SECTION I

8.

- (a) +1.5D
- (b) -1.5D

(b) $\pi/2$

(d) 2π

(c) +6.67D

(a) zero

(c) π

(d) -6.67D

- In which process the PV indicator diagram is a straight line parallel to volume axis
 - (a) Isothermal
- (b) Isobaric
- (c) Irreversible
- (d) Adiabatic
- 2. A body executes simple harmonic motion under the action of force F_1 with a time period $\frac{4}{5}$ sec. If the force is changed to F_2 it executes simple harmonic motion with time period $\frac{3}{5}$ sec. If both forces F_1 and F_2 act simultaneously in the same direction on the body, its time period will be
 - (a) $\frac{12}{25}$ sec.
- (b) $\frac{24}{25}$ sec.
- (c) $\frac{35}{24}$ sec.
- (d) $\frac{15}{12}$ sec.
- A diatomic gas is heated at constant pressure. What fraction of the heat energy is used to increase the internal energy
 - (a) $\frac{3}{5}$

(b) $\frac{3}{7}$

(c) $\frac{5}{7}$

- (d) $\frac{5}{9}$
- 4. In interference pattern, the energy is
 - (a) Created at the maximum
 - (b) destroyed at the minimum
 - (c) Conserved but redistributed
 - (d) All the above
- A red flower kept in green light will appear
 - (a) Red
- (b) Yellow
- (c) Black
- (d) White
- 6. A band playing music at a frequency f is moving towards a wall at a speed v_b. A motorist is following the band with a speed v_m. If v be the speed of the sound, the expression for beat frequency heard by motorist is

An eye specialist prescribes spectacles having a combination

of a convex lens of focal length 40 cm in contact with a

concave lens of focal length 25 cm. The power of this lens

(a) $\frac{v+v_m}{v+v_h}f$

7.

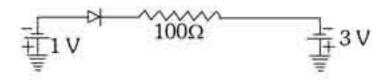
- (b) $\frac{v + v_m}{v v_h} f$
- (c) $\frac{2v_b(v+v_m)}{v^2-v_b^2}f$

combination will be

(d) $\frac{2v_m(v+v_b)}{v^2-v_m^2}f$

- A lens behaves as a converging lens in air and diverging lens in water. The refractive index of the material of the lens is
 - (a) equal to that of water
- (b) less than that of water
- (c) greater than that of water (d) nothing can be predicted

When light wave suffer reflection at the interface between air


and glass, the change of phase of reflected wave is equal to

- 10. The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately
 - (a) 540 nm
- (b) 400 nm
- (c) 310 nm
- (d) 220 nm
- 11. The electron emitted in beta radiation originates from
 - (a) inner orbits of atoms
 - (b) free electron existing in nuclei
 - (c) decay of neutron in the nucleus
 - (d) photon escaping from the nucleus
- If elements with principal quantum number n > 4 were not allowed in nature, then, the number of possible elements would be
 - (a) 32

(b) 60

(c) 18

- (d) 4
- 13. The magnifying power of telescope is high if
 - (a) both objective and eye-piece have short focal length
 - (b) both objective and eye-piece have long focal length
 - (c) the objective has a long focal length and the eye piece has a short focal length.
 - (d) the objective has a short focal length and the eye piece has a long focal length.
- 14. What is the current through an ideal PN-junction diode shown in figure below?

