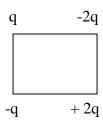
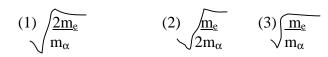
RAJASTHAN P.E.T. PHYSICS-1997


- constant, then the quantized energy of the electron in n^{th} orbit : $\frac{kr^2}{2}$, k is 1. In Bohr's theory the potential of an electron at a position is

 - (1) $nh\left(\frac{k}{m}\right)$ (2) $nh\left(\frac{k}{m}\right)^{\frac{1}{2}}$ (3) $nh\left(\frac{m}{k}\right)$ (4) $nh\left(\frac{m}{k}\right)^{\frac{1}{2}}$
- 2. To reduce the de-Broglies wave length of an electron from 100 pm to 50 pm, the required increase in energy is:
 - (1) 150 eV
- (2) 300 eV
- (3) 450 eV
- (4) 600 eV
- 3. The angular width of fringes in Young's bislit experiment is 0.20^{0} with the wavelength 5890 Å. If the whole apparatus is dipped in water, the angular width will be:
 - $(1) 0.30^{0}$
- $(2) 0.22^{0}$
- $(3) 0.15^0$ $(4) 0.11^0$
- 4. Resistance of a 10 m. long wire of potentio meter is 1 $\Omega\Omega$. A cell of 2.2 volt emf. and HRB is connected in series with the wire. How much resistance must be applied to get 2.2 mv gradient:

mt


- (1) 1000Ω
- (2) 990 Ω

- (3) 810Ω
- (4) 790Ω
- 5. Four charges are placed on corners of a square, having side of 5 cm., if q is one coulomb then electric field intensity at the centre will be:

- (1) 1.02x10⁷ N/c upwards (2) 2.04x10⁷ N/c upwards
- $(3) 2.04 \times 10^7 \text{ N/c down}$
- (4) 1.02×10^7 N/c down
- 6. Capacitance of a capacitor made by a thin metal foil is 2 µ.F. If the foil is filded with paper of thickness 0.15 mm. and dielectric constant of paper is 2.5, width of paper is 40 mm. then length of foil will be:
 - (1) 33.9 mm.
- (2) 13.4 mm.
- (3) 1.33 mm (4) 0.34 mm.

7. An electron and an $\alpha\alpha$ particle are accelerated with v volt voltage. If the masses are m_{e} and $m_{\alpha\text{o}}$ then the ratio of momentum is :

8. Ultra sonic sound can be observed by :

(1) Telephone

- (2) Hebb method
- (3) Quincke tube (4) Kundit tube
- 9. Which two of the given transverse waves will give stationary wave when get super imposed:

10. For what value of R the net resistance of the circuit will be 18 ohms:

(1) 24 Ω $(2) 16 \Omega$ (3) 10Ω $(4) 8 \Omega$

11. For a medium refractive indices for violet, red and yellow are 1.62, 1.52 and 1.55 resp. then dispersive power of medium will be :

(1) 0.02

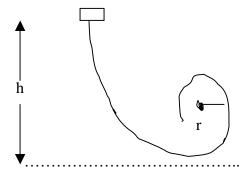
- (2) 0.18
- (3) 0.22
- (4) 0.65
- 12. The temperature at which the rms speed of hydrogen molecule is equal to escape velocity on earth surface will be:

