Evaluation/Scheme of Examination M.Sc. (Industrial Chemistry) 1st Semester

S. No.	Course	Course Title	Type of Paper	Period Per hr/week/sem		Evaluation Scheme				Sub. Total	Credit	Total Credit	
	code			L	Т	P	СТ	TA	Total	ESE	Total		Credit
THEC	RIES												
1.	CH401	Physical Chemistry	Foundation Course	03	01	00	40	20	60	40	100	3:1:0	4
2.	CH402	Inorganic Chemistry	Foundation Course	03	01	00	40	20	60	40	100	3:1:0	4
3.	CH403	Organic Chemistry	Foundation Course	03	01	00	40	20	60	40	100	3:1:0	4
4.	CH404	Environmental Chemistry	Core	03	01	00	40	20	60	40	100	3:1:0	4
5.	CH405	Modern Analytical Techniques	Core	03	01	00	40	20	60	40	100	3:1:0	4
PRAC	PRACTICAL												
6.	CH406	Industrial Chemistry Practical-1	Core	00	00	08	40	20	60	40	100	0:0:4	4
			Total	15	05	08	240	120	360	240	600	24	24

2ndSemester

S. No.	Course	Course Title	Type of	Period Per hr/week/sem		Evaluation Scheme				Sub. Total	Credit	Total Credit	
	code		Paper	L	Т	P	СТ	TA	Total	ESE	Total		Credit
THEO	THEORIES												
1.	CH407	Heavy & Fine Chemicals	Core	03	01	00	40	20	60	40	100	3:1:0	4
2.	CH408	MIMA & Computational Techniques	Core	03	01	00	40	20	60	40	100	3:1:0	4
3.	CH409	Chemistry of Natural Products	Core	03	01	00	40	20	60	40	100	3:1:0	4
4.	CH410	Corrosion, Lubrication and Paint Technology	Core	03	01	00	40	20	60	40	100	3:1:0	4
5.	CH411	Pharmaceutical Chemistry	Core	03	01	00	40	20	60	40	100	3:1:0	4
PRAC	PRACTICAL												
6.	CH412	Industrial Chemistry Practical-2	Core	00	00	08	40	20	60	40	100	0:0:4	4
		Total	15	05	08	240	120	360	240	600	24	24	

3rdSemester

S. No.	Course code	Course Title	Type of Paper	Period Per hr/week/sem		Evaluation Scheme				Sub. Total	Credit	Total Credit	
	coue		rapei	L	Т	P	СТ	TA	Total	ESE	IUtai		Credit
THEC	RIES												
1.	CH501	Core	03	01	00	40	20	60	40	100	3:1:0	4	
2.	CH502	Petroleum Chemistry	Core	03	01	00	40	20	60	40	100	3:1:0	4
3.	CH503	Agro-Chemistry	Core	03	01	00	40	20	60	40	100	3:1:0	4
4.	CH504	Cosmetics & Perfumery	Core	03	01	00	40	20	60	40	100	3:1:0	4
5.	CH505	Food Chemistry	Elective	03	01	00	40	20	60	40	100	3:1:0	4
6.	CH506	Bioinorganic & Supra molecular Chemistry	Elective	03	01	00	40	20	60	40	100	3:1:0	4
PRAC	PRACTICAL												
6.	6. CH507 Industrial Chemistry Practical-3		Core	00	00	08	40	20	60	40	100	0:0:4	4
			Total	15	05	08	240	120	360	240	600	24	24

4thSemester

			4"Semester										
S. No.	Course	Course Title	Type of	Per l	Period r/week		ı	Evaluatio	n Scheme		Sub.	Credit	Total Credit
	code		Paper	L	Т	P	СТ	TA	Total	ESE	Total		Credit
THEC	THEORIES												
1.	CH508	Intellectual Property Rights	Core	03	01	00	40	20	60	40	100	3:1:0	4
2.	CH509	Green Chemistry	Elective	03	01	00	40	20	60	40	100	3:1:0	1
3.	CH510	Industrial Hygiene and Chemical Safety	Elective	03	01	00	40	20	00	40	100	5.1.0	4
PRAC	TICAL												
4.	CH511	Seminar Presentation	Core	00	00	04	00	00	00	100	100	0:0:2	2
5.	5. CH512 *Industrial Training & Project Evaluation C		Core	00	00	00	00	00	00	300	300	10	10
	Tota				02	04	80	40	120	480	600	20	20

CT= Class Test, TA= Teacher's Assessment, ESE= End Semester Examination; Sessional=CT+TA; Subject Total=Sessional+ESE;

Total Credit=24+24+24+20=92

*The Evaluation scheme for the Industrial Training:

	1110 = 141	######################################			
Course Title	Course Code	Dissertation	Presentation	Viva/Discussion	Total
Industrial Training & Project Evaluation	CH512	200	50	50	300

SYLLABI

SEMESTER - I

1. Name of the Departmen	1. Name of the Department: Chemistry											
2. Course Name	PHYSICAL CHEMISTRY		L	Т	Р							
3. Course Code	CH401		3	1	0							
4. Type of Course (use tick	mark)				Core ()	DE ()	FC (√)					
5. Pre-requisite (ifany)	BSc. with Chemistry	Odd (√)	Either Sem ()	Every Sem ()								
7. Total Number of Lectures, Tutorials, Practicals												

Tutorials = 10 Practical = Nil Lectures = 30

8. COURSE OBJECTIVES: The purpose of this postgraduate course is to impart basic and fundamental knowledge of physical chemistry. It is applied in almost all the field starting from Chemistry to biology, information technology as well as the engineering. After the successfully completion of the course, the students are provided sound foundation to take up Ph.D. course in the future.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES						
CO1	Students would analyze the idealized version of a gas, a perfect gas and shows how its equation of states may be assembled experimentally.						
CO2	Students would able to develop the concept of conservation of energy; assess the energy changes during physical and chemical process.						
	Students would differentiate between spontaneous and non-spontaneous process and understand how Gibbs free energy is related to						
CO3	maximum non-expansion work.						
	Students would explore the rate of chemical reactions and analyzed how rate of a chemical reaction is varying with change of concentration,						
CO4	pressure andtemperature.						
	Students would develop the concept of photochemistry and get inside of Lambert-Beer Law, Grothus – Drapper law, Stark – Einstein law,						
CO5	quantum Efficiency and itsdetermination.						
10. Unit wice detailed content							

Unit-1 Number of lectures = 08 Title of the unit: Properties of Gases

The states of gases, gases laws and deviation from ideal behavior, Vander Waals equation of state; Critical Phenomena: PV isotherms of real gases, continuity of states, the isotherms of van der Waals equation, relationship between critical constants and vander Waals constants, the law of corresponding states, reduced equation ofstate. Qualitative discussion of the Maxwell's distribution of molecular velocities, collision number, means free path and collision diameter.

Unit-2 Number of lectures =08 Title of the unit: Classical Thermodynamics

System & surroundings, intensive and extensive properties, State and path functions and their differentials, Thermodynamic processes, concept of heat and work. First Law of Thermodynamics; Statement, definition of internal energy and enthalpy, Heat capacity, heat capacities at constant volume and pressure, Joule's law – Joule Thomson coefficient and inversion temperature. Second Law of Thermodynamics: Entropy as a state function, entropy as a function of V & T, entropy as a function of P & F, entropy change in physical change, clausius inequality, entropy as a criteria of spontaneity and equilibrium, Equilibrium change in ideal gases and mixing of gases, Maxwell's relations.

Number of lectures = 08 Unit-3 Title of the unit: Entropy and Free energy

Gibbs function (G) and Helmhotz function (A) as thermodynamic quantities, A & G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change, Variation of Gand A with P, Vand T. Nerns the at theorem, statement and concept of residual entropy. Chemical Potential and partial molar properties:Gibbs-Duhem equation, concept of fugacity and its determination.

Title of the unit: Chemical Kinetics Unit-4 Number of lectures = 08

Rate of a reaction, factors influencing the rate of a reaction; mathematical characteristics of simple chemical reactions – zero order, first order, second order, pseudo order, half life and mean life, Determination of the order of reaction-differential method, method of integration, method of half life period and isolation method.Radio active decay as a first or derphenomen on, Theories of chemical kinetics: effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy.

Number of lectures = 08 Title of the unit: Photochemistry Unit-5

Interaction of radiation with matter, difference between thermal and photochemical processes, Laws of photochemistry: Grothus – Drapper law, Stark – Einstein law lablonski diagram depicting various processes occurring in the excited state, Lambert-Beer Law: quantum Efficiency and its determination, Qualitative description of fluorescence, phosphorescence, non- radiative processes (internal conversion, intersystem crossing), photosensitized reactions – energy transfer processes (simple examples), Kinetics of Photo chemical reaction. (Hydrogen-Bromine, Hydrogen-Chlorine, Decomposition of Hydrogen lodide and kinetics of Dimerization of Anthracene)

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
COL	Students would analyze the idealized version of a gas, a perfect gas and shows how its equation of states may be assembled experimentally.	3	2	2	2	1	3	3	3
(0)	Students would able to develop the concept of conservation of energy; assess the energy changes during physical and chemical process.	3	2	2	1	1	2	2	2
	Students would differentiate between spontaneous and non-spontaneous process and understand how Gibbs free energy is related to maximum non-expansion work.	3	2	3	1	1	3	2	3
	Students would explore the rate of chemical reactions and analyzed how rate of a chemical reaction is varying with change of concentration, pressure and temperature.	3	2	3	1	1	3	3	2
	Students would develop the concept of photochemistry and get inside of Lambert-Beer Law, Grothus – Drapper law, Stark – Einstein law, quantum Efficiency and its determination.	3	2	1	1	1	3	2	1

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self-learning / E-learning component

- http://home.iitk.ac.in/~gtm/thermodynamics/ui/TOC.htm
- https://nptel.ac.in/courses/115103113/
- https://nptel.ac.in/content/storage2/courses/122101001/downloads/lec-27.pdf
- http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/TOC-mainM6.htm
- https://www.youtube.com/watch?v=SgTuWj9Tj80

- Physical Chemistry, P.W. Atkins, ELBS
- Thermodynamics J. Rajaram and J.C. Kuriacose Educational Publishers.
- Quantum Chemistry Eyring, Walter, Kinball
- Statistical Physics (Part I) (Course of Theoretical Physics Vol. 5) L.D. London. & E.M. Lefshitz Perganion Zpress, London.
- Principles of Physical Chemistry by Puri, Sharma and Pathan.

1. Name of the Departm	1. Name of the Department: Chemistry									
2. Course Name	INORGANIC CHEMISTRY		L	Т	Р					
3. Course Code	CH402		3	1	0					
4. Type of Course (use t	ck mark)			Core ()	DE ()	FC (√)				
5. Pre-requisite (ifany)	BSc. with Chemistry	Even ()	Odd (v)	Either Sem ()	Every Sem ()					
7 Total Number of Lectures Tutorials Practicals										

8. COURSE OBJECTIVES: The purpose of this course is to develop the deep understanding of general characteristic properties of transition elements, nomenclature and isomerism in coordination compounds, organometallic chemistry of transition elements, bioinorganic chemistry and process in human and to gain the knowledge obasics of instrumental spectroscopictechniques.

Practical = Nil

9. COURSE OUTCOMES (CO):

Lectures = 30

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
	Students will be able to understand the approaches to the development of d block fundamental with CFT/VBT/MOT and its widespread
CO1	applications.
	Students will have a firm foundation in the IUPAC nomenclatures of the complexes and understand technical literature related to the
CO2	discipline.
	Students will be able to know about the key concepts of inorganic and organometallic chemistry including those related to synthesis, reaction
CO3	chemistry, and structure and bonding.
	Students will be able to understand the metal component in protein structure and molecular modeling, including the use of the computer
CO4	program. Transport mechanisms across cell membranes.
	Students will be able to understand the basic and advanced instrumental techniques used in inorganic synthesis including spectroscopic and
CO5	analytical techniques for identification and characterization of complex molecules.

10. Unit wise detailed content

Unit-1	Number of lectures = 08	Title of the unit: Coordination Compounds
--------	-------------------------	---

General characteristic properties of transition elements, Werner's theory, Effective atomic number, Shapes of d orbitals. Bonding in transition metal complexes; Valence bond theory, Crystal field theory; Octahedral complexes, effects of crystal field splitting, tetrahedral distortion of octahedral complexes (Jahn-Teller Distortion), Square planar arrangements, tetrahedral complexes, chelates, magnetism, Molecular orbital theory.

Unit-2 Number of lectures = 08 Title of the unit: Nomenclature And Isomerism In Coordination Compounds

Tutorials = 10

Nomenclature of co-ordination compounds, isomerism in coordination compounds; Polymerization, Ionization, Hydrate, Linkage, Coordination, Coordination position isomerism. Stereoisomerism; Geometrical and optical isomerism. Metal carbonyls, metal clusters and sandwich compounds.

Unit-3 Number of lectures = 08 Title of the unit: Organometallic Chemistry Of Transition Elements

Ligand hapticity, electron count for different types of organometallic compounds, 18 and 16 electron rule exceptions, synthesis, structure and bonding, organometallic reagents in organic synthesis and in homogeneous catalytic reactions (Hydrogenation, hydroformylation, isomerisation and polymerisation).

Unit-4 Number of lectures = 08 Title of the unit: Bioinorganic Chemistry

Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine.

Unit-5 Number of lectures = 08 Title of the unit: Characterization Of Inorganic Compounds

Characterization of inorganic compounds by IR, Raman, NMR, EPR, Mossbauer, UV-Vis, NQR, MS, electron spectroscopy and microscopic techniques..