- (a) Zero
- (b) 10 mA
- (c) 20 mA
- (d) 50 mA

	(a)	a) an AC voltage					distance 5 cm from the wire, the magnetic field					
	(b)) a DC voltage				field at 20 cm from the wire would be						
	(c)	zero				2000	2B	15790	B/4			
	(d)	a pulsating unidired	ctional volt	ate		(c)	B/2	(d)	В			
16.		table impurities are a its use. This is done		semiconductor depending	23.	An ammeter and a voltmeter of resistance R are connected in series to an electric cell of negligible internal resistance. Their readings are A and V respectively. If another resistance R is connected in parallel with the voltmeter, then (a) both A and V will increase						
	(a)	increase its life										
	(b)	enable it to withsta	nd high vo	ltage								
	(c)	increase its electrica	vity		NAME OF THE TENTO STATE OF THE TENTON OF THE							
	(d)	(d) increase its electrical resistivity					TOTAL					
17						(c)						
17.	Absorption of X-Rays is maxmum in which of the following material sheet of same thickness?					(d) A will increase and V will decrease						
	(a)	Cu	(b)	Au	24.	The	e core of trSolforme	er is laminat	ed to reduce the effect of			
	(c)	Be	(d)	Pb		(a)	Copper losses	(b)	Flux leakage			
						(c)	Hysteresis loss	(d)	Eddy current			
18.	Ler	nz's law is a consequ	ence of the	law of Conservation of					Commence of the Record Section of Commence States			
	(a)	Charge	(b)	Mass	25.	The	e average power di	ssipation in	pure inductance is			
	(c)	Momentum	(d)	Energy	-55,030		$\frac{1}{2}LI^2$		2LI ²			
19.		nagnetic needle is ke eriences	pt in a no	n-uniform magnetic field. It		(c)	$\frac{1}{4}LI^2$	(d)	Zero			
	(a)	a) A force only but not a tourque					.a.:					
	(b)	a force and torque	both		96	The	e appropriately and	220 1222 0	ones another to the terms			
	(c)	a torque only but n	ot a force		26.	 The charge given to any conductor resides on its outer surface, because 						
	(d)	neither a torque no	or a force			(a) the free charge tends to be in its minimum potential energy state						
20.		The magnitude of magnetic induction for a current carrying toriod of uniform cross-section is					(b) the free charge tends to be in its minimum kinetic energy state					
	(a) uniform over the whole cross-section					(c) the free charge tends to be in its maximum potential						
	(b)	maximum on the o			energy state							
	(c)	maximum on the in			(d)	the free charge	tends to b	e in its maximum kinetic				
	(d)	maximum at the center of cross-section					energy state					
21.	Isog	Isogonic lines are those for which					7. n identical mercury droplets charged to the same					
	(a)	declination is the same at all places on the line				coalesce to form a single bigger drop. The potential of new						
	(b)	to been a second and the state second was recommended and the second of the second of the second of the second				dro	p will be					
	(c)	the value of horizontield is the same	ontal comp	ponent of earth's magnetic		(a)	$\frac{V}{n}$	(b)	nV			
	(d)	All of the above.			(c)	nV^2	(d)	$n^{2/3}V$				
1			1111-1	megtinnn	ang	ŗ	7 in					

Unfold Every Question

22. An electric current passes through a long straight wire. At a

distance 5 cm from the wire, the magnetic field is B. The

The output form of a full wave rectifier is

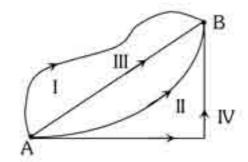
- For protecting sensitive equipment from external magnetic 28. field, it should be
 - (a) wrapped with insulation around it when passing current through it
 - (b) placed inside an iron can
 - (c) surrounded with Cu sheet
 - (d) placed inside aluminium can
- The potential difference across the terminals of a battery is 29. 50V when 11A current is drawn and 60V when 1A current is drawn. The e.m.f. and the internal resistance of the battery are
 - (a) 62V, 2Ω
- (b) 63V, 1Ω
- (c) 61V, 1Ω
- (d) 64V, 2Ω
- Four resistance 10Ω , 5Ω , 7Ω and 3Ω are connected so that 30. they form the sides of a rectangle AB, BC, CD, and DA respectively. Another resistance of 10Ω is connected across the diagonal AC. The equivalent resistance between A and B is
 - (a) 2Ω
- (b) 5Ω
- (c) 7Ω
- (d) 10Ω
- 31. The potential energy of a charged parallel plate capacitor is U_o if a slab of dielectric constant k is inserted between the plates, then the new potential energy will be

- (b) $U_o k^2$

- (d) U2
- 32. Two similar heater coils separately take 10 minutes to boil a certain amount of water. If both coils are connected in series, time taken to boil the same amount of water will be
 - (a) 15 minutes
- (b) 20 minutes
- (c) 7.5 minutes
- (d) 25 minutes
- Same current is being passed through a copper voltmeter 33. and a silver voltmeter. The rate of increase in weights of the cathode of the two voltmeters will be proportional to
 - (a) Atomic masses
- (b) Atomic number
- (c) Relative densities
- (d) None of the above
- Two equal and opposite charge (+q and -q) are situated at 34. x distance from each other, the value of potential at very far point will depend upon
 - (a) only on q
- (c) on qx

- In a potentiometer of one metre length, an unknown e.m.f. 35. voltage source is balanced at 60 cm length of potentiometer wire, while a 3 volt battery is balanced at 45 cm length. Then the e.m.f. of the unknown voltage source is
 - (a) 3V