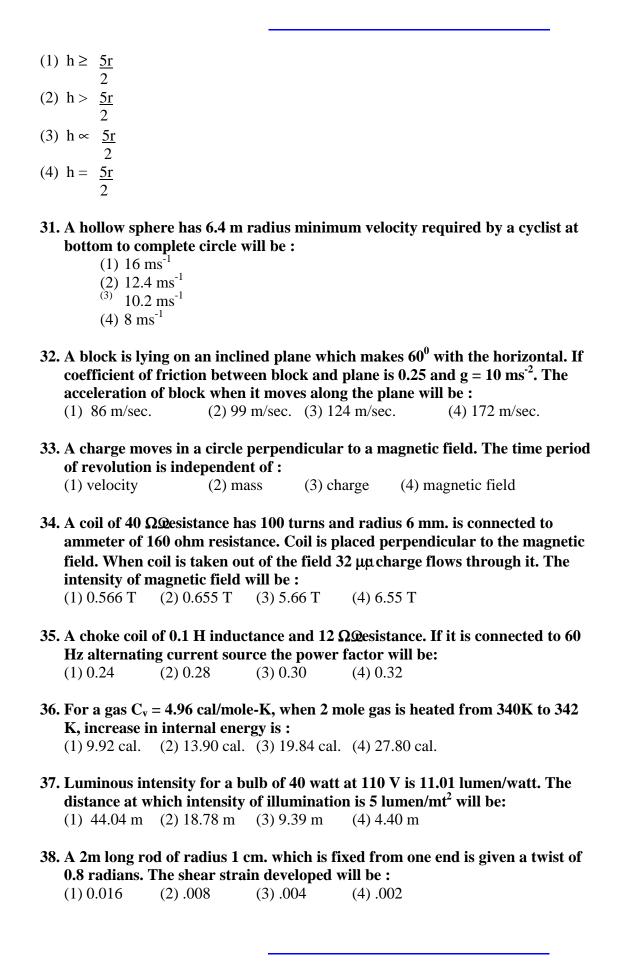
(1) 10059 K (2) 8270 K

- (3) 5030 K
- (4) 1060 K
- 13. The temperature of a liquid drops from 365 K to 361 K in 2 minutes. Find the time during which temperature of the liquid drops from 344 K to 342 K. Room temp. is 294 K.

(1) 60 sec.

- (2) 66 sec.
- (3) 72 sec.
- (4) 84 sec.
- 14. Venturimeter is used to measure:
 - (1) surface teusion of liquid
 - (2) rate of flow of liquid
 - (3) density of liquid
 - (4) pressure of liquid


22. In a triode circuit for a given plate voltage, plate current will be maximum when:


about an axis passing through its centre and perpendicular to the plane is : (1) $\underline{M\iota^2}$ (2) $\underline{Mb^2}$ (3) $\underline{M(\iota^2+b^2)}$ (4) $\underline{M(\iota^2+b^2)}$

- (1) V_g Positive and V_p negative
- (2) V_g and V_p both positive
- (3) $V_g = 0$ and V_p positive
- (4) V_g negative and V_p positive
- 23. In p-n function avalanche current flows in circuit when be maximum when:
 - (1) excess
- (2) zero
- (3) reverse
- (4) forward
- 24. Half life of a radioactive element is 10 days. The time during which quantity remains 1/10 of initial mass will be:
 - (1) 16 days
- (2) 33 days
- (3) 50 days
- (4) 100 days
- 25. Resistance of semiconductor at OK is:
 - (1) small
- (2) large
- (3) infinity
- (4) zero
- 26. acparticle of 400 KeV energy are bombarded on nucleus of 82 pb. In scattering of aparticles, its minimum distance from nucleus will be :
 - (1) 0.59 pm (2) 5.9 pm
- (3) 0.59 nm
- (4) 0.59 Å
- 27. If the uncertainty in the position of an electron is 2Å then the uncertainty in the energy is (about):
 - (1) 94 eV
- (2) 9.0 eV
- (3) 1.0 eV
- (4) 0.1 eV

- 28. Wrong statement is:
 - (1) Nuclear force is produced by the exchange of poins
 - (2) Nuclear force increases with increase in no. of nucleous
 - (3) Range of nuclear forces is very small
 - (4) Nuclear forces are strongest
- 29. The inductance required to connect bulb in series of 1:
 - (1) 1.62 mH

- (2) 16.2 mH (3) 2.42 mH (4) 1.27 mH
- 30. A block follows the path as shown in the figure from height h. If radius of circular path is r, then relation holds good to complete full circle is

•	find the angle	0	or and refle	It a vertical ray strikes cted ray :
same mater end of large	ial. The free e	nd of small roc a twist of θθth	d is fixed to a e twist angle	ength 1/2 and radius r/2 of a rigid base and the free e at the joint will be :
volume (r=	e mole of diator 1.41). The wor (2) 1815 J	k done on gas	will be :	abatically to half of its
	ower with a le			focal length and W er of 2ωωThe work done
(1) - 2f	(2) - $\frac{f}{2}$	(3) <u>f</u> 2	(4) 2f	
and gravita	and proton ly tional force be (2) 10 ³⁹	tween them w	ill be:	o of electrostatic force
be:				r. If resistance of B will
	(2) 68 Ω plate has charg			The initial distance of an
electron wh energy of 10	ich is moving	towards plate,	can not stri	ke the plate, if it is having
its surface v		•		n the energy density near 0 64 x 105 Jm ⁻³
field if from be :	south to nort	h and motion i	is upwards t	eld of 5 T. If direction of he force acting on it will
(1) 1.6×10^{-1} 48. If $V_{AB} = uv$. ,		, ,	(4) 3.2x10 ⁻⁸ N
(1) 20 (2) 15		10Ω	5 V	•