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Students will be able to understand the approaches to the development of d block fundamental with CFT/VBT/MOT and its widespreadapplications.	3	1	1	1	2	1	1	1
CO2	Students will have a firm foundation in the IUPAC nomenclatures of the complexes and understand technical literature related to thediscipline.	3	2	1	2	2	2	2	2
соз	Students will be able to know about the key concepts of inorganic and organometallic chemistry including those related to synthesis, reaction chemistry, and structure andbonding.	3	2	2	2	2	2	2	2
CO4	Students will be able to understand the metal component in protein structure and molecular modeling, including the use of the computer program and transport mechanisms across cell membranes.		2	2	2	2	2	2	2
CO5	Students will be able to understand the basic and advanced instrumenta techniques used in inorganic synthesis including spectroscopic and analytica techniques for identification and characterization of complex molecules.		2	1	2	2	2	2	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self-learning / E-learning component

- 1. https://freevideolectures.com/course/3412/co-ordination-chemistry
- 2. http://www.chem.uwimona.edu.jm/courses/IC10Kiso.pdf
- https://nptel.ac.in/courses/104101091/
- 4. https://nptel.ac.in/courses/104104109/
- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/104106074/lec24.pdf

- 1. F. Albert Cotton, Geoffery Wilkinson, Carlos A. Murillo and Manfred Bochmann. Advanced Inorganic chemistry, Sixth edition, Wiley India Pvt. Ltd.
- 2. J. D. Lee, Concise Inorganic Chemistry, Fifth edition, Wiley India Pvt.Ltd.
- 3. J H Huheey, Inorganic Chemisry Principles, structure and reactivity, Harper and Row Publisher, Inc. New York (1972).

1. Name of the Departme	1. Name of the Department: Chemistry									
2. Course Name ORGANIC CHEMISTRY				L	Т	Р				
3. Course Code	3. Course Code CH403				1	0				
4. Type of Course (use tick	(mark)			Core ()	DE ()	FC (√)				
5. Pre-requisite (ifany)	BSc. with Chemistry	6. Frequency (use tick marks)	Even ()	Odd (√)	Either Sem ()	Every Sem ()				

Lectures = 30 Tutorials = 10 Practical = Nil

8. COURSE OBJECTIVES: Students will be able to gain knowledge of Generation, stability and reactivity of intermediates, Name reactions. pericyclic reactions, concerted pi electron shift and minimize environmental pollution through without use of solvents concepts of stereochemistry of acyclic & cyclic compounds, stereo chemical properties and their applications.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES				
CO1	Analyze and compare reactivity and stability of carbocations, carbanions, free radicals, carbenes, nitrenes and benzynes and addition				
COI	reactions with electrophilic, nucleophilic or radical species				
Comprehension of types of Organic reaction mechanisms involving elimination and substitution reactions with electrophilis					
CO2	nucleophilic or radical species.				
CO3	Able to evaluate different types of Name reactions and its mechanism.				
CO4	Know about Pericyclic reactions, types of Pericyclic reactions, stereochemistry, thermal and photochemical cyclisation, Cope and Claisen				
C04	rearrangement.				
CO5	Understand the Principles of stereochemistry, Configurational and conformational isomerism in acyclic and cyclic compounds,				
COS	stereogenicity, stereoselectivity, enantioselectivity and diastereoselectivity.				

10. Unit wise detailed content

Unit-1 Number of lectures = 08 Title of the unit: Reactive intermediates

Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and benzynes. Organic reaction mechanisms involving addition reactions with electrophilic, nucleophilic or radical species.

Unit-2 Number of lectures =08 Title of the unit: Reaction mechanisms and Name reactions

Organic reaction mechanisms; involving, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Neighbouring group participation, elimination: E2 vs E1, elimination vs substitution. Aldol condensation, Cannizzaro reaction, Hofmann, Beckmann and Fries rearrangements, Reimer-Tiemann reaction.

Unit-3 Number of lectures = 08 Title of the unit: Name reactions

Reformatsky and Grignard reactions, Michael addition, Friedel-Crafts reaction, Witting reaction, Oppenaur oxidation, Clemmensen reduction, Wolff-Kishner reduction, Meerwein-Ponndorf Verley reduction and birch reduction, hydroboration-oxidation, oxymercuration and deoxymercuration.

Unit-4 Number of lectures = 08 Title of the unit: Pericyclic, Electrocyclic, Cycloaddition reactions and Sigmatropic rearrangements

Pericyclic reactions: Introduction, π molecular orbital of ethylene and 1,3-butadiene. Electrocyclic reactions: Introduction, stereochemistry for the ring opening and ring closing electrocyclic reactions, thermal and photochemical cyclisation of (4n) and (4n+2) system. Cycloaddition reactions: Introduction, Thermal andphotochemical induced (2+2) and (4+2) cycloaddition reactions. Sigmatropic rearrangements: Introduction, classification, Cope and Claisen rearrangement..

Unit-5 Number of lectures = 08 Title of the unit: Principles of stereochemistry

Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity and diastereoselectivity.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Analyze and compare reactivity and stability of carbocations, carbanions, free radicals, carbenes, nitrenes and benzynes and addition reactions with electrophilic, nucleophilic or radicalspecies.		1	2	1	1	2	2	2
(0)	Comprehension of types of Organic reaction mechanisms involving elimination and substitution reactions with electrophilic, nucleophilic or radicalspecies.		1	2	1	2	2	2	2
соз	Able to evaluate different types of Name reactions and its mechanism.		1	2	1	2	2	2	2
CO4	KnowaboutPericyclicreactions,typesofPericyclicreactions,stereochemistry,ther maland photochemical cyclisation, Cope and Claisen rearrangement.		1	2	1	2	3	3	2
CO5	Understand the Principles of stereochemistry, Configurational and		1	2	1	2	2	2	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self-learning / E-learning component

- 1. https://nptel.ac.in/courses/104105104/
- https://nptel.ac.in/courses/104101005/
- 3. https://nptel.ac.in/courses/104103023/
- 4. https://nptel.ac.in/courses/104106077/
- https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod8.pdf

- 1. Advanced Organic Chemistry (Reactions, Mechanisms and Structure): Michel B. Smith and Jerry March, 4th Edition, Wiley Interscience Publication.
- 2. A Guidebook to Mechanism in Organic Chemistry by Peter Sykes, Six edition, Pearsonpublication.
- 3. Organic Chemistry by Robert Thornton Morrison, Robert Neilson Boyd, and Saibal Kanti Bhattacharjee, Seventh edition, Pearsonpublication.
- 4. Organic Chemistry by Jonathan Clayden, Nick Greeves, and Stuart Warren, Second edition, OxfordPublication.
- 5. Organic Chemistry by T.W.Graham Solomons, and Craig B. Fryhle, Ninth edition, WileyPublication.
- 6. Organic Chemistry by IL Finar, Volume 1 & 2, Sixth edition, PearsonPublication.

1. Name of the Department: Chemistry								
2. Course Name ENVIRONMENTAL CHEMISTRY				L	Т	Р		
3. Course Code	CH404	CH404			1	0		
4. Type of Course (use tick mark)				Core (√)	DE ()	FC ()		
5. Pre-requisite (if any)	BSc. with Chemistry	6. Frequency (use tick marks)	Even ()	Odd (√)	Either Sem ()	Every Sem ()		

Lectures = 30 Tutorials = 10 Practical = Nil

8. COURSE OBJECTIVES: The main objectives of this course is to study various types of pollutants, their sources, effects on living and non living species and related controlmeasures.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Evaluate different types of air pollutants, their harmful effects on living and non living species, their control measures; Study of Global Warming, Green House Effect and Ozone Layer Depletion.
CO2	Analyze the various factors of water quality assessment parameters, water pollutants and their sources and different types of waste water treatment processes.
CO3	Understand the importance of soil composition; Analyze various types of soil pollutants, their control and related standards.
CO4	Evaluate the various types of waste and their toxicity aspects and management.
CO5	Understand the sources of heavy metals and their health hazards

10. Unit wise detailed content

Unit-1 Number of lectures = 08 Title of the unit: Air pollutants

CO, CO2, ozone, CFC, & NOx, ozone depletion, global warming, Harmful effects of pollutants on living and non-living species, Analytical methods for monitoring air pollutants, international and national standards.

Unit-2 Number of lectures = 08 Title of the unit: Physical, chemical and biological water quality parameters

Physical, chemical and biological water quality parameters; their assessment; Water pollution; water pollutants; toxicity aspects; international and national standards; control; Water sampling techniques; Water treatment processes: aeration, solid purification, nanofiltration, chemical treatments, reverses osmosis, desalination. Waste water treatment processes. Water table maintenance & harvesting methods.

Unit-3 Number of lectures = 08 Title of the unit: Composition of soil

Inorganic and organic components, micro and macronutrients; Soil pollution; Fertilizers, insecticides, pesticides, plastics, toxic metals, dyes, surfactants; toxicity aspects; international and national standards; control.

Unit-4 Number of lectures = 08 Title of the unit: Industrial waste

Toxic aspects, management and disposal; Radioactive, municipal, agricultural and biomedical waste – toxicity hazards. Bhopal gas tragedy, Chernobyl disaster.

Unit-5 Number of lectures = 08 Title of the unit: Heavy metal in the environment

Sources of heavy metals; Poisoning of heavy metals in every bite; Mercury, Copper, Chromium, Cadmium, Cobalt, Lead, Arsenic.

11. CO-PO mapping

COs	Attributes		PO2	PO3	PO4	PO5	PO6	PO7	PO8
COI	Evaluate different types of air pollutants, their harmful effects on living and non living species, their control measures; Study of Global Warming, Green House Effect and Ozone Layer Depletion.	_	2	3	3	3	3	3	2
1 (())	Analyze the various factors of water quality assessment parameters, water pollutants and their sources and different types of waste water treatment processes.	3	2	3	3	3	3	3	2
соз	Understand the importance of soil composition; Analyze various types of soil pollutants their control and related standards.	3	1	3	3	3	3	3	3
CO4	Evaluate the various types of waste and their toxicity aspects and management.	3	2	3	3	2	3	3	2
CO5	Understand the sources of heavy metals and their health hazards.	3	2	3	3	3	3	3	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self-learning / E-learning component

- 1. https://nptel.ac.in/content/storage2/courses/105102089/air%20pollution%20(Civil)/Module-1/2.htm
- 2. https://www.youtube.com/watch?v=xw9FPlq0sJ8
- 3. https://www.youtube.com/watch?v=7kizaNBowrw
- 4. https://www.youtube.com/watch?v=dnQjYXXX17A
- 5. https://www.ukessays.com/essays/environmental-sciences/the-issue-of-heavy-metals-contamination-environmental-sciences-essay.php

- Environmental Chemistry Manahan, Stanley E, 2004, Taylor & FrancisLtd.
- Basic Concepts of Environmental Chemistry, Desley W. Connell, 1 edition, CRC-Press
- 3. Environmental Chemistry: A Global Perspective, Gary W. Vanloon Stephen J. Duffy , Oxford Univ Pr(Sd).
- 4. Introduction to Environmental Chemistry, Reid, Brian J. Blackwell ScienceLtd.
- Chemistry of the Environment, Thomas G. Spiro, William M. Stigliani, 2nd Edition, Prentice Hallpublication.

1.NameoftheDepartme	1.NameoftheDepartment:Chemistry									
2.CourseName MODERN ANALYTICAL TECHNIQUES					Т	Р				
3.CourseCode	CH405			3	1	0				
4.TypeofCourse(usetick	mark)			Core(√)	DE()	FC()				
5.Pre-requisite(ifany)	B.Sc. with Chemistry	6.Frequency(usetickmarks)	Even ()	Odd (V)	Either Sem ()	EverySem()				

Lectures=30 Tutorials=10 Practical=Nil

9. COURSE OF INCLINATION O

8. COURSE OBJECTIVES:The course aims at providing knowledge of principles and instrumentations of UV, IR, NMR, Atomic absorption spectroscopy and Mass spectrometry. Make the studentsable to interpret and assign spectroscopic data as a tool for structural elucidation.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
COURSE OUTCOME (CO)	
	Explain the effect of conjugation, solvent polarity and non-bonding electrons on a UV/Vis absorption spectrum. Evaluate the utility of UV/Vis
CO1	spectroscopy as a qualitative and quantitative method. Application of correct Woodward-Fieser rules to calculate wavelength of maximum
	absorption of organic compounds.
CO2	Comprehension of factors affecting vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, acids, anhydrides, interpret and
COZ	assign IR spectroscopic data as a tool for structural elucidation.
	Argue how nuclear spins are affected by a magnetic field, and be able to explain what happens when radiofrequency radiation is absorbed.
603	ldentify the number of proton and carbon NMR signals expected from a compound given its structure, splitting pattern in the proton NMR
CO3	spectrum of a compound given its structure, to assign peaks with the aid of a chart of chemical shifts from 1H and 13C NMR in an NMR spectrum
	to specific protons and carbons in a compound.
604	Become familiar with the mass spectrometric technique, different types of ionization techniques and sketch components of a mass spectrometer
CO4	and functions of each. Application of a mass spectrometric technique, distinguish fragmentation methods. Interpretation of mass spectra
CO5	Comprehension of principle, instrumentation, interferences and Sample preparation, Applications of AAS

10.Unitwisedetailedcontent

Unit-1 Number of lectures=08 Title of the unit: UV Spectroscopy

Wave-like propagation of light, absorption of electromagnetic radiation by organic molecules allowed and forbidden transitions, instrumentation, effect of solvents on electronic transitions, formation and designation of absorption bands, conjugated systems and transition energies, unsaturated carbonyl compounds, dienes and conjugated polyenes, Woodward – Fieser rules

Unit-2 Number of lectures= 08 Title of the unit: IR Spectroscopy

Introduction, absorption in the infrared region, theory of infrared spectroscopy, instrumentation, molecular vibrations, calculation of vibrational frequencies, factors affecting vibrational frequencies, characteristic absorptions in common classes of compounds, fingerprint region, characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ether, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, acids, anhydrides), applications of infrared spectroscopy.