(b) 2.25V

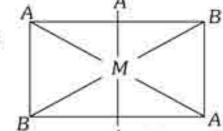

(c) 4V

- (d) 4.5V
- A car travelling on a straight path moves with uniform velocity V_1 for some time and with velocity V_2 for next equal time, the average velocity is given by
 - (a) $\sqrt{V_1V_2}$
- (b) $\left[\frac{V_1+V_2}{2}\right]$
- (c) $\left(\frac{1}{V_1} + \frac{1}{V_2}\right)^{-1}$ (d) $2\left(\frac{1}{V_1} + \frac{1}{V_2}\right)^{-1}$
- A particle of mass m moves in a circular path radius r under the action of a force $\frac{mv^2}{r}$. The work done during its motion over half of the circumference of the circular path will be
 - (a) $\left(\frac{mv^2}{r}\right) \times 2\pi r$
- (b) $\left(\frac{mv^2}{r}\right) \times \pi r$
- (c) $\frac{(2\pi r)}{\left(\frac{mv^2}{}\right)}$
- (d) Zero
- Dimensions of self inductance are

 - (a) $MLT^{-2}A^{-3}$ (b) $ML^{-2}T^{-1}A^{-2}$ (c) $ML^2T^{-2}A^{-2}$ (d) $ML^2T^{-2}A^{-1}$
- A car of mass m is moving with momentum p. If μ be the 39. coefficient of friction between the tyres and the road, what will be stopping distance due to friction alone

- A neutron is moving with velocity u. It collides head on and elastically with an atom of mass number A. If the initial kinetic energy of the neutron be E. how much kinetic energy will be retained by the neutron after collision
 - (a) $\left(\frac{A}{A+1}\right)^2 E$
- (b) $\frac{A}{(A+1)^2}E$
- (d) $\frac{A-1}{(A+1)^2}E$

- If the momentum of a particle is increased by 20%, then its kinetic energy increases by
 - (a) 44%
- (b) 66%
- (c) 80%
- (d) 30%
- 42. Three point masses, each of mass M are placed at the corners of an equilateral triangle of side L. The moment of inertia of this system about an axis along one side of the triangle is
 - (a) $\frac{1}{3}ML^2$
- (b) $\frac{3}{2}ML^2$
- (c) $\frac{3}{4}ML^2$
- (d) ML²
- 43. A thin circular ring of mass M and radius R is rotating about its axis with a constant angular velocity ω. Two objects, each of mass m, are connected gently to the ring. The ring now rotates with an angular velocity
 - (a) $\frac{\omega M}{M+m}$
- (b) $\frac{\omega(M-2M)}{(M+2m)}$
- (c) $\frac{\omega(M+2m)}{M}$
- (d) $\frac{\omega M}{M + 2m}$
- 44. A satellite of mass m is moving in a circular orbit of radius R above the surface of a planet of mass M and radius R. The amount of work done to shift the satellite to higher orbit of radius 2R is
 - (a) mgR
- (b) $\frac{mgR}{6}$
- (c) $\frac{mMgR}{(M+m)}$
- (d) $\frac{mMgR}{6(M+m)}$
- 45. In a gravitational force field a particle is taken from A to B along different paths as shown in figure. Then


- (a) Work done along path I will be maximum.
- (b) Work done along path III will be minimum.
- (c) Work done along path IV will be minimum.
- (d) Work done along all the paths will be the same.

- 46. A wire of length L and area of cross-section A is made of material of Young's modulus y. If the wire is stretched by the amount x, the work done is
 - (a) $\frac{yAx^2}{2L}$
- (b) yAx^2L
- (c) $\frac{yAx}{2L}$
- (d) $\frac{yAx^2}{L}$
- 47. The potential energy of a molecule increases when it is brought to the surface from the interior of a liquid because
 - (a) At the free liquid surface gravitational potential energy is more
 - (b) Work has to be done to move a molecule to the surface against the repulsive component of the inter molecular forces
 - (c) Work has to de done to move a molecule to the surface against the attraction from other molecules
 - (d) The temperature of the liquid surface is always more than that of the interior of the liquid
- 48. When a ven der Waals' gas undergoes free expSolion then its temperature
 - (a) Decreases
 - (b) Increases
 - (c) Does not change
 - (d) Depends upon the nature of the gas
- 49. A cylinder of radius r and of thermal conductivity K₁ is surrounded by a cylindrical shell of inner radius r and outer radius 2r made of a material of thermal conductivity K₂. The effective thermal conductivity of the system is
 - (a) $\frac{1}{3}(K_1 + 2K_2)$
- (b) $\frac{1}{2}(2K_1 + 3K_2)$
- (c) $\frac{1}{4}(3K_2 + 2K_1)$
- (d) $\frac{1}{4}(K_1 + 3K_2)$
- 50. The tungsten filament of an electric lamp has a surface area A and a power rating P. If the emissivity of the filament is ∈ and σ is Stefan's constant, the steady temperature of the filament will be
 - (a) $T = \left(\frac{P}{A \in \sigma}\right)^4$
- (b) $T = \left(\frac{P}{A \in \sigma}\right)$
- (c) $T = \left(\frac{A \in \sigma}{P}\right)^{\frac{1}{4}}$
- (d) $T = \left(\frac{P}{A \in \sigma}\right)^{\frac{1}{4}}$

