Credit hours: 4(3+1)

# Mandsaur University, Mandsaur (M.P.) Department of Agriculture Distribution of course curriculum for B.Sc. Agriculture Degree Programme

## As per Recommendation 5<sup>th</sup> Dean Committee

#### Semester wise:

## B.Sc. (Hons.) Ag. Ist Year

#### Semester wise distribution of courses

| S.N.                                                | Name of subject                                      | Subject code (MU) | Credit          |
|-----------------------------------------------------|------------------------------------------------------|-------------------|-----------------|
| 1                                                   | Fundamentals of Plant Pathology                      | APP010            | 4(3+1)          |
| 2                                                   | Fundamentals of Agricultural Extension Education     | EXT010            | 3(2+1)          |
| 3                                                   | Agricultural Microbiology                            | BPM030            | 2(1+1)          |
| 4                                                   | Communication Skills and Personality Development     | EXT040            | 2(1+1)          |
| 5                                                   | Fundamentals of Plant Biochemistry and Biotechnology | BPM010            | 3(2+1)          |
| 6                                                   | Introductory Biology* / Elementary Mathematics*      | RIB010 / REM010   | 2(1+1)/2(2+0)*  |
| 7                                                   | Introduction to Forestry                             | BPF010            | 2 (1+1)         |
| 8                                                   | Fundamentals of Crop Physiology                      | BPM020            | 2(1+1)          |
| 9                                                   | Rural Sociology & Educational Psychology             | EXT020            | 2 (2+0)         |
| TOTAL*R: Remedial course; **NC: Non-gradial courses |                                                      |                   | 20(13+7) / 2+0* |

#### **SYLLABUS**

[As per Recommendation 5<sup>th</sup> Dean Committee] B.Sc. (Hons.) Ag. I<sup>st</sup> Year II<sup>nd</sup> Semester

## 1. Fundamentals of Plant Pathology (APP010):

**Theory:** Introduction: Importance of plant diseases, scope and objectives of Plant Pathology. History of Plant Pathology with special reference to Indian work. Terms and concepts in Plant Pathology. Pathogenesis. Cause and classification of plant diseases. Important plant pathogenic organisms, different groups: fungi, bacteria, fastidious vesicular bacteria, phytoplasmas, spiroplasmas, viruses, viroids, algae, protozoa, phanerogamic parasites and nematodes with examples of diseases caused by them. Diseases and symptoms due to abiotic causes.

Fungi: general characters, definition of fungus, somatic structures, types of fungal thalli, fungal tissues, modifications of thallus, reproduction (asexual and sexual). Nomenclature, Binomial system of nomenclature, rules of nomenclature, classification of fungi. Key to divisions, sub-divisions, orders and classes.

Bacteria and mollicutes: general morphological characters. Basic methods of classification and reproduction.

**Viruses**: nature, architecture, multiplication and transmission.

Study of phanerogamic plant parasites.

**Nematodes:** General morphology and reproduction, classification, symptoms and nature of damage caused by plant nematodes (Heterodera, Meloidogyne, *Anguina* etc.)

Principles and methods of plant disease management. Nature, chemical combination, classification, mode of action and formulations of fungicides and antibiotics.

**Practical:** Acquaintance with various laboratory equipments and microscopy. Preparation of media, isolation and Koch's postulates. General study of different structures of fungi. Study of symptoms of various plant diseases. Study of representative fungal genera. Staining and identification of plant pathogenic bacteria. Transmission of plant viruses. Study of phanerogamic plant parasites.

Credit hour: 2(1+1)

Study of morphological features and identification of plant parasitic nematodes. Extraction of nematodes from soil.

Study of fungicides and their formulations. Methods of pesticide application and their safe use. Calculation of fungicide sprays concentrations.