Unit-3 Number of lectures=08 Title of the unit: NMR Spectroscopy

Introduction, theory of NMR spectroscopy, Instrumentation, chemical shift, equivalent and nonequivalent protons, spin-spin splitting, vicinal coupling and stereostructure, proton exchange reactions, nuclear overhauser effect (NOE), shift reagents, principle of C-13 NMR spectroscopy, Relaxation and dynamic processes - Spin lattice relaxation (T1) and Spin - spin relaxation (T2) measurements. Interpretation of NMR spectra of some representative compounds.

Unit-4 Number of lectures=08 Title of the unit: Mass Spectrometry

Introduction, basic theory, instrumentation, important useful terms in mass spectrometry, various modes of ionization (EI, CI, FD and FAB) and their applications, fragmentation patterns of various functional groups (alkanes, alkenes, alkynes, alcohols, ether, phenols, amines, ketones, aldehydes, esters, acids and anhydrides), molecular ion peak, metastable peak, Mclafferty rearrangements, Nitrogen rule.

Unit-5 Number of lectures=08 Title of the unit: Atomic Absorption

Spectrophotometry: Introduction, Principle, Instrumentation, Interferences- Spectral, Ionization, Physical and Refractory compound formation, Sample preparation, Internal standard and standard addition calibration and applications of AAS.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Explain the effect of conjugation, solvent polarity and non-bonding electrons on a UV/Vis absorption spectrum. Evaluate the utility of UV/Vis spectroscopy as a qualitative and quantitative method. Application of correct Woodward-Fieser rules to calculate wavelength of maximum absorption of organic compounds.		2	1	1	1	3	2	2
CO2	Comprehension of factors affecting vibrational, frequencies, vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, acids, anhydrides, interpret and assign IR spectroscopic data as a tool for structural elucidation.		2	1	1	2	3	2	2
соз	Argue how nuclear spins are affected by a magnetic field, and be able to explain what happens when radiofrequency radiation is absorbed. Identify the number of proton and carbon NMR signals expected from a compound given its structure, splitting pattern in the proton NMR spectrum of a compound given its structure, to assign peaks with the aid of a chart of chemical shifts from 1H and 13C NMR in an NMR spectrum to specific protons and carbons in a compound.	3	2	1	1	2	3	2	2
CO4	Become familiar with the mass spectrometric technique, different types of ionization techniques and sketch components of a mass spectrometer and functions of each. Application of a mass spectrometric technique, distinguish fragmentation methods. Interpretation of mass spectra		2	1	1	2	3	2	2
CO5	Comprehension of principle, instrumentation, interferences and Sample preparation, Applications of AAS	3	2	2	2	2	3	2	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Briefdescriptionofself-learning /E-learningcomponent

- 1. https://www.youtube.com/watch?v=tbUx-RaZS7M
- 2. https://nptel.ac.in/courses/103108139/
- 3. https://nptel.ac.in/courses/104108078/
- 4. https://nptel.ac.in/courses/102101050/
- 5. https://www.youtube.com/watch?v=xOKoVOMKHN8

- 1. Introduction to spectroscopy: Pavia, Lampman & Kriz, 3rd Ed, Books/cole.
- 2. Spectroscopic methods in organic chemistry: H. Williams and Ian fleminig, V EditionTata Mc Grawhills
- 3. Organic spectroscopy: William Kemp, 3rd Edition, Palgrave publications.
- 4. Fundamentals of Analytical chemistry, Douglas A. Skoog, Donald M. West, F. James Holler, 7th edition, Harcourt college publications.

1. Name of the Department: Cher	1. Name of the Department: Chemistry									
2. Course Name		L	T	Р						
3. Course Code	CH406			0	0	8				
4. Type of Course (use tick mark)				Core (√)	DE ()	FC ()				
5. Pre-requisite (if any)	B.Sc. with Chemistry	6. Frequency (use tick marks)	Even ()	Odd (v)	Either Sem ()	Every Sem ()				

8. COURSE OBJECTIVES: To develop practical and technical skills for better understanding of theory. To develop transferrable skills and enhancing communication skills of students.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES			
CO1	Perform accurate and precise analysis in the field of industrial chemistry.			
Able to examine water quality parameters (DO, COD, BOD and TDS) and argue about water quality.				
CO3	Explain the principles of chromatographic techniques, UV spectroscopy and viscosity measurements.			
CO4	Organize the records of all performed experiments in the manner which is required in laboratory.			
CO5	Analyze the importance of personal safety and care of equipments and chemicals.			

10. List of experiments

- 1. To determine the percentage composition of the given mixture consisting of two liquids A and B by viscositymethod.
- 2. To determine the relative surface tension of a liquid by Stalagnometer.
- 3. To determine the molecular weight of non-volatile solute cryscopically using water assolvent.
- 4. Selective extraction of iron metal cation from mixture of iron and magnesium for determination of their respectiveconcentration.
- 5. Paper chromatography separation of metalion.
- 6. Determination of copper and nickel in the givensample.
- 7. Separation of amino acid by thin layerchromatography.
- 8. Separation of mixture of carbohydrate by thin layerchromatography.
- 9. Separation of plant pigment from green leaves by columnchromatography.
- 10. Separation of mixture of dyes by columnchromatography.
- 11. Oxime and 2, 4 dinitrophenylhydrazone ofaldehyde/ketone.
- 12. Determination of Dissolved Oxygen (D.O.) in the given water sample.
- 13. Determination of Biological Oxygen Demand (B.O.D.) in the given water sample.
- 14. Determination of Chemical Oxygen Demand (C.O.D.) in the given water sample.
- 15. Determination of Conductivity of the water sample.
- 16. Determination of Total Dissolved Solid (T.D.S.) in the given water sample.
- 17. Determination of concentration of KMnO4 by UV-Visible Spectrophotometer.
- 18. Determination of iron content in the given water sample by UV-Visible Spectrophotometer.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Perform accurate and precise analysis in the field of industrial chemistry.	3	2	2	1	3	3	3	2
CO2	Able to examine water quality parameters (DO, COD, BOD and TDS) and argue about water quality	3	2	3	3	3	3	3	2
соз	Explain the principles of chromatographic techniques, UV spectroscopy and viscosity measurements.	3	2	2	2	3	3	3	2
CO4	Organize the records of all performed experiments in the manner which is required in laboratory.	3	3	2	2	3	1	3	2
CO5	Analyze the importance of personal safety and care of equipments and chemicals.	3	1	2	2	3	3	3	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self- learning / E-learning component

- 1. https://www.fondriest.com/environmental-measurements/measurements/measuring-water-quality/dissolved-oxygen-sensors-and-methods/
- http://www.nsec.ac.in/images/bes_Viscosity%20of%20Sugar%20Solution.pdf
- 3. https://www.youtube.com/watch?v=8wmQ_xWqZbo
- 4. https://www.youtube.com/watch?v=kXI_Om-2XYk
- 5. https://www.youtube.com/watch?v=YBeZZwNSeb8
- 6. https://www.youtube.com/watch?v=WBYop48A4gM
- 7. https://www.youtube.com/watch?v=V16USbjKZXw

- 1. Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, PragatiEdition.
- 2. Practical Organic Chemistry, A.I.Vogel.
- 3. Practical Physical Chemistry: B. Viswanathan and P.S.Raghavan.
- 4. Experimental Inorganic Chemistry –W.G.Palmer.

SEMESTER-II

1.Name of the Department: Chemistry							
2.Course Name	HEAVY AND FINE CHEMI	CALS		L	T	P	
3.CourseCode	CH407	CH407			1	0	
4.Type of Course(use tick n	nark)			Core(√)	DE()	FC()	
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency(use tick marks)	Even (√)	Odd ()	Either Sem ()	EverySem()	

7.Total Number of Lectures, Tutorials, Practicals

Lectures=30 Tutorials=10 Practical=Nil

8. COURSE OBJECTIVES: There are a very large number of Heavy and fine chemicals that are produced. The chemistry of producing these products requires a high degree of flexibility. Heavy and fine chemicals production is more expensive, generates more waste, and requires a higher research investment per kilogram than the manufacturing of other chemical products. Heavy and fine chemicals are pure, single chemical substances commercially produced with chemical reactions for highly specialized applications. Students will have a firm foundation on biocides, and specialty in chemicals, characterized for technical applications likes performanceenhancing additives, ceramics, refractories, cement, sugar, fertilizers, adhesives, special coatings, and photographic chemicals are common examples of specialty chemicals.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Students will have a firm foundation in the approaches to the development ceramics and refractories with commercial applications.
CO2	Students will have a firm foundation in have a basic understanding of how physical models explain chemical properties of glass and cements chemistry with commercial applications.
соз	Students will have a firm foundation in have a basic understanding of sugar, pulps and paper with flow sheet industrial manufacturing scheme.
('()4	Students have gained specialist knowledge in one or more of the following fields leather and fertilizers synthetic manufacturing schemes in industrial aspects.
CO5	Students will be able to understand the basic and advanced instrumental techniques used in adhesion.
10 Unitwisedetailedcont	ent

Title of the conity to describe Coule

Ollica	Nulliber of lectures-00	Title of the unit. Industrial Carbon
Lamn Black Manufacture	of Carbon, Manufacture of Granhite Carbon	Manufacture of Activated Carbon, Application of Industrial Carbon

Title of the unit: Industrial Catalysts Unit-2 Number of lectures= 08

Raney Nickel, Other Forms of Nickel, Palladium, Chromate, Vanadium and Platinum base catalyst, Aluminum Alkoxide, Titanium tetra chloride and Titanium dioxide.

Title of the unit: Soap & Detergent Industry Number of lectures=08

Soaps- Raw material, Manufacture of Soap, Toilet and Transparent soaps; Detergent-Classification of detergent, Anionic detergent, Cationic detergent, non-ionic detergents, Eco-friendly detergents, Manufacture of Shampoos.

Number of lectures=08 Title of the unit: Adhesives

Introduction, Process of bonding, Classification of adhesives, Preparation of adhesives like Animal glue, Starch adhesives, Synthetic resin adhesives, Cellulose and silicate adhesives, Applications of various adhesives.

Title of the unit: Chemical Explosives & Rocket Propellants Number of lectures=08

Types of industrial explosives; propellants, Rockets and missiles, Propellants for rockets, Toxic chemical weapons.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
1 (())	Students will have a firm foundation in the approaches to the development ceramics and refractories with commercial applications.	3	1	2	1	2	1	3	1
CO2	Students will have a firm foundation in have a basic understanding of how physical models explain chemical properties of glass and cements chemistry with commercial applications.	3	1	2	2	2	1	3	1
1 (()<	Students will have a firm foundation in have a basic understanding of sugar, pulps and paper with flow sheet industrial manufacturing scheme.	3	1	2	2	2	3	3	1
	Students have gained specialist knowledge in one or more of the following fields leather and fertilizers synthetic manufacturing schemes in industrial aspects.	3	1	2	2	2	1	3	1
CO5	Students will be able to understand the basic and advanced instrumental techniques used in adhesion.	3	1	2	2	2	3	3	1

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Briefdescriptionofself-learning /E-learning component

- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/104105103/lec57
- https://nptel.ac.in/content/storage2/courses/103103026/pdf/mod1.pdf
- https://ch402npc.wordpress.com/2018/03/30/nptel-lecture-introduction-to-soap-and-detergent-soap-making-and-recovery-of-glycerine/
- https://nptel.ac.in/content/storage2/nptel data3/html/mhrd/ict/text/113106087/lec58.pdf
- $https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101104019/lec37.pdf$

- Chemical process industries N.R Nerris shreve
- Chemical process principales: part 1 & II O.A / Hougen, K.M Watson RA Ragatz (CBS)
- Shrev's Chemical process Industries: 5th edition George T. Austin, Mc Graw Hill Book Co.
- Handbook of industrial chemistry: Volume I & II, KH Davis, FS Berner, CBS Publication.
- Plastic Additives Technology Hand Book: Himadri Panda, Engineers India Research Institute.

1.Name of the Department: Chemistry						
2.Course Name	MODERN INSTRUMENTA TECHNIQUES	AL METHODS OF ANALYSIS AND COMPUTATION	AL	L	Т	Р
3.Course Code	CH408			3	1	0
4.Type of Course (use tick mark)		Core(√)	DE()	FC()		
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency(usetickmarks)	Even (v)	Odd ()	Either Sem ()	EverySem()

Lectures=30 Tutorials=10 Practical=Nil

8. COURSE OBJECTIVES: This course is designed for postgraduate students of chemistry and industrial chemistry as a broad base introduction to analytical instrumentation techniques for the measurement of different chemical and physical properties of compounds and materials (composition, structure, etc.). After successfully completion or course, the student will able understand the working principal and applications of various modern analytical techniques as well as their operation.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
COI	Students would able to analyze the data by applying different type of statistical methods and would also understand the different between systematic and random errors.
CO2	Students evaluate fundamentals of electrochemistry and recognize the electrochemical processes. They got sound inside of different type of polarographic and voltammetric methods and their applications.
(() 3	Students would develop the concept of thermogravimetric analysis, differential analysis and differential scanning calorimetry methods and their applications.
(()4	Students would restate difference between different modes of chromatographic separation; apply knowledge of qualitative and quantitative analysis in various fields of chemical, pharmaceutical industry etc.
CO5	Students would able to illustrate how the computer and software are used in analytical laboratory and got springboard for further study.