SECTION II

51.	Nat	ural rubber is				True:	D.C. NINI	C_{2}	$H_5ONa \longrightarrow R_2CH_2 + N_2$ is
	(a)	A polymer of 1, 3-but	adiene		59.	call		2	$\rightarrow R_2CH_2 + N_2$ is
	(b)	A polymer of ethylene						/b/	Ulus disales assettes
	(c)	A polymer of 2-methy	l-1, 3-l	outadiene		10 FS	Clemmensen reductio	27 6	
	(d)	A polymer of styrene				(c)	Tischenko reaction	(d)	Wolff-Kishner reduction
52.		the reaction $Cl_2 + CH$ small amount of oxygen		\rightarrow CH ₃ Cl + HCl , presence	60.	(B)	ich one of the followir Name test	ng catio	ns gives a brick red flame
		Shell Hard His Well		for a brief period of time		(a)	Ba^{2+}	(b)	Sr^{2+}
	(b)			CONTRACTOR OF THE STREET, STRE		(c)	Ca^{2+}	(d)	Zn^{2+}
	(b) Decreases the rate of reaction for a brief period of time(c) Does not affect the rate of reaction								
	(d) Completely stops the reaction					Gla	uber's salt is		
	6770					(a)	Na ₂ SO ₄ .10H ₂ O	(b)	$Na_{2}S_{2}O_{3}.5H_{2}O$
53.	An	example of a lipid is					CuSO ₄ .5H ₂ O	12 0	$Na_2B_4O_7.10H_2O$
	(a)	Lard	(b)	Keratin		(0)	Cu304.51120	(4)	11420407.101120
	(c)	Glutathione	(d)	Oxytocin	62.	The	most basic element is		
54.	Wh	ich of the followin	g read	gents can be used for		(a)	Fluorine	(b)	Iodine
		inguishing the three cla	56	The state of the s		(c)	Chlorine	(d)	Bromine
	(a)	Fenton's reagent	(b)	Lucas reagent					
		Schiff's reagent	512-00	Tollen's reagent	63.	cati			orms complexes with many ng cations does not form a
55.		monomer of cellulose	72021	922073 37		15.15		/b)	Cu ²⁺
	2000	Fructose	(b)	Galactose			Ag ⁺		
	(c)	Glucose	(d)	None of these		(c)	Cd^{2+}	(d)	Pb^{2+}
56.	Tes	t for an ester is			64.	Wh	ich of the following	substan	ces consists of only one
	(a)	Biuret test	(b)	Hydroxamic acid test		eler	nent		
	(c)	Mullicken test	(d)	Liebermann nitroso test		(a)	Marble	(b)	Sand
						(c)	Diamond	(d)	Glass
57.		/ 2	4277	or Dewar's benzene will be					
	120/02	One	2017	Two	65.	The	compound which doe	s not sh	ow paramagnetism, is
	(c)	Three	(d)	Four		(a)	$[Cu(NH_3)_4]Cl_2$	(b)	$[Ag(NH_3)_4]CI$
58.		ich of the following thesis of an alkene	reactio	ons can be used for the		(c)	NO	(d)	NO_2
	(a)	(a) Chugaev reaction (b) Dakin reaction				For which element of first trSolition series the oxidation potential value $(M \rightarrow M^2 + 2e^-)$ is lowest			
	(b)								
	F 23 (9)	Reimer-Tiemann reac	tion						
	(c)	rionner riemann reac	LIOI1			(a)	ivin	(b)	Fe