(3) 10 (4) 5	Α	2 V	X	B

49. A charged water drop whose radius is 0.1 μ m is equilibrium in an electric field. If charge on it is equal to charge of an electron will be ($g=10 \text{ ms}^{-2}$): (1) 1610 NC^{-1} (2) 262 NC^{-1} (3) 26.2 NC^{-1} (4) 1.61 NC^{-1}

50. The charge on 500 ml. water due to protons will be : $(1) 1.67 \times 10^{23}$ $(2) 1.67 \times 10^{26}$ $(3) 6.0 \times 10^{27}$ $(4) 6 \times 10^{23}$

51. A piece of cloud having area 25×10^6 m² and electric potential of 10^5 volt. If the height of cloud is 0.75 km. then the energy density of electric field between earth and cloud will be:

(1) 1475 J (2) 1225 J (3) 750 J (4) 250 J

52. 1 Farad in esu is :(1) $\frac{1}{3}$ x 10⁻⁶ (2) 9 x 10¹¹ (3) 3 x 10¹⁰ (4) $\frac{1}{9}$ x 10⁻¹¹

53. Electric potential is given by : $V = 6x - 8xy^2 - 8y + 6yz - 4z^2$ then the electric force acting on 2 coulomb point charge placed on origin will be :

 $(1) 2 N \qquad (2) 6 N \qquad (3) 8 N \qquad (4) 20 N$

54. The wavelength of $K_{\alpha\alpha}$ lines given by Molybdenum (At No. 42) is 0.7078 Å then wavelength of $K_{\alpha\alpha}$ for zinc (At no. 30) will be:

 $(1)\ 0.3541\ \text{\AA}\quad (2)\ 1.3873\ \text{Å}\quad (3)\ 0.9425\ \text{Å}\quad (4)\ 1.2547\ \text{Å}$

55. A plane wave front of 7000 Å fallson an aperture. The area of half period zone of the diffraction pattern on screen 1 meter away from the aperture will be:

(1) $28x10^{-7}$ m² (2) $44x10^{-7}$ m² (3) $22x10^{-7}$ m² (4) $14x10^{-7}$ m²

56. In Young's double slit experiment 62 fringes are seen in visible region for sodium light of wavelength 5893 Å. If violet light of wave length 4358 Å is used in place of sodium light then number of fringes seen will be:

(1) 84 (2) 74 (3) 64 (4) 54

57. Average wavelength of light emitted by a 100 watt bulb is 5000 Å. The no. of emitted photons per second :

(1) $5x10^{17}$ (2) $2.5x10^{22}$ (3) $3x10^{23}$ (4) $2.5x10^{19}$

58. To see first 20 lines of Balmer series distinctly minimum resolving power of instrument should be:

(1) 1040 (2) 983 (3) 920 (4) 878

pattern of X	-	ength 0.61 Å.	a crystal is same The energy of elec (4) 50 ke V	
-	ween the pilla	•	m an observer. The can be seen separt (4) 3.2 m	
cm. Final in	-	at least distantis:	e of a telescope and ce of distinct vision (4) 36	
the sum is 1 planet is :		n that of earth	from sun . The ti	e of the plant from me period of the
63. Time period 1.93 x 10 ⁻⁵ (l of a brass per	ndulum is 1 sec temp. how mu	at 20 ⁰ C. Linear	expansion coeff is be back in a week
from surfac	adius of the ear to the infinity (2) <u>GM</u> R	y is :	Wrok done to be $(4) \sqrt{\frac{2G}{2G}}$	
65. In the follow $_{92}U^{238} \rightarrow_B Th$ (1) A =	wing reaction v AB → DPa CE → 9 = 234, B = 90, C	what are the va 2U ²³⁴ C = 234, D = 93	•	and E:
(3) A =	238, B = 93, C = 234, B = 90, C = 234, B = 90, C	C = 238, D = 94	$E = \alpha$	
of smaller p (1) 108	art is 216 J, th (2) 72	en the moment (3) 36	t um of bigger par (4) Data is incom	nplete
of moon wil	l be:		radius of moon is 5.98 x 10 ²⁴ kg. (4	1.768 x 10 ⁶ . Mass 4) 1.99x10 ³⁰ kg.
68. Due to some	e force F ₁ a bod	ly oscillates wi	th period 4/5 sec.	_

will be:

	(1) 0.36 sec.	(2) 0.48 sec.	(3) 0.72 sec.	(4) 0.64	sec.
59. A					where y in cm.
(1 (2 (3	requency of wa 1) 25 Hz, 7.5 x 2) 25 Hz, 4.7 x 3) 50 Hz, 7.5 x 100 Hz, 4.7 x	10 ⁴ cmsec. ⁻² 10 ⁴ cmsec. ⁻² 10 ³ cmsec. ⁻²		on will be	:
	ever can be :	•	es resp. are ac	J	particle, the resultant force 4) 4 dyne
a	fter covering so overed by the t (1) no o (2) first (3) first	ome distance.	The distance come time has released	overed by	ached from train and stops the boggy and distance
72	2. π mesons can (5) π^+ , a				

73.In helium nucleus there are:

(6) π^{+} and π^{-} (7) π^{+} , π^{0} (8) π^{-} and π^{0}

- (9) 2 positron, 2 neutrons
- (10) 2 protons, 2 neutrons
- (11) 2 protons, 2 neutrons, 2 electrons
- (12) 2 protons, 2 electrons

74. Equivalent energy of 1 amu is:

- (13) 9.31 MeV
- (14) 931 KeV
- (15) 93.1 MeV
- (16) 931 Mev

75. Density of nucleus is related to mass no. by :

(1)
$$\rho \propto \frac{1}{A}$$
 (2) $\rho \propto \sqrt{A}$ (3) $\rho \propto A$ (4) $\rho = \text{constant}$

76. The particles emitted by radio active decay are deflected by magnetic field. The particles will be :

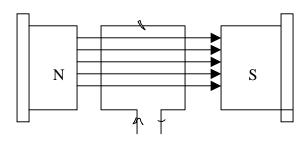
(18)	electron, pro	ton and neutron		
(19)	electron, pro	ton and α		
(20)	proton and α	,		
77.At 0 ⁰ K Ferm	i level for met	als:		
(21)	depends on r	netal		
(22)	lies between	empty levels		
(23)	lies between	filled levels		
(24)	separate emp	oty and filled lev	vels	
78.If quantity of a r of this element will		ment remains	1 of initial o	one in 30 yrs. Half life
(1) 24 yrs.	(2) 18 yrs	(3) 7.5 yrs	(4) 1.9 yrs.	
magnitude o (25) 6.2 (26) (27) 8.88		f velocities at two ¹ 8 mm-sec. ⁻¹ -sec. ⁻¹	_	d of end point and lar positions will be :
end, when it stri (1) 1.7 ms ⁻¹ 81.Fundamental	kes the table. (2) 5.4 ms ⁻¹	When lower et (3) 8.7 ms ⁻¹ an open pipe i	nd is fixed will (4) 10.9 ms ⁻¹ s:	The velocity of upper be :
(1) 15 Hz	(2) 20 Hz	(3) 30 Hz	(4) 10 Hz	
82.The cause of				
(1) diffraction	n (2) in	terference	(3) emission	(40 obsorption
83.Wavelength of energy of electron			for H ion is 1	08.5 mm. The binding
		(3) 13.6 eV	(4) 3.4 eV	
84.Wavelengths	of extreme lir	nes of Paschen	series for hydr	ogen is :
(29)	2.27 µm and			8
(30)	$1.45 \mu m$ and	•		
(31)	•	•		
(32)	•	•		
(32)	o.oo piii uii	a 0.020 pani		
	-	• 0		length equal to ¼ of
the wavelengths				
$(1) \operatorname{He}^{+}$	(2) Li^{++}	(3) Ne ⁺⁺	$(4) \text{ Na}^{-10}$	