10.Unitwisedetailedcontent

Unit-1 Number of lectures=08 Title of the unit: Errors and Evaluation

Definition of terms mean and median, precision, standard deviation, relative standard deviation, accuracy, absolute error, relative error, types of error in experimental data, determinate (systematic), indeterminate (random) and gross, sources of errors and their effects upon the analytical results, statistical evaluation of data-normal distribution, interval estimation, methods of least squares.

Unit-2 Number of lectures = 08 Title of the unit: Polarographic Techniques and Voltammetry

Polarography; Theory, Instrumentation and its working; Advantages of using dropping mercury electrode, Derivation of Ilkovic equation, Factors affecting the limiting current, The half wave potential, Criterion of reversibility, Applications of polarography, Square-wave polarography, Differential pulse polarography and cyclic voltammetry showing cyclic voltammetric excitation.

Unit-3 Number of lectures=08 Title of the unit: Thermal Methods

Thermogravimetric analysis, Instrumentation and Applications, Differential thermal analysis, General principles and applications with special reference to polymers;
Differential scanning calorimetry, Theory and different types of thermal scanning calorimetry, Instruments, Power compensated DSC instrument, Heat flux DSC instrument and modulated DSC instrument, DSC data analysis and applications.

Unit-4 Number of lectures=08 Title of the unit: Chromatography

Chromatographic mechanism, Classification of chromatography, principles, types, techniques of column chromatography and techniques of elution, thin layer chromatography, Gas chromatography, Applications of gel permeation and ion exchange chromatography. Introduction of HPLC, instrumentation, reverse phase HPLC, industrial applications of HPLC.

Unit-5 Number of lectures=08 Title of the unit: Computer application

Elements of computer system set-up, components of computer system, generation of computer and computer languages, personnel computers, PC-software packages, an introduction, disk operating system and windows, text processing software, introduction to a spreadsheet software, creation of spreadsheet software, creation of spreadsheet software, creation of spreadsheet applications, range, formulas, function, data base functions in spreadsheets, graphics on spreadsheet, presentation graphics, creating a presentation on a PC, data communications, networking: Lan & Wans, software system, software development process, file design & report design, Data files: types/organization, master & transaction file, relevance of database management systems and integration of applications, basic of data processing, flow charting, input-process- output analysis, report generation and label generation.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Students would able to analyze the data by applying different type of statistical methods and would also understand the different between systematic and random errors.	3	1	1	1	2	3	2	3
CO2	Students evaluate fundamentals of electrochemistry and recognize the electrochemical processes. They got sound inside of different type of polarographic and voltammetric methods and their applications.	3	1	1	2	1	3	2	3
CO3	Students would develop the concept of thermogravimetric analysis, differential analysis and differential scanning calorimetry methods and their applications.	3	1	1	2	1	3	2	2
CO4	Students would restate difference between different modes of chromatographic separation; apply knowledge of qualitative and quantitative analysis in various fields of chemical, pharmaceutical industry etc.	3	2	1	2	2	3	1	2
CO5	Students would able to illustrate how the computer and software are used in analytical laboratory and got springboard for further study.	3	2	1	2	3	3	1	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- 1. https://www.youtube.com/watch?v=HEgl0JyX80U
- https://www.youtube.com/watch?v=d1vv7ww8xtA
- https://www.youtube.com/watch?v=NzbDEjI8IKE
- 4. https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod5.pdf
- 5. https://www.youtube.com/watch?v=Cu_WeVyOaHI

- 1. Fundamentals of Analytical chemistry, Douglas A. Skoog, Donald M. West, F. James Holler, 7th edition, Harcourt college publications.
- 2. Principles and practice of analytical chemistry, F. W. Fifield, D. Kealey, 5th edition, Blackwell publication.
- 3. Analytical chemistry, Gary D. Christian, 6th edition, Wiley and sons publication.
- 4. Basic concepts of analytical chemistry, S. M. Kopper, New Age International Publishers.

1. Name of the Department: Chemistry							
2. Course Name	CHEMISTRY OF NATURAL PROD	UCTS		L	Т	Р	
3. Course Code	CH409			3	1	0	
4. Type of Course (use tick mark)			Core (√)	DE ()	FC ()		
5. Pre-requisite (ifany)	BSc. with Chemistry	6. Frequency (use tick marks)	Even (√)	Odd ()	Either Sem ()	Every Sem ()	

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

steroids, Synthesis and medicinal uses of; caffeine, theophylline, theobromine and Phytopharmaceuticals.

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Create the concept of secondary plant metabolites; terpenoids and its general methods of structure determination, isoprene rule;
(01	Stereochemistry, constitution and synthesis of Citral and Menthol.
CO2	Evaluate the general method of isolation, structure elucidation of alkaloid, specially based on nitrogen heterocyclic ring (Hofmann's
602	exhaustive methylation, Emde's degradation and Von Braun's method).
CO3	Analyze general reactions, constitution of glucose & fructose; Conformations of monosaccharide's. Stereochemistry and configuration of the
COS	nucleus of steroids.
CO4	Know about, classification, general method of preparation, properties and reactions of amino acids, general method of synthesis &
C04	determination of structure of polypeptides. Primary, secondary, tertiary & quaternary structure of proteins.
	Understand the Synthesis and medicinal uses of; caffeine, theophylline, theobromine.
CO5	Phytopharmaceuticals: Recent development and commercialization of plant derived natural products. Strategies for rapid identification of
	novel therapeutic leads from natural products.

10. Unit wise detailed content

Unit-1 Number of lectures = 08 Title of the unit: Terpenoids

Introduction, nomenclature, occurrence, general properties, classification, isolation and general methods of structure determination of terpenoids, isoprene rule; Stereochemistry,constitutionandsynthesisofCitralandMenthol.Carotenoids;Introduction,classification,isolationandgeneralmethodofstructuredeterminationof carotenoids.

Unit-2 Number of lectures = 08 Title of the unit: Alkalo
--

Introduction, nomenclature, classification, isolation, physiological action, occurrence and general method sofstructure elucidation of alkaloid, specially based on nitrogen heterocyclic ring (Hofmann's exhaustive methylation, Emde's degradation and Von Braun's method).

Unit-3 Number of lectures = 08 Title of the unit: Carbohydrates & Steroids

Introduction, classification, general reactions, constitution of glucose & fructose; Conformations of monosaccharide's. Steroids; Introduction, Diel's hydrocarbon, nomen clature, stereochemistry and configuration of the nucleus of steroids.

Unit-4 Number of lectures = 08 Title of the unit: Amino Acid, Peptides & Proteins

Introduction, nomenclature, classification, general method of preparation, properties and reactions of aminoacids. Introduction, occurrence, nomenclature, general method of synthesis & determination of structure of polypeptides. Primary, secondary, tertiary & quaternary structure of proteins.

Unit-5 Number of lectures = 08 Title of the unit: Phytopharmaceuticals

Synthesis and medicinal uses of; caffeine, theophylline, theobromine. Phytopharmaceuticals: Recent development and commercialization of plant derived natural products. Strategies for rapid identification of novel therapeutic leads from natural products.

11. CO-PO mapping

COs	Attributes PO1		PO2	РО3	PO4	PO5	PO6	PO7	PO 8
CO1	Create the concept of secondary plant metabolites; terpenoids and its general methods of structur determination, isoprene rule; Stereochemistry, constitution and synthesis of Citral and Menthol.	² 3	1	2	1	1	2	2	2
CO2	Evaluate the general method of isolation, structure elucidation of alkaloid, specially based o nitrogen heterocyclic ring (Hofmann's exhaustive methylation, Emde's degradation and Vo Braun'smethod).	¹ 3	1	2	1	2	2	2	2
соз	Analyze general reactions, constitution of glucose & fructose; Conformations of monosaccharide's Stereochemistry and configuration of the nucleus of steroids.	. 3	1	2	1	2	2	2	2
CO4	Know about, classification, general method of preparation, properties and reactions of amino acids general method of synthesis & determination of structure of polypeptides. Primary, secondary tertiary & quaternary structure of proteins.	, , 3	1	2	1	2	2	1	2
CO5	Understand the Synthesis and medicinal uses of; caffeine, theophylline, theobromine Phytopharmaceuticals: Recent development and commercialization of plant derived natural products. Strategies for rapid identification of novel therapeutic leads from natural products.		1	2	1	2	2	2	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self-learning / E-learning component

- 1. https://www.intechopen.com/books/terpenes-and-terpenoids/introductory-chapter-terpenes-and-terpenoids
- 2. https://www.intechopen.com/books/alkaloids-their-importance-in-nature-and-human-life/introductory-chapter-alkaloids
- 3. https://study.com/academy/lesson/steroids-structure-function.html
 - http://chemistry.creighton.edu/~jksoukup/lec5-aminoacidsSTUD.pdf
- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/127106009/lec4.pdf

- 1. Natural products: Chemistry and Biological Significance, J.Mann, R.S.Davidson, J.B.Hobbs, d.V.Banthrope and B.Harborne, Longman, Essex.
- Organic Chemistry, Vol 2, I. L. Finar, ELBS.
- 3. Chemistry, Biological and Phrmacological Properties of Medicinal Plants from the Americas, Ed. Kurt Hostettmann, M.P. Gupta Anda. Marston, Harwood Academic Publishers.
- 4. Chemistry of natural products, S.V.Bhat, B.A.Nagasampagi, M. Sivakumar.
- 5. Natural products from plants, Peter B. Kaufman, Leland J. Creke, Sara Warber, James A. Dupe, Harry L. Brielmann, CRCpublication
- 6. Organic chemistry of natural products, Vol. I and II, Gurdeep Chatwal, Himalya Publishing house.

1. Name of the Department: Chemistry CORROSION, LUBRICATION AND PAINT TECHNOLOGY 2.Course Name т 3.Course Code CH410 3 0 1 4. Type of Course (use tick mark) Core(√) DE() FC() B.Sc. with Chemistry 6.Frequency (use tick marks) Odd () 5.Pre-requisite (if any) Even (V) Either Sem () EverySem()

Practical=Nil

7.Total Number of Lectures, Tutorials, Practicals

8. COURSE OBJECTIVES: Main objective includes deep understanding of mechanism of corrosion, lubrication and action of lubricants, properties, constituents and

Tutorials=10

formulation of industrial paints, dyes and varnishes.

9. COURSE OUTCOMES (CO):

Lectures=30

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Explain the theories and mechanisms of corrosion. Describe, identify, analyze, and compare different corrosion types. Formulate industry
COI	relevant surface treatment methods for metals and alloys and corrosion protection strategies.
	Comprehension of the fundamentals of lubricants, lubrication and the lubricants operating requirements, relationship with the lubrication
CO2	requirements, as well as on the lubricants properties. Know how to recommend a lubricant and how to identify the causes of in-service issues
	and their solutions, defend the selection of an appropriate lubricant for perfect lubrication.
	Describe the ingredients and characteristics of paint. Evaluate the properties (adhesion, hardness, thickness, extent of cure, etc.) of the cured
CO3	film. Will be familiar with the composition of paints and coatings and modern technologies used in the preparation of paint/coatings
	formulations.
CO4	Comprehension of properties, constituents and formulations of pigments and dyes, differentiate dyes and pigments, their mechanisms of
604	action and applications.
CO5	Comprehensive understanding of properties, constituents, formulations and uses of varnishes. Develop an appropriate choice of coating
203	material (paint, pigment, dye or varnish) based on the nature of the substrate.

10.Unit wise detailed content

Unit-1 Number of lectures=08 Title of the unit: Corrosion

Introduction to corrosion, cause of corrosion, Theories of Corrosion, Mechanism of Electrochemical or Wet corrosion, dry corrosion, Factors influencing corrosion; Types of corrosion- Galvanic corrosion, Erosion Corrosion, Crevice corrosion, Pitting corrosion, Intergranular corrosion, Waterline Corrosion, Stress corrosion, Microbiological corrosion, Fatigue Corrosion, Fretting Corrosion; Protection from corrosion: Design and Material selection, Cathodic & Anodic protection, Corrosion inhibitors, Passivity, Galvanizing, Tinning and Electroplating, Pourbiax (Photential) diagram

Unit-2 Number of lectures=08 Title of the unit: Lubrication

Introduction, Friction and wear, Lubricants, Theories of Friction, Lubrication and wear, Mechanism of lubrication- Fluid or Hydrodynamic; lubrication, Boundary and extreme pressure lubrication; Classification of lubricants: Solid, Semisolid, Synthetic lubricants, lubricating oils - vegetable oils, animal oils, mineral oils, blended oils, lubricating emulsion, greases; Properties of lubricating oils, cutting fluids, selection of lubricants.

Unit-3 Number of lectures=08 Title of the unit: Paint Technology

Introduction to paint, ingredient and classification; Essential concepts of paint formulation, formulation of coating for masonry, steel work, aircrafts, automobile, distempers, etc., Failure of paint film; Testing and evaluation tests of liquids films, dry films, performance and weathering test, world standard specification for paints and materials.

Unit-4 Number of lectures=08 Title of the unit: Pigments and Dyes

Introduction to pigments, general and physical properties; Preparation, properties and uses of Black pigment (Carbon black), Yellow pigment (chrome yellow), Red pigment (Red lead), Green pigment (Chrome green), White pigment (ZnO), Blue pigment (Ultramarine blue); Properties of Coating, solvent plasticizers Dyes: Introduction, Classification, Methods of dyeing, Basic operations in dyeing, Study of Phenolphthalein, Methyl orange and Crystal violet. Difference between pigment and dye.