- 67. A compound of Zinc which is white in cold state and yellow in hot state, is
 - (a) ZnS
- (b) ZnO
- (c) ZnCl₂
- ZnSO₄
- The isomer is

- (a) Dextro isomer
- (b) Laevo isomer
- (c) Cis-isomer
- (d) Trans-isomer
- Lead nitrate on heating gives lead oxide, nitrogen dioxide and oxygen. This reaction is known as
 - (a) Combustion
- (b) Combination
- (c) Displacement
- (d) Decomposition
- The equivalent weight of potassium permanganate 70. (KMnO₄) in neutral medium will be
 - (a) Atomic weight
- (b) Atomic weight
- (c) Atomic weight
- (d) Atomic weight 5
- 71. An element forms a solid oxide which when is dissolved in water forms an acidic solution. The element is
 - (a) Neon
- (b) Sodium
- (c) Phosphorus
- (d) Sulphur
- 72. What is the product obtained when MnSO₄ in solution is boiled with PbO2 and concentrated HNO3
 - (a) MnO₂
- (b) HMnO₄
- (c) Mn₃O₄
- (d) PbMnO₄
- 73. Which one of the following is an example of a true peroxide
 - (a) NO₂
- (b) MnO₂
- (c) BaO₂
- (d) SO₂
- The number of d-electrons in $[Cr(H_2O)_4]^{3+}$ is
 - (a) 2

(b) 3

(c) 4

- (d) 5
- Co-ordination number for copper (Cu) is
 - (a) 1

(c) 8

(d) 12

- Silver nitrate on heating gives
 - (a) AgO and NO₂
- (b) AgO, NO and O₂
- (c) Ag and NO2
- (d) Ag, NO2 and O2
- 77. Which emits β -particles
 - (a) ₁H³
- (b) 6C14
- (c) 19K40
- (d) All
- The molarity of 98% H_2SO_4 (d = 1.8 g/ml) by weight is
 - (a) 6 M
- (b) 18 M
- (c) 10 M
- (d) 4 M
- 20 ml of 10 N HCl are mixed with 10 ml of 36 N H₂SO₄ and the mixture is made one litre. Normality of the mixture will be
 - (a) 0.56 N
- (b) 0.50 N
- (c) 0.40 N
- (d) 0.35 N
- 80. The energy of an electron in the 3rd orbit of an atom is -E. The energy of an electron in the first orbit will be
 - (a) -3E
- (b) $-\frac{E}{3}$
- (c) $-\frac{E}{9}$
- (d) -9E
- **81.** For the chemical reaction $A \rightarrow E$ it is found that the rate of the reaction doubles when the concentration of A is increased four times. The order in A for this reaction is
 - (a) Two
- (b) One
- (c) Zero
- (d) Half
- **82.** What is X in the nuclear reaction ${}_{7}^{14}N + {}_{1}^{1}H \rightarrow {}_{8}^{15}O + X$
 - (a) 1H
- (b) 1 n

(c) y

- (d) -1 e
- Which of the following is related with the colloidal solution
 - (a) Tyndall effect
- (b) Fajan's rule
- (c) Le Chatelier's principle
- (d) Aufbau principle
- Who discovered that cathode rays are made up of electrons
 - (a) William Crookes
- (b) G.J. Stoney
- c) R.A. Millikan

- (d) J. J. Thomson

- 85. The valency of the element having atomic number 9 is
 - (a) 1

(b) 2

(c) 3

- (d) 4
- One mole of N_2O_4 is heated in a flask with a volume of 86. 10 dm3. At equilibrium 1.708 mole of NO2 and 0.146 mole of N_2O_4 were found at 134 °C. The equilibrium constant will be
 - (a) 250 mol dm⁻³
- (b) 300 mol dm⁻³
- (c) 200 mol dm⁻³
- (d) 230 mol dm⁻³
- 87. Which one of the following is paramagnetic
 - (a) O₂

(b) N_2

- (c) He
- (d) NH₃
- The compound which is non-linear: 88.
 - (a) CO₂
- (b) CS₂
- (c) HgCl₂
- (d) H₂O
- 89. The end product of 4n series is
 - (a) ₈₂Pb²⁰⁸
- (b) $_{82}Pb^{207}$
- (c) ₈₂Pb²⁰⁹
- (d) None of the above
- From the knowledge of the position of radium in the 90. periodic table, which of the following statements would you expect to be false
 - (a) RaSO₄ is insoluble in water.
 - (b) RaSO₄ is insoluble in HNO₃.
 - $RaSO_4$ is a white solid.
 - RaSO₄ is a colourless liquid.
- Hexa 2ene 4 yne is 91.
 - (a) $CH_3 CH_2 C \equiv C CH = CH_2$
 - (b) $CH_3 C \equiv C CH = CH CH_3$
 - (c) $CH_3CH_2 CH = CH C \equiv CH$
 - (d) $CH_3 C \equiv C CH_2 CH = CH_2$