(17)

electron and α -particle

86.An observer standing at station observes frequency 219 when a train approaches and 184 when train goes away from him. If velocity of sound in air is 340 m/sec., then velocity of train and actual frequency of whistle will be :

- (33)32.5 ms-1, 205 Hz
- 29.5 ms-1, 205 Hz (34)
- 25.5 ms-1, 200 Hz (35)
- 29.5 ms-1, 200 Hz (36)


87. The kinetic energies of two bodies of 4 kg. and 16 kg. mass is same, the ratio of their momentum is:

- (1) 4 : 1
- (2) 1 : 2
- (3) 2 : 1
- (4) 1 : 4

88. Wave length of light emitted by a star is shifting towards the red end, then the star:

- (37)moving towards earth
- moving far from earth (38)
- (39)nothing can be said
- is stationery (40)

89.In the following diagram a rectangular coil is placed in 0.25 T uniform magnetic field, the area is $96 \times 10^{-4} \,\mathrm{M}^2$ and no. of turns is 50, 2 amp current is flowing then the torque is:

(1) 0.24 N-m (2) 0.96 N-m (3) 0.36 N-m (4) 0.48 N-m

90.Plate resistances of two triode values is $4 k\Omega\Omega$ and $8 k\Omega\Omega$ amplification coeff. If 40. If used as amplifiers with these load resistances then the ratio of voltage gains is:

- (1) 10
- $(2)^{3/4}$
- (3) 16/9
- (4) 4/3

91. Two particles of same mass are moving in the circular paths r_1 and r_2 radius, the ratio of their centripetal forces is:

- (1) $\sqrt{r_2}$: $\sqrt{r_1}$ (2) $\sqrt{r_1}$: $\sqrt{r_2}$
- $(3) r_1 : r_2$
- $(4) r_2 : r_1$

92.In an AC circuit $R = 100 \Omega\Omega = 800 \text{ mH}$ and $E = 200 \sin 300 \text{t}$ then the peak value current is:

- (1) 1.17 A
- (2) 0.83 A
- (3) 0.59 A
- (4) 1.70 A

$(1) 4 \times 10^{-4} \text{ v/m}$	n (2) 0.0	005 v/m	(3) 0.05 v/m	(4) 0.:	5 v/m
94.RMS velocity o	_		_	-	
velocity of a gas, o	of which mole	ecular weigl	it is double and	temp. is	s half of that of
he first gas, is: (1) 150 m/sec.	(2) 300	0 m/sec.	(3) $300 \sqrt{2} \mathrm{m}$	/sec.	(4) 600 m/sec
	_				
requency, then th	50 angle with	the roads v	vill be :	nd car v	vhen line
requency, then the oining the cars 45 (1) 280 Hz (26.A disc of 1/3 m rail. Period of osci	50 angle with (2) 289 Hz radius is han illation is 1.42	the roads v (3) 298 Hz nged by a po 2 sec. value	vill be : (4) 321 Hz oint on circumfe	erence b	y horizontal will be :
96.A disc of 1/3 m	50 angle with (2) 289 Hz radius is han illation is 1.42 (2) 9.78 m- f 5 kg. each f s temp. of wa	the roads v (3) 298 Hz nged by a po 2 sec. value -sec2 (3) falling from ter will be:	yill be: (4) 321 Hz pint on circumfe of g by this expe 9.62 m-sec. ⁻² height 10 m., by	erence beriment (4) 9.8	y horizontal will be : 86 m-sec ⁻²
requency, then the oining the cars 45 (1) 280 Hz (2) 26.A disc of 1/3 m rail. Period of osci (1) 10.0 m-sec 207. Two masses of stirred. The rise is	congle with (2) 289 Hz radius is har illation is 1.42 (2) 9.78 m- f 5 kg. each f temp. of wa (2) 0.320 l of 1000 m raing 2000 kg.	the roads v (3) 298 Hz nged by a po 2 sec. value sec2 (3) Calling from ter will be: (3) 1.2° (4)	yill be: (4) 321 Hz pint on circumfer of g by this expense. 2 9.62 m-sec. 2 height 10 m., by 2.60 anking angle 45	erence beriment (4) 9.8 y which	y horizontal will be: 36 m-sec ⁻² 2 kg. water is