## 2. Fundamentals of Agricultural Extension Education (EXT010): Credit hours: 3(2+1)

**Theory:** Education: Meaning, definition & Types; Extension Education- meaning, definition, scope and process; objectives and principles of Extension Education; Extension Programme planning- Meaning, Process, Principles and Steps in Programme Development. Extension systems in India: extension efforts in pre-independence era (Sriniketan, Marthandam, Firka Development Scheme, Gurgaon Experiment, etc.) and post-independence era (Etawah Pilot Project, Nilokheri Experiment, etc.); various extension/ agriculture development programmes launched by ICAR/ Govt. of India (IADP, IAAP, HYVP, KVK, IVLP, ORP, ND,NATP, NAIP, etc.). New trends in agriculture extension: privatization extension, cyber extension/ e-extension, market-led extension, farmer-led extension, expert systems, etc.

Rural Development: concept, meaning, definition; various rural development programmes launched by Govt. of India. Community Dev.-meaning, definition, concept & principles, Physiology of C.D. Rural Leadership: concept and definition, types of leaders in rural context; extension administration: meaning and concept, principles and functions. Monitoring and evaluation: concept and definition, monitoring and evaluation of extension programmes; transfer of technology: concept and models, capacity building of extension personnel; extension teaching methods: meaning, classification, individual, group and mass contact methods, media mix strategies; communication: meaning and definition; models and barriers to communication. Agriculture journalism; diffusion and adoption of innovation: concept and meaning, process and stages of adoption, adopter categories.

**Practical:** To get acquainted with university extension system. Group discussion- exercise; handling and use of audio visual equipments and digital camera and LCD projector; preparation and use of AV aids, preparation of extension literature – leaflet, booklet, folder, pamphlet news stories and success stories; Presentation skills exercise; micro teaching exercise; A visit to village to understand the problems being encountered by the villagers/ farmers; to study organization and functioning of DRDA and other development departments at district level; visit to NGO and learning from their experience in rural development; understanding PRA techniques and their application in village development planning; exposure to mass media: visit to community radio and television studio for understanding the process of programme production; script writing, writing for print and electronic media, developing script for radio and television.

#### 3. Agricultural Microbiology (BPM030):

**Theory:** Introduction. Microbial world: Prokaryotic and eukaryotic microbes. Bacteria: cell structure, chemoautotrophy, photo autotrophy, growth. Bacterial genetics: Genetic recombination- transformation, conjugation and transduction, plasmids, transposon.

Role of microbes in soil fertility and crop production: Carbon, Nitrogen, Phosphorus and sulphur cycles. Biological nitrogen fixation- symbiotic, associative and aysmbiotic. Azolla, blue green algae and mycorrhiza. Rhizosphere and phyllosphere. Microbes in human welfare: silage production, biofertilizers, biopesticides, biofuel production and biodegradation.

**Practical:** Introduction to microbiology laboratory and its equipments; Microscope- parts, principles of microscopy, resolving power and numerical aperture. Methods of sterilization. Nutritional media and their preparations. Enumeration of microbial population in soil- bacteria, fungi, actinomycetes. Methods of isolation and purification of microbial cultures. Isolation of *Rhizobium* from legume root nodule. Isolation of *Azotobacter* from soil. Isolation of *Azospirillum* from roots. Staining and microscopic examination of microbes.

#### 4. Communication Skills and Personality Development (EXT040): Credit hours: 2(1+1)

**Theory:** Communication Skills: Structural and functional grammar; meaning and process of communication, verbal and nonverbal communication; listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precise writing, summarizing, abstracting; individual and group presentations, impromptu presentation, public speaking; Group discussion. Organizing seminars and conferences.