- The number of unpaired electrons in carbon atom is
 - (a) One
- (b) Two
- (c) Three
- (d) Four
- 93. Towards electrophilic reagents
 - (a) Ethene is more reactive than ethyne
 - (b) Ethene is less reactive than ethyne
 - (c) Both have equal reactivity
 - (d) The reactivity of both cannot be predicted
- 94. Which statement is correct
 - (a) Ethanol is more acidic than phenol
 - (b) Phenol is more acidic than ethanol
 - (c) Phenol is more acidic than benzoic acid
 - (d) Acidity of phenol and benzoic acid is about equal
- Which Chloride is least reactive with the hydrolysis point of 95. view
 - (a) CH₃Cl
- (b) CH₃CH₂CI
- (c) $(CH_3)_3 CCI$ (d) $CH_2 = CH CI$
- The reaction of acetone with PCI₅ gives
 - (a) CH₃COCH₂Cl (b) CH₃COCHCl₂
 - (c) $CH_3 C CH_3$
- (d) CICH2COCH2CI
- In the preparation of Nylon-6 from cyclohexanone oxime 97. use is made of a rearrangement reaction. rearrangement reaction is called
 - (a) Wolff rearrangement
- (b) Amadori rearrangement
- (c) Curtius rearrangement
- (d) Beckmann rearrangemnt
- On heating a mixture of sodium benzoate and sodalime, is formed
 - (a) Toluene
- (b) Phenol
- (c) Benzene
- (d) Benzoic acid
- In the following reaction: 99.

$$2CH_2 = CH_2 + S_2CI_2 \rightarrow \text{Product. The product is}$$

- (a) Mustard gas
- (b) Lewisite
- (c) Polythene
- (d) Teflon
- 100. What is the initial product of the acidic hydrolysis of a cyanide
 - (a) A primary amide
- (b) An isocyanide
- (c) An isocyanate
- (d) A nitrile

SECTION III

- 101. The area of the triangle whose vertices (1.0), (7.0) and (4, 4) is
 - (a) 8

(b) 10

(c) 12

- (d) 14
- 102. The area enclosed within the curve |x| + |y| = 4 is
 - (a) 16
- (b) 24
- (c) 32
- (d) 8
- 103. Equation of the line passing through the point (1, 2) and perpendicular to 3x + 4y + 5 = 0 is

 - (a) 3y = 4x 2 (b) 3y = 4x + 2
 - (c) 3v = 4x + 3
- (d) 3v = 4x 3
- 104. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on AB as a diameter is
 - (a) $x^2 + y^2 x y = 0$ (b) $x^2 + y^2 x + y = 0$
 - (c) $x^2 + y^2 + x + y = 0$ (d) $x^2 + y^2 + x y = 0$
- 105. The radius of the circle in which the sphere $x^{2} + y^{2} + z^{2} + 2x - 2y - 4z - 19 = 0$, is cut by the plane x + 2v + 2z + 7 = 0. is
 - (a) 1

(b) 2

(c) 3

- (d) 4
- 106. The locus of the vertices of the family of parabola $6y = 2a^3x^2 + 3a^2x - 12a$ is
 - (a) $xy = \frac{105}{64}$
- (b) $xy = \frac{64}{105}$
- (d) $xy = \frac{16}{25}$
- 107. The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$. if one of the directrices is x = 4, then the equation of the

 - (a) $4x^2 + y^2 = 6$ (b) $4x^2 + y^2 = 12$
 - (c) $x^2 + 4y^2 = 12$
- (d) $x^2 + 4y^2 = 6$

- 108. The angle between two lines $\frac{x}{2} = \frac{y}{2} = \frac{z}{-1}$ and $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{2}$ is
 - (a) $Cos^{-1}\left(\frac{4}{9}\right)$ (b) $Cos^{-1}\left(\frac{1}{9}\right)$
 - (c) $Cos^{-1}(\frac{2}{9})$
- 109. If the plane 2ax 3ay + 4az + 6 = 0 passes through the midpoint of the line joining the centres of the spheres $x^{2} + v^{2} + z^{2} + 6x - 8v - 2z = 13$ and $x^{2} + y^{2} + z^{2} - 10x + 4y - 2z = 8$, then a is equal to
 - (a) 1

