using public domain

communication primitives like PVM/MPI.
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Figure Perfonnance of the T80 on the PARAM 8600.
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