Unit-5 Number of lectures=08 Title of the unit: Varnishes

Introduction to varnishes, physical properties of varnishes; Constituents of varnishes, classification and formulation of industrial varnishes; Characteristics of good varnish; Applications of varnish.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Explain the theories and mechanisms of corrosion. Describe, identify, analyze, and compare different corrosion types. Formulate industry relevant surface treatment methods for metals and alloys and corrosion protection strategies.		2	2	2	1	2	2	2
CO2	Comprehension of the fundamentals of lubricants, lubrication and the lubricants operating requirements, relationship with the lubrication requirements, as well as on the lubricants properties. Know how to recommend a lubricant and how to identify the causes of in-service issues and their solutions, defend the selection of an appropriate lubricant for perfect lubrication.		2	2	2	2	2	1	2
	Describe the ingredients and characteristics of paint. Evaluate the properties (adhesion, hardness, thickness, extent of cure, etc.) of the cured film. Will be familiar with the composition of paints and coatings and modern technologies used in the preparation of paint/coatings formulations.		2	2	1	2	2	1	2
CO4	Comprehension of properties, constituents and formulations of pigments and dyes, differentiate dyes and pigments, their mechanisms of action and applications.	3	2	1	2	2	1	2	2
CO5	Comprehensive understanding of properties, constituents, formulations and uses of varnishes. Develop an appropriate choice of coating material (paint, pigment, dye or varnish) based on the nature of the substrate.	3	2	1	2	2	1	1	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- https://www.youtube.com/watch?v=50xdXq91TV0
- . https://www.youtube.com/watch?v=WQ8v-UcACTE
- 3. https://www.youtube.com/watch?v=Keff0zA7Zq8
- 4. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/116102052/lec3.pd
- 5. https://www.oreilly.com/library/view/basic-civil-engineering/9788131729885/xhtml/chapter010.xhtml

- 1. Friction and Lubrication of Solids Bowden, F.P. and D. Tabor Part I & II Clare-don Press, Oxford (1954)
- . An Introduction to Metallic Corrosion 3rd Ed., Ulick R. Evans, Edward Arnold Ltd. And ASM (1981)
- 3. Corrosion and Corrosion Control 3rd Ed., H.H. Uhling & R.Winston Revie, Wiley- Inter Sciences, New York (1985)
- 4. Corrosion Engineering, 3rd, Ed., M.G. Fontana, McGraw Hill, New York (1986).

1. Name of the Department: Che	1. Name of the Department: Chemistry												
2. Course Name	PHARMACEUTICAL CHEM		L	T	Р								
3. Course Code	CH411			3	1	0							
4. Type of Course (use tick mark)			Core (√)	DE ()	FC ()								
5. Pre-requisite (if any)	B.Sc. with Chemistry	Odd ()	Either Sem ()	Every Sem ()									

Lectures = 30 Tutorials = 10 Practical = Nil

8.COURSEOBJECTIVES:StudentstounderstandtheSynthesis,usesandmodeofactionofAntibioticsandSulphaDrugs,Antipyreticsanalgesics,Anestheticdrugs, cardiovascular drugs, Drug Design.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Evaluate the concept of antibiotics. Classification, synthesis, mode of action and uses of different types of antibiotics.
CO2	Analyze classification, structure, synthesis and uses of analogues of p-aminophenol, Salicylic acid, Pyrazolones and Pyrazolodinones.
CO3	Create the basic knowledge, Classification, Synthesis and mode of action of Inhalation, Intravenous anesthetics and Basal anesthetics.
('()4	Analyze classes, structure, synthesis and mode of action of cardiac glycosides Digoxin, and Digitoxin; Anti-hypertensive and hypotensive drugs, Antiarrhythmic agents.
CO5	Comprehension of analogues and prodrugs; concept of lead; factors governing drug design; rational approach to drug design; revolutions in drug discovery, research and development strategies.

10. Unit wise detailed content

Unit-1 Number of lectures = 08 Title of the unit: Antibiotics and Sulpha Drugs

Introduction and classification of antibiotics; beta lactam antibiotics: penicillins, its structure and mode of action, synthesis of Penicillin-v. Cephalosporins: classification, structure and mode of action of first, second, third and fourth generation cephalosporins. Aminoglycoside antibiotics: structure and mode of action of Streptomycin, Neomycin and Kenamycin. Chloramphenicol: its structure, synthesis and mode of action. Synthesis and uses of sulphathiazole, sulphaguanidine, sulphadiazine, sulphamethazine and sulphaacetamide.

Unit-2 Number of lectures = 08 Title of the unit: Antipyretics analge	esics
---	-------

Introduction, classification, structure, synthes is and uses of analogues of paminophenol: Paracetamol, Phenacetinand antifebrin; Salicylicacidanalogues: Aspirin, Salol, Salsalate and benorilate; Pyrazolones and Pyrazolodinones analogues: Antipyrine, Aminopyrin, Dipyrone, Phenylbutazone, Oxyphenbutazone and Sulphinpyrazone

Unit-3 Number of lectures = 08 Title of the unit: Anesthetic drugs

Introduction, Classification, Synthesis and mode of action of; Inhalation anesthetics: Vinyl ether, Cyclopropane and Fluoroxene; Intravenous anesthetics: Thiopental Sodium&MethohexitalSodium;Basalanesthetics:Procaninehydrochloride,Tetracainehydrochloride,Butacainehydrochloride,Benzaminehydrochlorideand Pyrocanine hydrochloride.

Unit-4 Number of lectures = 08 Title of the unit: Cardiovascular drugs

Introduction, classification, structure and mode of action of cardiac glycosides Digoxin, and Digitoxin; Anti-hypertensive and hypotensive drugs: structure, synthesis and modeofactionofLosartan, Clonidine, Hydralazine, Methyldopaand Diazoxide; Antiarrhythmicagents: structure, synthesis and modeofaction of Diisopyramide,

Procainamide, Propranolol, Beritylium Tosilate; Vasopressor drugs: structure, synthesis and mode of action of Isoxsupurine, Prenyl amine.

Unit-5 Number of lectures = 08 Title of the unit: Drug Design

Introduction; analogues and prodrugs; concept of lead; factors governing drug design; rational approach to drug design; Drug design: the method of variation; Drug design and development: preamble, revolutions in drug discovery, research and development strategies.

11. CO-PO mapping

COs	Attributes	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8
COI	Evaluate the concept of antibiotics. Classification, synthesis, mode of action and uses of different types of antibiotics.	3	1	2	2	2	3	2	2
COZ	Analyze classification, structure, synthesis and uses of analogues of p-aminophenol, Salicylic acid, Pyrazolones and Pyrazolodinones.	3	1	2	2	2	3	2	2
CO3	Create the basic knowledge, Classification, Synthesis and mode of action of Inhalation, Intravenous anesthetics and Basal anesthetics.	3	1	2	2	2	3	2	2
CO4	Analyze classes, structure, synthesis and mode of action of cardiac glycosides Digoxin, and Digitoxin; Anti-hypertensive and hypotensive drugs, Antiarrhythmic agents.	3	1	2	2	2	3	3	2
CO5	Comprehension of analogues and prodrugs; concept of lead; factors governing drug design; rational approach to drug design; revolutions in drug discovery, research and development strategies.	3	1	2	2	2	3	2	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self-learning / E-learning component

- 1. https://www.youtube.com/watch?v=NGwP471sehI
- 2. https://www.youtube.com/watch?v=Ac6yMWno6yk
- 3. https://www.youtube.com/watch?v=-UD0y4jdKuc
- 4. http://nptel.ac.in/courses/104101006/downloads/lecture-notes/mod10/lec3.pdf
- . https://www.youtube.com/watch?v=2vLDzMSo2Tc&list=PLg8Xhs-vwgxLSKf7XRqynIrY6aGHseZry&index=43

- 1. Burger's Medicinal Chemistry: Mangrove E. Wolff, 4th Edition, John Wiley and Sons
- 2. Medicinal Chemistry by Asutosh Kar , New Age International publication
- 3. Principles of Medicinal Chemistry: W.O.Foye.
- 4. The Pharmacological Basis of Theraputics : L.S. Goodman and A.Gilman
- 5. Wilson's Medicinal Chemistry The Organic Chemistry of Drug Synthesis: D. Lednicer and L.A.Mitscher

1. Name of the Department: Chemistry											
2. Course Name INDUSTRIAL CHEMISTRY PRACTICAL-2 L T P											
3. Course Code	CH412		0	0	8						
4. Type of Course (use tick ma	ark)		Core (√)	DE ()	FC ()						
5. Pre-requisite (if any)	B.Sc. with Chemistry 6. Frequency (use tick marks)	Even (v)	Odd ()	Either Sem ()	Every Sem ()						

8. COURSE OBJECTIVES: Imparting of scientific methodology, Development of practical/technical skills, The ability to work effectively and safely in a laboratory environment, Developing transferable skills (team work, time management), Enhancing communication skill.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Understand the basic analytical and technical skills and technical skills to work effectively in the various fields of chemistry
CO2	Able to detect adulterants in the given food sample.
соз	Know the determination of strength of acid, optical rotation of cane sugar. Saponification value of oil, acid value of oil. Isolation of lycopene, nicotine, lactose and casein, lecithin Caffeine from tea. Preparation of Acetanilide, Aspirin, Paracetamol.
CO4	Remember to keep records of all performed experiments in the manner, which is required in laboratory.
CO5	Analyze the importance of personal safety and care of equipment's and chemicals.

10. List of experiments

- 1. Determination of strength of acid against strong base by pH meter.
- 2. Determination of optical rotation of cane sugar.
- 3. Determination of saponification value in the given oil.
- Determination of acid value in the given oil.
- 5. Detection of adulterants in the given food sample.
- 6. Estimation of amino acid.
- Estimation of Glucose.
- 8. Estimation of aspirin present in the given drug.
- 9. Separation of essential oils by soxhlet extractor.
- 10. Isolation of Lycopene from tomato.
- 11. Isolation of Nicotine from tobacco.
- 12. Isolation of Lactose and caesin from milk.
- 13. Isolation of lecithin from egg yolk.
- 14. Isolation of Caffeine from tea.
- 15. Preparation of Acetanilide.
- 16. Preparation of Aspirin.
- 17. Preparation of Magnesium bisilicate (antacid).
- 18. Preparation of Paracetamol.

11. CO-PO mapping

11. 00-10	11. CO-T O Mapping									
COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	Understand the basic analytical and technical skills and technical skills to work effectively in the various fields of chemistry	3	1	1	1	1	2	1	2	
CO2	Able to detect adulterants in the given food sample.	3	1	3	1	2	3	3	2	
CO3	Know the determination of strength of acid, optical rotation of cane sugar. Saponification value of oil, acid value of oil. Isolation of lycopene, nicotine, lactose and casein, lecithin Caffeine from tea. Preparation of Acetanilide, Aspirin, Paracetamol.	3	1	1	1	2	2	1	2	
CO4	Remember to keep records of all performed experiments in the manner, which is required in laboratory.	3	1	1	1	2	2			
CO5	Analyze the importance of personal safety and care of equipment's and chemicals.	3	1	1	1	2	2	1	3	

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self- learning / E-learning component

- https://www.youtube.com/watch?v=MTsn1-ToKqQ
- 2. http://www.bellevuecollege.edu/wp-content/uploads/sites/140/2014/06/aspirin_tablets_titration.pdf
- 3. https://www.frontiersin.org/articles/10.3389/fonc.2015.00196/full
- 4. https://www.youtube.com/watch?v=1tmqUVSVPo4
- 5. https://www.youtube.com/watch?v=KZ35K05SA7g
- 6. https://www.youtube.com/watch?v=249FNCSR-Cw
- 7. https://www.youtube.com/watch?v=208h9utwKA4

- 1. Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, PragatiEdition.
- 2. Practical Organic Chemistry A.I.Vogel.
- 3. Practical Physical Chemistry: B. Viswanathan and P.S.Raghavan.
- 4. Experimental Inorganic Chemistry –W.G.Palmer.

Semester-III

1.Name of the Department:	1.Name of the Department: Chemistry											
2.Course Name POLYMER CHEMISTRY L T P												
3.Course Code	CH501		3	1	0							
4.Type o f Course (use tick m	ark)		Core (√)	DE ()	FC ()							
5.Pre-requisite (if any)	B.Sc. with Chemistry 6.Frequency (use tick marks)	Even ()	Odd (v)	Either Sem ()	Every Sem()							

7.Total Number of Lectures, Tutorials, Practicals

Lectures=30 Tutorials=10 Practical=Nil

8. COURSE OBJECTIVES: The main objective of this course is to study the mechanism of polymer preparation, their processing techniques, commercial uses, identification techniques and preparation process of vinyl polymers, polyamides, polyesters, synthetic rubbers, cellulose and copolymerresins

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

,	F ,
COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Evaluate the different mechanisms of polymer preparation and their classification.
CO2	Understand the colligative properties of Polymers and evaluate the identification techniques such as IR, NMR of Polymers.
CO3	Analyze various processing techniques of Polymer.
CO4	Understand the preparation process of vinyl polymers, polyamide, polyesters and rubber.
CO5	Understand the Vulcanization of Rubber and synthesis of Synthetic Rubber and various other copolymer resins.

10.Unitwisedetailedcontent

Unit-1 Number of I lectures=08 Title of the unit: Polymer & Polymerization

General introduction of polymers; Classification of polymers; Addition polymerization, Condensation polymerization, Co polymerization, Ring opening polymerization their mechanism and kinetics; Kinetic length.

Unit-2 Number of lectures=08 Title of the unit: End group analysis

Colligative property measurement, Solution viscosity & molecular size, IR, and NMR of polymers; Viscous flow; Kinetic theory of rubber elasticity; Visco elasticity, Mechanical properties of polymers.