Credit hours: 3(2+1)

Credit hours: 2(1+1)\*

Credit hours: 2(2+0)\*

**Practical:** Listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precise writing, summarizing, abstracting; individual and group presentations

#### 5. Fundamentals of Plant Biochemistry and Biotechnology (BPM010):

**Theory:** Importance of Biochemistry. Properties of Water, pH and Buffer. Carbohydrate: Importance and classification. Structures of Monosaccharides, Reducing and oxidizing properties of Monosaccharides, Mutarotation; Structure of Disaccharides and Polysaccharides. Lipid: Importance and classification; Structures and properties of fatty acids; storage lipids and membrane lipids. Proteins: Importance of proteins and classification; Structures, titration and zwitterions nature of amino acids; Structural organization of proteins. Enzymes: General properties; Classification; Mechanism of action; Michaelis & Menten and Line Weaver Burk equation & plots; Introduction to allosteric enzymes. Nucleic acids: Importance and classification; Structure of Nucleotides, A, B & Z DNA; RNA: Types and Secondary & Tertiary structure. Metabolism of carbohydrates: Glycolysis, TCA cycle, Glyoxylate cycle, Electron transport chain. Metabolism of lipids: Beta oxidation, Biosynthesis of fatty acids.

Concepts and applications of plant biotechnology: Scope, organ culture, embryo culture, cell suspension culture, callus culture, anther culture, pollen culture and ovule culture and their applications; Micro-propagation methods; organogenesis and embryogenesis, Synthetic seeds and their significance; Embryo rescue and its significance; somatic hybridization and cybrids; Somaclonal variation and its use in crop improvement; cryo-preservation; Introduction to recombinant DNA methods: physical (Gene gun method), chemical (PEG mediated) and Agrobacterium mediated gene transfer methods; Transgenics and its importance in crop improvement; PCR techniques and its applications; RFLP, RAPD, SSR; Marker Assisted Breeding in crop improvement; Biotechnology regulations.

**Practical:** Preparation of solution, pH & buffers, Qualitative tests of carbohydrates and amino acids. Quantitative estimation of glucose/ proteins. Titration methods for estimation of amino acids/lipids, Effect of pH, temperature and substrate concentration on enzyme action, Paper chromatography/ TLC demonstration for separation of amino acids/ Monosaccharides. Sterilization techniques. Composition of various tissue culture media and preparation of stock solutions for MS nutrient medium. Callus induction from various explants. Micro-propagation, hardening and acclimatization. Demonstration on isolation of DNA. Demonstration of gel electrophoresis techniques and DNA finger printing.

### 6. Introductory Biology (New) (RIB010):

**Theory:** Introduction to the living world, diversity and characteristics of life, origin of life, Evolution and Eugenics. Binomial nomenclature and classification Cell and cell division. Morphology of flowing plants. Seed and seed germination. Plant systematic- viz; Brassicaceae, Fabaceae and Poaceae. Role of animals in agriculture.

**Practical:** Morphology of flowering plants – root, stem and leaf and their modifications. Inflorence, flower and fruits. Cell, tissues & cell division. Internal structure of root, stem and leaf. Study of specimens and slides. Description of plants - Brassicaceae, Fabaceae and Poaceae.

OR

## **Elementary Mathematics (New) (REM010):**

**Theory:** Straight lines: Distance formula, section formula (internal and external division), Change of axes (only origin changed), Equation of co-ordinate axes, Equation of lines parallel to axes, Slope-intercept form of equation of line, Slope-point form of equation of line, Two point form of equation of line, Intercept form of equation of line, Normal form of equation of line, General form of equation of line, Point of intersection of two st. lines, Angles between two st. lines, Parallel lines, Perpendicular lines, Angle of bisectors between two lines, Area of triangle and quadrilateral. Circle: Equation of circle whose centre and radius is known, General equation of a circle, Equation of circle passing through three given points, Equation of circle whose diameters is line joining two points  $(x_1, y_1)$  &  $(x_2, y_2)$ , Tangent and Normal to a given circle at given point (Simple problems), Condition of tangency of a line y = mx + c to the given circle  $x^2 + y^2 = a^2$ . Differential Calculus: Definition of function, limit and continuity, Simple problems on limit, Simple problems on continuity, Differentiation of  $x^n$ ,  $e^x$ ,  $\sin x$  &  $\cos x$  from first principle, Derivatives of sum, difference, product and quotient of two functions, Differentiation of functions of functions (Simple problem based on it), Logarithmic differentiation (Simple problem based on it), Differentiation by substitution method and simple problems based on it, Differentiation of Inverse Trigonometric functions. Maxima and Minima of the functions of the form y=f(x) (Simple problems based on it).