(b) −1

(c) 2

- (d) -2
- 110. A random variable X has the probability distribution

Х	1	2	3	4	5	6	7	8
P(X)	0.15	0.23	0.12	0.10	0.20	0.08	0.07	0.05

For the events $E = \{X \text{ is a prime number}\}\$ and $F = \{X < 4\}$, then P(EUF) is

- (a) 0.77
- (b) 0.87
- (c) 0.35
- (d) 0.50
- 111. The points A. B. C whose position vectors are resp., 2i+j+k, i-3j-5k and $\alpha i-3j+k$, forms a right-angled triangle with $\angle C = \pi/2$, then the values of a are
 - (a) 1 & 2
- (b) -1 & -2
- (c) 1 & -2
- (d) -1 & 2
- **112.** If $a \times [b \times c] = [a \times b] \times c$, where a, b and c are any three vectors such that $\vec{b} \cdot \vec{c} = 0$, and $\vec{a} \cdot \vec{b} = 0$ then \vec{a} and \vec{c} are
 - (a) Perpendicular
- (b) Parallel
- (c) Inclined at an angle $\frac{\pi}{3}$ (d) Inclined at an angle $\frac{\pi}{6}$

- 113. Let a, b, c be three non-zero vectors such that no two of these are collinear. If the vector $\vec{a}+2\vec{b}$ is collinear with \vec{c} . then $\vec{a} + 2\vec{b} + \vec{b}\vec{c}$ equals
 - (a) $\lambda \alpha (\lambda = 0, \alpha \text{ scalar})$
- (b) $\lambda \vec{b}$ ($\lambda \neq 0$, α scalar)
- (c) $\lambda c (\lambda \neq 0, \alpha \text{ scalar})$
- 114. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 7$, $|\vec{b}| = 5$, $|\vec{c}| = 3$, then the angle between the vectors \vec{b} and c is
- (b) 45°
- (c) 60°
- (d) 90°
- 115. The differential equation, whose solution is $Ax^2 + by^2 = 1$, where A and B are arbitrary constants, is of
 - (a) Second order and second degree
 - (b) Second order and first degree
 - (c) First order and second degree
 - (d) First order and first degree
- 116. The order and degree of the differential equation

$$\left(1+4\frac{dy}{dx}\right)^{2/3} = 4\frac{d^2y}{dx^2}$$
 are respectively

- (c) 2,3
- 117. If A and B are two events such that $P(A \cup B) = \frac{5}{6}$,
 - $P(A \cap B) = \frac{1}{3}$ and $P(\overline{B}) = \frac{1}{3}$, then the value of P(A) is
 - (a) $\frac{1}{3}$

- 118. If bag A contains 2 white and 3 red balls and bag B contains 4 white and 5 red balls. A ball is selected randomly from a 124. The number of real solutions of the equation randomly selected bag and is found to be red. Then the probability that it is selected from bag B is

- 119. The mean and the variance of a binomial distribution are 4 and 2 respectively, then the probability of two successes is

- 120. If there students A, B, C can solve a problem with probabilities $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively, then the probability that the problem will be solved is
 - (a) $\frac{3}{5}$

- 121. If $z^2 + z + 1 = 0$, where z is a complex number then the

value of
$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2$$

$$+ \dots + \left(z^6 + \frac{1}{z^6}\right)^2$$
 is

(c) 18

- (d) 24
- 122. The local minimum of the function $f(x) = \frac{x}{2} + \frac{z}{x}$ is
- (b) at x = -2
- (d) at x=1
- 123. If $0 < x < \pi$ and $\cos x + \sin x = \frac{1}{2}$, then the value of tan
 - X IS
- (c) $-\frac{1+\sqrt{7}}{3}$
- $x^2 3|x| + 2 = 0$ is
- (c) 3

www.questionpapert.in

- 125. The value of a for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$, is twice of the other root, is

- **126.** If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q respectively and $p^2 = q$, then a equals
 - (a) 1