Unit-3 Number of lectures=08 Title of the unit: Polymer processing Techniques

Polymer processing & its classification, extrusion, calendering, film blowing, injection moulding, blow moulding, vacuum forming and compression moulding, fibre spinning, films and laminates.

Unit-4 Number of lectures=08 Title of the unit: Some Commercially important Polymers

Nylons, polyester fibers (Terylene, Dacron), vinyl fibers, rubber, copolymers of butadiene and acrylonitrile, polyethylene; Plastics, resins and lacquers, cellulose acetate, cellulose nitrate, cellulose mixed esters and cellulose ethers, polytetrafluoroethylene (Teflon).

Unit-5 Number of lectures=08 Title of the unit: Vulcanization of rubber

Synthetic rubber; buna rubber; phenol-formaldehyde resins, ion exchange resins, urea-formaldehyde resins, melamine formaldehyde resins and epoxy resins.

11. CO-PO mapping

COs	Attributes F		PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Evaluate the different mechanisms of polymer preparation and their classification.	3	2	1	1	2	2	2	2
1 (1)/	Understand the colligative properties of Polymers and evaluate the identification techniques such as IR, NMR of Polymers.	3	1	1	1	1	2	1	2
CO3	Analyze various processing techniques of Polymer.	3	1	2	2	1	3	2	3
CO4	Understand the preparation process of vinyl polymers, polyamide, polyesters and rubber.	3	2	3	2	1	3	2	3
1 CO5	Understand the Vulcanization of Rubber and synthesis of Synthetic Rubber and various other copolymer resins.	3	2	2	2	1	3	2	3

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- 1. https://nptel.ac.in/content/storage2/courses/103103029/pdf/mod7.pdf
- 2. https://www.e-education.psu.edu/matse202/node/712
- 3. http://eacharya.inflibnet.ac.in/data-server/eacharya documents/55daa452e41301c73a2cb5ac_INFIEP_208/806/ET/lec%20-3.pdf
- 4. https://nptel.ac.in/content/storage2/courses/103103029/pdf/mod7.pdf
- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/113105028/lec20.pdf

- 1. Principles of polymer chemistry: A Ravve, 2nd Edition, Kluwer Academic publications
- Polymer Science and technology: Joll. R. Fried, Prentice Hall.
- 3. Principles of polymer systems: F. Rodriguez, Claude Cohen, C.K. Ober, L.A. Archer, Vth Edition, Taylor & Francis
- 4. Introduction to polymers: R.J. Young and P.A. Lovell, 2nd Edition, Netron Thornes publications
- Polymer chemistry an introduction, Malcolm D. Stevens, Oxford University press.

1.Name of the Department:	1.Name of the Department: Chemistry											
2.Course Name	PETROLEUM CHEMIST	L	T	P								
3.Course Code	CH502			3	1	0						
4.Type of Course (use tick ma	ark)			Core(√)	DE()	FC()						
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency (use tick marks)	Even ()	Odd (V)	Either Sem ()	EverySem()						

Lectures=30 Tutorials=10 Practical=Nil

8. COURSE OBJECTIVES: To introduce the basic fundamental knowledge of petrochemicals: origin, composition, exploration and desalting of petrochemicals along with essentials, profile and methods of distillation accompanied by processing and treatments of petroleum. Also, introduce refining and cracking processes of petroleum, lubricating oils, additives and naphtha cracking with the introduction of quality procedures like ASTM/BIS/IP/DIN.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Introduction of origin, composition, exploration and desalting of petrochemicals create a better understanding of petroleum.
CO2	Knowledge of the fundamentals, profile and methods of distillation along with processing and treatments of petroleum provide the extra strength to analyzed crude oil.
соз	Overview, classification, stabilization, absorption and adsorption purification of hydrocarbons and fuels another significant parameter to evaluate the quality of petroleum.
CO4	Outline of refining and cracking processes of petroleum are the valuable methods that can provide the fundamentals of handling are well as an understanding of chemical changes in the petroleum.
CO5	Teach to remember lubricating oils, additives and naphtha cracking along with the introduction of quality procedures like ASTM/BIS/IP/DIN.

10.Unitwisedetailedcontent

Unit-1 Number of lectures=08 Title of the unit: Introduction to Petroleum

ntroduction, origin of petroleum in nature, carbide theory, anglers theory, modern views; Petroleum exploration in India and their resources; crude oil, natural gas; composition of petroleum; preparation of crude for processing; destruction of natural emulsion of petroleum crude, desalting.

Unit-2 Number of lectures=08 Title of the unit: Methods of Petroleum distillation

Fundamentals of preliminary distillation; Methods of petroleum distillation; Distillation of crude petroleum; Treatment of the residual liquid; Processing of liquid fuels such as petroleum and petroleum products; Product profile of refinery distillations and their specification.

Unit-3 Number of lectures=08 Title of the unit: Classification of Liquefied hydrocarbon gases and fuels

Introduction and classification of Liquefied hydrocarbon gases and fuels; Fuels for jet engines and gas turbine engines; Dye intermediates, Lacquers, Solvent and thinnerAbsorptive and adsorptive purification, Sulphuric acid purification, alkaline purification, Hydrofining, New method of purification, demercaptanisation, Stabilization.

Unit-4 Number of lectures=08 Title of the unit: Petroleum Refining and Cracking

Introduction of petroleum refining, cracking, application of cracking, synthetic petrol, Bergius process, Fischer-Tropsh process, octane number, flash point, determination of flash point, synthesis of pure chemicals from petrochemicals.

Unit-5 Number of lectures=08 Title of the unit: Lubricating oils and additives

Lubricating oils and additives, fuel quality aspects and environment aspects, Case study of Naphtha crakers and their product profile, introduction to quality procedures like ASTM/BIS/IP/DIN.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Introduction of origin, composition, exploration and desalting of petrochemicals create a better	1	1	1	2	3	3		2
	understanding of petroleum.								
CO2	Knowledge of the fundamentals, profile and methods of distillation along with processing and	-				2			
COZ	treatments of petroleum provide the extra strength to analyzed crude oil.	4	•	•	-	n	2	•	•
соз	Overview, classification, stabilization, absorption and adsorption purification of hydrocarbons and	,				2	2		
COS	fuels another significant parameter to evaluate the quality of petroleum.	4	•	•	-	n	2	•	•
CO4	Outline of refining and cracking processes of petroleum are the valuable methods that can provide the fundamentals of handling are well as an understanding of chemical changes in the petroleum.	2	_	2	_	2	2	_	2
CO4	the fundamentals of handling are well as an understanding of chemical changes in the petroleum.		_		_	,			
COS	Teach to remember lubricating oils, additives and naphtha cracking along with the introduction of	1	_	2	2	2	2	_	2
103	quality procedures like ASTM/BIS/IP/DIN.	-	_			3		_	

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- https://byjus.com/chemistry/petroleum/
- 2. https://nptel.ac.in/content/storage2/courses/103103029/pdf/mod2.pdf
- 3. https://www.shell.com/energy-and-innovation/natural-gas/liquefied-natural-gas-lng.html
- 4. https://www.e-education.psu.edu/fsc432/content/lesson-7-overview
- 5. https://www.stle.org/images/pdf/STLE_ORG/BOK/LS/Additives/The%20Chemistry%20and%20Function%20of%20Lubricant%20Additives.pdf

- 1. Fuel technology by Wilfrid Francis and M.C.Peters. Plenum press (1981).
- 2. Fuel Science and Technology Handbook, James G. Speight. Marcel Dekker (1990)
- 3. Fuels and Combustion, Samir Sarkar, 2nd.Edition, Orient Longmans (1990) Mumbai.
- 4. Modern Petroleum refining process, B.K. Bharbana Rao, Oxford and IBH publication
- 5. Petroleum chemistry and refining , James g. Speight, Taylor and francis publishers
- 6. Fuel technology by Wilfrid Francis and M.C.Peters. Plenum press (1981).
- 7. Fuel Science and Technology Handbook, James G. Speight. Marcel Dekker (1990)
- 8. Fuels and Combustion, Samir Sarkar, 2nd.Edition,Orient Longmans (1990) Mumbai.
- 9. Petroleum refining, William L. Leffler, Pennwell publication

1.Name of the Department: Chemistry								
2.Course Name	AGRO CHEMISTRY	L	T	P				
3.Course Code	CH503		3	1	0			
4.Type of Course (use tick ma	ark)		Core(√)	DE()	FC()			
5.Pre-requisite (if any)	B.Sc. with Chemistry 6.Frequency (use tick marks)	Even ()	Odd (v)	Either Sem ()	Every Sem()			

Lectures=30 Tutorials=10 Practical=Nil

8. COURSE OBJECTIVES: Students will be able to understand of Synthesis, structure activity relationship, formulation of Organophosphates, Organochlorines and Carbamates Insecticides and their mode of actions, Classification and chemistry of Fungicides Synthesis and uses of some aromatic acid derivatives as herbicides concepts of QSAR and CAMM in pesticide design

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Remember theconcept of pesticides, Classification of Insecticides, synthesis, structure activity relationship, mode of action, uses and
COI	formulation of Organochlorines and Carbamates Insecticides.
CO2	Analyze and compare Organophosphate over Organochlorines Insecticides, Synthesis, and structure activity relationship, mode of
COZ	action, uses and formulation of Organophosphate.
CO3	Create the basic knowledge of chemistry of fungicides and also able to evaluate different classes like Inorganic sulfur,
COS	dithiocarbamates, antibiotics, quinones, benzimidazole.
CO4	Analyze and compare the applications and commercial synthetic methodologies of Aromatic Acid compounds, N, N-dimethylureas,
C04	anilides and new highly potent sulphonyl urea derivatives as herbicides.
CO5	Comprehension of Quantitative structure–activity relationship (QSAR), Computer-Assisted Molecular Modeling (CAMM) in pesticide
	design, rodenticides and Molluscicides.
40.11 11 1 1 1 1	

10.Unit wise detailed content

Unit-1 Number of lectures=08 Title of the unit: Organochlorines and Carbamates Insecticides

General Introduction and concept of pesticides, Classification of Insecticides, synthesis, structure activity relationship, mode of action, uses and formulation of following insecticides: Organochlorines: DDT, HCH (Lindane), Heptachlor and endosulfan; Carbamates: Phenyl carbamates (carbaryl and carbofuran), N-Methylcarbamates (Zectran, Isolan), Oxime carbamates (Oxamil, Methyomyl).

Unit-2 Number of lectures=08 Title of the unit: Organophosphorous Insecticides

Synthesis, structure activity relationship, mode of action, uses and formulation of following insecticides: Organophosphorous: methyparathion, malathion, phosphamidon, dichlorvos, phosdrin, monocrotophos, dicrotophos, fenitrothion, fenthion, chlorpyriphos & phosalone.

Unit-3 Number of lectures=08 Title of the unit: Fungicides

Classification and chemistry of following fungicides: Inorganic; sulfur, copper-oxychloride and organomercurials. Dithiocarbamates; zirum, thirum and zineb. Quinones; chloranil. Antibiotics; kasugamycin and griseofulvin. Benzimidazole; carbendazim, thiabendazole.

Unit-4 Number of lectures=08 Title of the unit :Herbicides

Synthesis and uses of following herbicides: Aromatic Acid compounds; 2, 4-D, 2, 4, 5-T. N, N-dimethylureas; monuron and diuron Anilides; alachlor and butachlor, New high potency herbicides like sulfonylureas

Unit-5 Number of lectures=08 Title of the unit: Rodenticides, Molluscicides, QSAR and CAMM

Synthesis and uses of following miscellaneous chemicals; Rodenticides: Hydroxycoumarin: Dicoumarin, Warfarin Zinc-phosphide and bromodiolone; Molluscides: metaldehyde and carbamates; Quantitative Structure Activity Relationship (QSAR) & Computer Assisted Molecular Modelling (CAMM) in Pesticide Design

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Remember theconcept of pesticides, Classification of Insecticides, synthesis, structure activity relationship, mode of action, uses and formulation of Organochlorines and Carbamates Insecticides.	3	1	2	2	2	3	2	2
CO2	Analyze and compare Organophosphate over Organochlorines Insecticides, Synthesis, and structure activity relationship, mode of action, uses and formulation of Organophosphate.	3	1	2	2	2	3	2	2
	Create the basic knowledge of chemistry of fungicides and also able to evaluate different classes like Inorganic sulfur, dithiocarbamates, antibiotics, quinones, benzimidazole.	3	1	2	2	2	3	2	2
CO4	Analyze and compare the applications and commercial synthetic methodologies of Aromatic Acid compounds, N, N-dimethylureas, anilides and new highly potent sulphonyl urea derivatives as herbicides.	3	1	2	2	2	3	3	2
CO5	Comprehension of Quantitative structure–activity relationship (QSAR), Computer-Assisted Molecular Modeling (CAMM) in pesticide design, rodenticides and Molluscicides.	3	1	2	2	2	3	2	2

${\bf 3}\ Strong\ contribution, {\bf 2}\ Average\ contribution\ , {\bf 1}\ Low\ contribution$

12.Brief description of self-learning /E-learning component

- 1. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103107081/lec39.pdf
- https://www.cdc.gov/biomonitoring/pdf/OP-DPM_FactSheet.pdf
- 3. https://nptel.ac.in/content/storage2/courses/126104003/LectureNotes/Week-5 Chemicals IPM history classification lect3.pdf
- https://nptel.ac.in/content/storage2/courses/104108056/module9/PNR%20lecture%2036.pdf
- 5. https://www.ncbi.nlm.nih.gov/pubmed/8941939