**Integral Calculus**: Integration of simple functions, Integration of Product of two functions, Integration by substitution method, Definite Integral (simple problems based on it), Area under simple well-known curves (simple problems based on it).

**Matrices and Determinants**: Definition of Matrices, Addition, Subtraction, Multiplication, Transpose and Inverse up to 3rd order, Properties of determinants up to 3rd order and their evaluation.

## 7. Introduction to Forestry (New (BPF010):

Credit hours: (1+1)

**Theory:** Introduction – definitions of basic terms related to forestry, objectives of silviculture, forest classification, salient features of Indian Forest Policies. Forest regeneration, Natural regeneration - natural regeneration from seed and vegetative parts, coppicing, pollarding, root suckers; Artificial regeneration – objectives, choice between natural and artificial regeneration, essential preliminary considerations. Crown classification. Tending operations – weeding, cleaning, thinning – mechanical, ordinary, crown and advance thinning. Forest mensuration – objectives, diameter measurement, instruments used in diameter measurement; Non instrumental methods of height measurement - shadow and single pole method; Instrumental methods of height measurement - geometric and trigonometric principles, instruments used in height measurement; tree stem form, form factor, form quotient, measurement of volume of felled and standing trees, age determination of trees. Agroforestry – definitions, importance, criteria of selection of trees in agroforestry, different agroforestry systems prevalent in the country, shifting cultivation, taungya, alley cropping, wind breaks and shelter belts, home gardens. Cultivation practices of two important fast growing tree species of the region.

**Practical:** Identification of tree-species. Diameter measurements using calipers and tape, diameter measurements of forked, buttressed, fluted and leaning trees. Height measurement of standing trees by shadow method, single pole method and hypsometer. Volume measurement of logs using various formulae. Nursery lay out, seed sowing, vegetative propagation techniques. Forest plantations and their management. Visits of nearby forest based industries.

### 8. Fundamentals of Crop Physiology (BPM020):

**Theory:** Introduction to crop physiology and its importance in Agriculture; Plant cell: an Overview; Diffusion and osmosis; Absorption of water, transpiration and Stomatal Physiology; Mineral nutrition of Plants: Functions and deficiency symptoms of nutrients, nutrient uptake mechanisms; Photosynthesis: Light and Dark reactions, C3, C4 and CAM plants; Respiration: Glycolysis, TCA cycle and electron transport chain; Fat Metabolism: Fatty acid synthesis and Breakdown; Plant growth regulators: Physiological roles and agricultural uses, Physiological aspects of growth and development of major crops: Growth analysis, Role of Physiological growth parameters in crop productivity.

**Practical:** Study of plant cells, structure and distribution of stomata, imbibitions, osmosis, plasmolysis, measurement of root pressure, rate of transpiration, Separation of photosynthetic pigments through paper chromatography, Rate of transpiration, photosynthesis, respiration, tissue test for mineral nutrients, estimation of relative water content, Measurement of photosynthetic CO<sub>2</sub> assimilation by Infra Red Gas Analyser (IRGA).

#### 9. Rural Sociology & Educational Psychology (EXT020):

Credit hours: 2(2+0)

Credit hours: 2(1+1)

**Theory:** Sociology and Rural sociology: Definition and scope, its significance in agriculture extension, Rural society, Social Groups, Social Stratification, Culture concept, Social Institution, Social Change & Development. Educational psychology: Meaning & its importance in agriculture extension. Behavior: Cognitive, affective, psychomotor domain, Personality, Learning, Motivation, Theories of Motivation, Intelligence.