(b) 2

(c) 3

- **127.** If $A^2 A + I = 0$, then A^{-1} is equal to

- (c) I-A
- (d) A-I
- 128. The solutions of the equation $4\cos^2 x + 6\sin^2 x = 5$ are
 - (a) $x = n\pi \pm \frac{\pi}{4}$ (b) $x = n\pi \pm \frac{\pi}{3}$
- 129. If $\lim_{x \to 0} \frac{\log(x+a) \log a}{x} + k \lim_{x \to e} \frac{\log x 1}{x e} = 1$, then the value of k is
 - (a) $1 \frac{1}{a}$

- 130. The value of $\lim_{x\to \infty} \left(\frac{x-3}{x+2}\right)^x$, for $x \in R$, is

- **131.** The sum of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ upto ∞ , is

- (d) 3

- 132. The Geometric mean of 1,2,22,....,2n is
- (c) 2^{n(n+1)/2}
- (d) 2^{(n-1)/2}
- 133. If $y = \log x^x$, then the value of $\frac{dy}{dx}$ is
 - (a) $x^x(1 + \log x)$
- (b) log(ex)
- (c) $\log \left(\frac{e}{x}\right)$ (d) $\log \left(\frac{x}{x}\right)$
- **134.** If z = x + iy and $z^{1/3} = a ib$, then $\frac{x}{a} \frac{y}{b} = k(a^2 b^2)$

when the value of k is

(a) 4

(b) 3

(c) 2

- (d) 1
- 135. If $(x+iy) = \sqrt{\frac{1+2i}{3+4i}}$, then $(x^2+y^2)^2 =$

- 136. If the first, second and last terms of an arithmetic series are a, b and c respectively then the number of terms is
 - (a) $\frac{b+c-2a}{b-a}$
- (c) $\frac{b+c-2a}{b+a}$
- (d) $\frac{b+c+2a}{b+a}$
- **137.** The term independent of x in $\sqrt{x} \frac{2}{x} \Big|_{x}^{2}$ is
 - (a) 18 C12 28
- (b) 18 C 212
- (d) 18 Cto 26
- **138.** If $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and A^2 is the identity matrix, then x = 0

- 139. If AT.BT are transpose matrices of the square matrices
 - A. B respectively, then (AB)^T is equal to
- (c) BAT
- (d) $B^T A^T$
- 140. If $\sin \theta + \cos ec \theta = 3$, then $\sin^2 \theta + \cos ec^2 \theta =$
 - (a) 7

- (d) 5

- (d) 2
- 142. If the function $f: N \to N$ is defined by $f(x) = \sqrt{x}$, then $\frac{f(25)}{f(16) + f(1)}$ is equal to

- (d) 1
- 143. $\int \frac{1}{1 + \cos x + \sin x} dx =$

- (a) $\log \left| 1 + \tan \frac{x}{2} \right| + c$ (b) $\frac{1}{2} \log \left| 1 + \tan \frac{x}{2} \right| + c$ (c) $2 \log \left| 1 + \tan \frac{x}{2} \right| + c$ (d) $\frac{1}{2} \log \left| 1 \tan \frac{x}{2} \right| + c$
- 144. $\int \frac{x^4 + x^2 + 1}{x^2 x + 1} dx =$
 - (a) $\frac{x^3}{3} \frac{x^2}{2} + x + c$ (b) $\frac{x^3}{3} + \frac{x^2}{2} + x + c$
 - (c) $\frac{x^3}{3} \frac{x^2}{2} x + c$ (d) $\frac{x^3}{3} + \frac{x^2}{2} x + c$

- (b) π/4(d) π/2
- (b) π/4

- - (a) $\lambda = -17$
- (b) $\lambda = -18$
- (c) λ = -19
- 148. $\int \sin^3 x \cdot \cos^2 x \, dx =$
 - (a) $\frac{\sin^5 x}{5} \frac{\sin^3 x}{9} + c$ (b) $\frac{\sin^5 x}{5} + \frac{\sin^3 x}{9} + c$

 - (c) $\frac{\cos^5 x}{5} \frac{\cos^3 x}{3} + c$ (d) $\frac{\cos^5 x}{5} + \frac{\cos^3 x}{3} + c$
- 149. The area enclosed between the curves $y^2 = x$ and y = |x| is
 - (a) $\frac{1}{6}$

- 150. $\int_0^{\pi/2} \log \sin x \, dx =$
 - (a) -π log 2
- (b) # log 2
- (c) $-\frac{\pi}{2}\log 2$
- (d) $\frac{\pi}{2}\log 2$

<u>www.questionpapert.in</u>