- 1. Fuel technology by Wilfrid Francis and M.C.Peters. Plenum press (1981).
- 2. Fuel Science and Technology Handbook, James G. Speight. Marcel Dekker (1990)
- 3. Fuels and Combustion, Samir Sarkar, 2nd.Edition, Orient Longmans (1990) Mumbai.
- 4. Modern Petroleum refining process, B.K. Bharbana Rao, Oxford and IBH publication
- 5. Petroleum chemistry and refining , James g. Speight, Taylor and francis publishers
- 6. Fuel technology by Wilfrid Francis and M.C.Peters. Plenum press (1981).
- 7. Fuel Science and Technology Handbook, James G. Speight. Marcel Dekker (1990)
- 8. Fuels and Combustion, Samir Sarkar, 2nd.Edition, Orient Longmans (1990) Mumbai.
- 9. Petroleum refining, William L. Leffler, Pennwell publication

1.Name of the Department: Chemistry									
2.Course Name COSMETICS AND PERFUMERY L T P									
3.Course Code	CH504			3	1	0			
4.Type of Course (use tick m	ark)	Core (√)	DE()	FC ()					
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency(use tick marks)	Even ()	Odd (√)	Either Sem ()	Every Sem()			

Lectures=30 Tutorials=10 Practical=Nil

8. COURSE OBJECTIVES: Students to understand the Chemical Nature and Utility of Emulsifiers, lipid components, humectants, and fragrances. Cosmetic Raw Materials, Face power and lipstick, Cosmetic for Skin, Hair products, Herbal Cosmetics.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Evaluate the concept of Chemical Nature and Utility of Emulsifiers, lipid components, humectants, and fragrances.
CO2	Analyze Chemical Nature and Utility of colours (dyes and pigments), preservatives and antioxidants in cosmetics. Technical requirements,
	basic components and formulation of face powders and lipstick.
CO3	Create the basic knowledge of general skin problems, purpose, types and key ingredients of skin cleansing, skin toners, moisturizers,
COS	nourishing, protective, sunscreen and bleaching products. Antiperspirants and deodorants.
CO4	Analyze general hair problems and scalp disorders. Shampoos (requirements, classification, ingredients and special additives for hair condition
C04	and scalp health). Hair colourants and Chemical depilatories.
605	Comprehension of the plant materials used in cosmetics. Use of herbs in different forms. Herbal cosmetics for skin and Herbal Cosmetics for
CO5	hair.

10.Unitwisedetailedcontent

Unit-1 Number of lectures=08 Title of the unit: Cosmetic Raw Materials

Study of Chemical Nature and Utility of Emulsifiers (natural, synthetic and finely dispersed solid), lipid components (oils, fats, waxes), humectants (inorganic, organic and organo-metallic) and perfumes / fragrances (plant oils, animal secretions, chemical substances).

Unit-2 Number of lectures=08 Title of the unit: Cosmetic Raw Materials, Face power and lipstick

Study of Chemical Nature and Utility of colours (dyes and pigments), preservatives and antioxidants in cosmetics. Technical requirements, basic components and formulation of face powders and lipstick.

Unit-3 Number of lectures=08 Title of the unit: Cosmetic for Skin

Introduction to general skin problems, purpose, types and key ingredients of skin cleansing, skin toners, moisturizers, nourishing, protective (barrier), sunscreen and bleaching products. Antiperspirants and deodorants (mechanism, ingredients and formulation).

Unit-4 Number of lectures=08 Title of the unit: Hair products

Introduction to general hair problems and scalp disorders. Shampoos (requirements, classification, ingredients and special additives for hair condition and scalp health). Hair colourants (temporary, semi-permanent and gradual colourants and their dyeing system). Chemical depilatories.

Unit-5 Number of lectures=08 Title of the unit: Herbal Cosmetics

A comprehensive study of the plant materials used in cosmetics. Use of herbs in different forms. Herbal cosmetics for skin (cleaning creams, moisturizing creams, masks, body lotions, massage preparations, nourishing creams). Herbal Cosmetics for hair (conditioners, oils, shampoo, dyes).

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
	Evaluate the concept of Chemical Nature and Utility of Emulsifiers, lipid components, humectants, and fragrances.	3	1	2	2	2	3	2	2
CO2	Analyze Chemical Nature and Utility of colours (dyes and pigments), preservatives and antioxidants in cosmetics. Technical requirements, basic components and formulation of face powders and lipstick.	3	1	2	2	2	3	2	2
CO3	Create the basic knowledge of general skin problems, purpose, types and key ingredients of skin cleansing, skin toners, moisturizers, nourishing, protective, sunscreen and bleaching products. Antiperspirants and deodorants.		1	2	2	2	3	2	2
CO4	Analyze general hair problems and scalp disorders. Shampoos (requirements, classification, ingredients and special additives for hair condition and scalp health). Hair colourants and Chemical depilatories.	3	1	2	2	2	3	3	2
LCO5	Comprehension of the plant materials used in cosmetics. Use of herbs in different forms. Herbal cosmetics for skin and Herbal Cosmetics for hair.	3	1	2	2	2	3	2	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- https://www.youtube.com/watch?v=zl5PZHKaQRg
- 2. https://www.science.org.au/curious/people-medicine/chemistry-cosmetics
- 3. https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-mm13/
- 4. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/112107217/lec3.pdf
- . http://priede.bf.lu.lv/grozs/AuguFiziologijas/Augu_resursu_biologija/gramatas/Herbal%20Principles%20in%20Cosmetics.pdf

- 1. Perfumes, soaps, detergents and cosmetics-Bhatia, Volume I & II
- 2. Poucher's Perfumes, Cosmetics and Soaps (Vol. III), Cosmetics (Vol. I & II) Hilda Butler

1. Name of the Department: Chemistry										
2. Course Name FOOD CHEMISTRY L T P										
3. Course Code	CH505			3	1	0				
4. Type of Course (use tick ma	4. Type of Course (use tick mark) Core () DE (/) FC ()									
5. Pre-requisite (if any)	B.Sc. with Chemistry	6. Frequency (use tick marks)	Even ()	Odd (V)	Either Sem ()	Every Sem ()				

Lectures = 30 Tutorials = 10 Practical = Nil

8. COURSE OBJECTIVES: Students gain the knowledge of secondary plant metabolites such as terpenoids, alkaloids, carbohydrates, Amino Acid, Peptides & Proteins, steroids, Synthesis and medicinal uses of; caffeine, theophylline, theobromine and Phytopharmaceuticals.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Create the concept of secondary plant metabolites; terpenoids and its general methods of structure determination, isoprene rule;
COI	Stereochemistry, constitution and synthesis of Citral and Menthol.
CO2	Evaluate the general method of isolation, structure elucidation of alkaloid, specially based on nitrogen heterocyclic ring (Hofmann's
CO2	exhaustive methylation, Emde's degradation and Von Braun's method).
CO3	Analyze general reactions, constitution of glucose & fructose; Conformations of monosaccharide's. Stereochemistry and configuration of the
COS	nucleus of steroids.
CO4	Know about, classification, general method of preparation, properties and reactions of amino acids, general method of synthesis &
C04	determination of structure of polypeptides. Primary, secondary, tertiary & quaternary structure ofproteins.
	Understand the Synthesis and medicinal uses of; caffeine, theophylline, theobromine.
CO5	Phytopharmaceuticals: Recent development and commercialization of plant derived natural products. Strategies for rapid identification of
	novel therapeutic leads from natural products.

10. Unit wise detailed content

Unit-1 Number of lectures = 08 Title of the unit: Governmental regulation

Introduction, Food laws and standards: Indian and international food safety laws and standards; Quality and safety assurance in food industry; BIS Laboratory Services and Certification by BIS, Food labeling.

Unit-2 Number of lectures = 08 Title of the unit: Constituents of foods & their nutritive aspects

Carbohydrates, Proteins, Fats and oils, Vitamins and Minerals. Food additives: Preservatives, Antioxidants, Chelating agents, Surface active agents, Stabilizing and Thickening agents, Bleaching and Maturing agents, Buffering agents, Colouring agents, Sweetening agents & Flavoring agents.

Unit-3 Number of lectures = 08 Title of the unit: Food processing techniques

Common unit operations, Food deterioration and their control: Heat preservation and processing, Cold preservation and processing Food dehydration, Food concentration & food packaging.

Unit-4 Number of lectures = 08 Title of the unit: Food Safety, Risks and Hazards

Food related Hazards, Microbiological Considerations in food safety, Effects of processing and storage on microbial safety, Chemical hazards associated with foods, Prevention methods from food born disease: HACCP method.

Unit-5 Number of lectures = 08 Title of the unit: Fermentation and other uses of Microorganisms

Industrial uses of bacteria, and yeast lactic acid fermentation, vinegar production, amino acid production, alcoholic fermentation, Bakers yeast, food yeast industrial uses of molds, Microbial Transformation: Type of bioconversion reaction, procedures of biotransformation.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Create the concept of secondary plant metabolites; terpenoids and its general methods o structure determination, isoprene rule; Stereochemistry, constitution and synthesis of Citra and Menthol.		1	2	1	1	2	2	2
CO2	Evaluate the general method of isolation, structure elucidation of alkaloid, specially based or nitrogen heterocyclic ring (Hofmann's exhaustive methylation, Emde's degradation and Vor Braun'smethod).	- 2	1	2	1	2	2	2	2
соз	Analyze general reactions, constitution of glucose & fructose; Conformations of monosaccharide's. Stereochemistry and configuration of the nucleus of steroids.	3	1	2	1	2	2	2	2
CO4	Know about, classification, general method of preparation, properties and reactions of amino acids, general method of synthesis & determination of structure of polypeptides. Primary, secondary, tertiary & quaternary structure of proteins.	3	1	2	1	2	2	1	2
CO5	Understand the Synthesis and medicinal uses of; caffeine, theophylline, theobromine Phytopharmaceuticals: Recent development and commercialization of plant derived natura products. Strategies for rapid identification of novel therapeutic leads from natural products.		1	2	1	2	2	2	2

3 Strong contribution, 2 Average contribution , 1 Low contribution

12. Brief description of self-learning / E-learning component

- 1. https://nptel.ac.in/content/storage2/courses/110108056/module5/Lecture32.pdf
- https://nptel.ac.in/content/syllabus_pdf/126104004.pdf
- 3. http://ncert.nic.in/textbook/pdf/lehe105.pdf
- 4. https://swayam.gov.in/nd1_noc20_ce07/preview
- 5. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/102105058/lec36.pdf

- 1. Food Chemistry, Belitz and Gosch, Springer Verlag Bertin Heiderberg, 2nd Edition, 1999
- 2. Principles of Human Nutrition, Martin Eastwood, Chapman and Hall, London, I Edition, 1997.
- 3. Food The Chemistry of its Components, T.P. Coultate, Royal Soc. Chemistry, 4th Edition, 2002.
- 4. Food additives, Branan, Alfred Larry, Davidson P. Michae, Food Science and Technology series (35), Morcel Dekker, Inc, 1990.
- 5. Introduction to food science, Rick Parker, Delmar Learning, U.S.A, I Edition, 2003.
- 6. Nutrition Science and application, Lori Smolin L.A., Saunders College Publishing, 3rd Edition.

1.Name of the Department: Chemistry											
2.Course Name		L	Т	P							
3.Course Code	CH506				3	1	0				
4. Type of Course (use tick mar	k)				Core()	DE(√)	FC()				
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency	y (use tick marks)	Even ()	Odd (v)	Either Sem ()	EverySem()				
7.Total Number of Lectures, Tutorials, Practicals											
Lectures=30	ectures=30 Tutorials=10 Practical=Nil										

8. COURSE OBJECTIVES: This course is designed for postgraduate students of chemistry and industrial chemistry as a broad base introduction to analytical instrumentation techniques for the measurement of different chemical and physical properties of compounds and materials (composition, structure, etc.). Afte successfully completion of course, the student will able understand the working principal and applications of various modern analytical techniques as well as their operation.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO) ATTRIBUTES			
CO1	Student would be able to understand the role of ions in biological system.		
CO2	Students evaluate fundamentals of enzyme reactions and metalloenzymes.		
CO3	Students would develop the concept of metal acid reactions, and administration of drugs.		
CO4	Students would restate difference between different modes of molecular reactions.		
CO5	Students would able to apply the concepts of supramolecular chemistry.		

10.Unitwisedetailedcontent

Unit-1 Number of lectures=08 Title of the unit: Metal ions in Biological functions

A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to Na*, K* and Mg²+ ions: Na/K pump; Role of Mg²+ ions in energy production and chlorophyll. Role of Ca²+ in blood clotting, stabilization of protein structures and structural role (bones).

Unit-2 Number of lectures= 08 Title of the unit: Metalloenzymes

Enzyme, coenzyme, apoenzyme and holoenzyme, Zinc enzymes: carboxypeptidase, carbonic anhydrase and alcohol dehydrogenase. Iron enzymes-catalase and peroxidase. Copper enzymes -superoxide dismutase. Molybdenum enzymes -xanthine oxidase.

Unit-3 Number of lectures=08 Title of the unit: Metal-Nucleic Acid Interactions

Metals used for diagnosis and chemotherapy with particular reference to anticancer drugs. cis-platin-indication and contra indications. Administration of drug and its antidote. Reaction, use of antihistamine, mannitol, epinephrine and steroid preparation of drug administration.

Unit-4 Number of lectures=08 Title of the unit: Supramolecular Chemistry

Concepts and language. Molecular recognition: Molecular receptors for different types of molecules including arisonic substrates, design and synthesis of coreceptor molecules and multiple recognition.

Unit-5 Number of lectures=08 Title of the unit: Applications of Supramolecular Species/Compounds

(A) Supramolecular reactivity and catalysis. (B) Transport processes and carrier design. (C) Supramolecular devices. Supramolecular photochemistry, supramolecular electronic, ionic and switching devices. (D) Some example of self-assembly in supramolecular chemistry.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	Student would be able to understand the role of ions in biological system.	3	1	1	3	2	3	3	3	
CO2	Students evaluate fundamentals of enzyme reactions and metalloenzymes.	3	1	1	3	1	3	3	3	
CO3	Students would develop the concept of metal acid reactions, and administration of drugs.	3	1	1	3	1	3	3	2	
CO4	Students would restate difference between different modes of molecular reactions.	3	2	1	3	2	3	3	2	
CO5	Students would able to apply the concepts of supramolecular chemistry.	3	2	1	3	3	3	3	2	

3 Strong contribution, 2 Average contribution , 1 Low contribution

12.Brief description of self-learning /E-learning component

- l. https://nptel.ac.in/courses/104101116/
- 2. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/104101093/lec8.pdf
- 3. https://nptel.ac.in/content/storage2/courses/102103013/pdf/mod4.pdf
- 4. https://www.ias.ac.in/article/fulltext/reso/023/03/0277-0290
- 5. https://shodhganga.inflibnet.ac.in/bitstream/10603/35062/2/c1.pdf

- 1. Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.
- 2. Bioinorganic Chemistry, I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University
- Science Books
- 4. Inorganic Biochemistry vols I and II. ed. G.L. Eichhorn, Elsevier.
- 5. Progress in Inorganic Chemistry, Vols 18 and 38 eds. J.J. Lippard, Wiley.
- 6. Supramolecular Chemistry, J.M. Lehn, VCH.
- 7. Bioinorganic Chemistry, M.N. Hughes, Wiley.

1. Name of the Department: Chemistry											
2. Course Name	INDUSTRIAL CHEMISTRY PRA	L	Т	Р							
3. Course Code	CH507			0	0	8					
4. Type of Course (use tic	k mark)	Core (√)	DE ()	FC ()							
5. Pre-requisite (if any)	B.Sc. with Chemistry	6. Frequency (use tick marks)	Even ()	Odd (v)	Either Sem ()	Every Sem ()					

Lectures = 00 Tutorials = 00 Practical = 08

8. COURSE OBJECTIVES: Imparting of scientific methodology, Development of practical/technical skills, The ability to work effectively and safely in a laboratory environment, Developing transferable skills (team work, time management), Enhancing communication skill.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	CO) ATTRIBUTES							
COURSE OUTCOINE (CO)	ATTRIBUTES							
CO1 Understand the basic analytical and technical skills and technical skills to work effectively in the various fields of chemistry								
CO2	Able to prepare Phenol formaldehyde resin, Urea formaldehyde resin, Nylon 66, soap, shampoo, vanishing cream, hand lotion, lather shaving							
COZ	cream							
соз	Know about the Estimation of ascorbic acid, calcium thioglycolate, lakes and fillers, zinc-pyrithione, acetic acid, protein content, fat content,							
cos	salt content, moisture content							
CO4	Remember to keep records of all performed experiments in the manner which is required in laboratory.							
CO5	Analyze the importance of personal safety and care of equipment's and chemicals.							

10. List of experiments

- 1. Preparation of Phenol formaldehyde resin.
- 2. Preparation of Urea formaldehyde resin.
- Preparation of Nylon 66.
- Preparation of soap.
- Preparation of shampoo.
- 6. Preparation of vanishing cream.
- 7. Preparation of hand lotion.
- Preparation of lather shaving cream.
- 9. Determination of calcium thioglycolate / thioglycolic acid in the depilatories.
- 10. Determination of lakes and fillers in the given lipstick.
- 11. Determination of zinc-pyrithione/pH in the given shampoo.
- 12. Determination of acetic acid content in the given sample of food.
- 13. Determination of protein content in the given sample of food.
- 14. Determination of fat content in the given sample of food.
- 15. Determination of salt content in the given sample of butter.
- 16. Determination of moisture content in the given sample by K. F. titre.
- 17. Determination of sugar /glucose content in the given sample.\
- 18. Estimation of ascorbic acid in the given fruit juices.

11. CO-PO mapping

11. CO-FO	11. CO-FO Inapping								
COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Understand the basic analytical and technical skills and technical skills to work effectively in the various fields of chemistry	3	1	1	1	1	2	1	2
CO2	Able to prepare Phenol formaldehyde resin, Urea formaldehyde resin, Nylon 66, soap, shampoo, vanishing cream, hand lotion, lather shaving cream	3	1	3	1	2	3	3	2
соз	Know about the Estimation of ascorbic acid, calcium thioglycolate, lakes and fillers, zinc-pyrithione, acetic acid, protein content, fat content, salt content, moisture content	3	1	1	1	2	2	1	2
CO4	Remember to keep records of all performed experiments in the manner which is required in laboratory.	3	1	1	1	2	2		
CO5	Analyze the importance of personal safety and care of equipment's and chemicals.	3	1	1	1	2	2	1	3

3 Strong contribution, 2 Average contribution , 1 Low contribution

12. Brief description of self- learning / E-learning component

- 1. http://www.khalidshadid.com/uploads/3/9/2/0/3920808/phenol_formaldehyde_resin.pdf
- 2. http://www.inference.org.uk/sustainable/LCA/elcd/external_docs/n66_311147f8-fabd-11da-974d-0800200c9a66.pdf
- 3. https://www.youtube.com/watch?v=eA9I2MkWMW0
- 4. https://www.youtube.com/watch?v=Tu_sWoHULtY
- 5. https://pubs.acs.org/doi/abs/10.1021/ac60157a011
- 6. https://nptel.ac.in/content/storage2/courses/102103047/PDF/mod1.pdf
- 7. http://www.denverinstrument.com/denverusa/media/pdf/titration_notes/food_beverage/Determination_of_Salt_in_Butter.pdf
- 8. http://dmsc2.dmsc.moph.go.th/webroot/drug/km/lab_analysis/Karl%20Fischer%20Titration.pdf

- 5. Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, PragatiEdition.
- 6. Practical Organic Chemistry A.I. Vogel.
- 7. Practical Physical Chemistry: B. Viswanathan and P.S.Raghavan.
- 8. Experimental Inorganic Chemistry –W.G.Palmer.

Semester-IV

1.Name of the Department: Chemistry											
2.Course Name	L	Т	P								
3.Course Code CH508					1	0					
4.Type of Course(use tick marl	k)			Core(√)	DE()	FC()					
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency(usetickmarks)	Even (√)	Odd ()	Either Sem ()	Every Sem()					

7.Total Number of Lectures, Tutorials, Practicals

8. COURSE OBJECTIVES: Professional ethics will be inculcated in students in context to Intellectual Property Rights in India and abroad. Various IPR laws, procedures governing the filing of patents in India and abroad and various treaties and conventions governing IPR will be introduced.

Practical=Nil

Tutorials=10

9. COURSE OUTCOMES (CO):

Lectures=30

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
CO1	Awareness is created among students regarding the importance of ethics, IPR and laws for protection.
CO2	An analysis of the genesis and development of IPR in India is done in the form of various laws and acts.
CO3	An understanding of different branches of IPR including copyrights and patents etc. is inculcated.
CO4	How various conventions and treaties can be applied to protect intellectual rights would be taught for the creation of innovations.
CO5	Evaluation of malpractice and infringements and penalties would be analysed.

10.Unitwisedetailedcontent

	Unit-1	Number of lectures=08	Title of the unit: Overview of Intellectual Property				
Introduction and the need for intellectual property right (IPR). IPR in India – Genesis and Development IPR in abroad. Some important examples of IPR.							
	Unit-2	Number of lectures= 08	Title of the unit: Patents				

Macro economic impact of the patent system. Patent and kind of inventions protected by a patent. Patent document. Protection of inventions. Granting of patent. Rights of a patent. Patent protection. Protection of inventions by patents. Searching, Drafting and Filing of a patent. The different layers of the international patent system (national, regional and international options).

Unit-3 Number of lectures=08 Title of the unit: Patents & Copyright

Utility models. Differences between a utility model and a patent. Trade secrets and know-how agreements. Copyright: Introduction, How to obtain, Differences from Patents. Related rights. Distinction between related rights and copyright. Rights covered by copyright.

Unit-4 Number of lectures=08 Title of the unit: Trademarks

Trademark, Rights of trademark. Kind of signs used as trademarks. Types of trademark. Function does a trademark perform. Protection and registration of trademark. Duration of trademark protection. Well-known marks and thei<u>r protection. Domain name and it relate to trademarks.</u>

Unit-5 Number of lectures=08 Title of the unit: Industrial Designs

Industrial design. Protection of industrial designs. Kind of protection is provided by industrial designs. Duration of protection. IP Infringement issue and enforcement – Role of Judiciary, Role of law enforcement agencies – Police, Customs etc. Intellectual Property in the Indian Context – Various laws in India Licensing and technology transfer.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Awareness is created among students regarding the importance of ethics, IPR and laws for protection.	1	1	1	2	3	3		2
CO2	An analysis of the genesis and development of IPR in India is done in the form of various laws and acts.	2				3	2		
CO3	An understanding of different branches of IPR including copyrights and patents etc. is inculcated.	2				3	2		
CO4	How various conventions and treaties can be applied to protect intellectual rights would be taught for the creation of innovations.	2		2		3	2		2
CO5	Evaluation of malpractice and infringements and penalties would be analysed.	1		2	2	2	2		2
	· · · · · · · · · · · · · · · · · · ·					,			

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/627956/IP-Rights-in-India.pdf
- 2. https://nptel.ac.in/courses/109106128/
- 3. https://nptel.ac.in/content/storage2/courses/downloads/121106007/Assignment-6_noc18_ge12_108.pdf
- 4. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/109105112/lec25.pdf
- 5. https://www.shiksha.com/careers/industrial-designer-63

- L. Ajit Parulekar and Sarita D' Souza, Indian Patents Law Legal & Business Implications; Macmillan India Itd, 2006
- 2. B.L.Wadehra; Law Relating to Patents, Trade Marks, Copyright, Designs & Geographical Indications; Universal law Publishing Pvt. Ltd., India 2000
- 3. P. Narayanan; Law of Copyright and Industrial Designs; Eastern law House, Delhi , 2010
- 4. N.K. Acharya: Textbook on intellectual property rights, Asia Law House (2001).
- 5. Manjula Guru & M.B. Rao, Understanding Trips: Managing Knowledge in Developing Countries, Sage Publications (2003).
- . P. Ganguli, Intellectual Property Rights: Unleashing the Knowledge Economy, Tata McGraw-Hill (2001).

1.Name of the Department: Chemistry												
2.Course Name GREEN CHEMISTRY				L	Т	P						
3.Course Code	CH509			3	1	0						
4.Type of Course (use tick m	ark)			Core()	DE(√)	FC()						
5.Pre-requisite (if any)	e-requisite (if any) B.Sc. with Chemistry 6.Frequency(use tick marks) Even (\forall)		Even (√)	Odd ()	Either Sem ()	Every Sem()						
7.Total Number of Lectures, Tutorials, Practicals												

8. COURSE OBJECTIVES: This course is designed for postgraduate students of chemistry and industrial chemistry as a broad base introduction to analytical instrumentation techniques for the measurement of different chemical and physical properties of compounds and materials (composition, structure, etc.). After successfully completion of course, the student will able understand the working principal and applications of various modern analytical techniques as well as their operation.

Practical=Nil

Tutorials=10

9. COURSE OUTCOMES (CO):

Lectures=30

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO) ATTRIBUTES										
ATTRIBUTES										
Students would able to create new routes for the synthesis of useful compounds without consuming harmful solvents.										
Students would be able to understand the principles of green chemistry										
Students would able to apply the important tools for the synthesis of useful compounds without harming of environment.										
Students would restate difference between different modes of chromatographic separation; apply knowledge of qualitative and quantitative analysis in various fields of chemical, pharmaceutical industry etc.										
Students would able to illustrate the future of green chemistry										

10.Unit wise detailed content

Unit-1 Number of lectures=08 Title of the unit: Introduction

Definition and concept of Green Chemistry, Need for Green Chemistry, Goals of Green Chemistry, Emergence of green Chemistry, Limitations/Obstacles in the pursuit of the goals of Green Chemistry.

Unit-2 Number of lectures= 08 Title of the unit: Principles of Green Chemistry and Designing a Chemical synthesis

Twelve principles of Green Chemistry with their explanations and examples; Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products (Atom Economy); prevention/minimization of hazardous/toxic products; designing safer chemicals – different basic approaches to do so; selection of appropriate auxiliary substances (solvents, separation agents), green solvents, solventless processes, immobilized solvents and ionic liquids; energy requirements for reactions - use of microwaves, ultrasonic energy; selection of starting materials; avoidance of unnecessary derivatization – careful use of blocking/protecting groups; use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; designing of biodegradable products; prevention of chemical accidents; strengthening/development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

Unit-3 Number of lectures=08 Title of the unit: Green Synthesis/Reactions-I

1. Green Synthesis of the following compounds: adipic acid, catechol, BHT, methyl methacrylate, urethane, aromatic amines (4- aminodiphenylamine), benzyl bromide, acetaldehyde, disodium iminodiacetate (alternative to strecker synthesis), citral, ibuprofen, paracetamol, furfural.2. Microwave assisted reactions in water: Hofmann Elimination, Hydrolysis (of benzyl chloride, benzamide, n-phenyl benzamide, methylbenzoate to benzole acid), Oxidation (of toluene, alcohols). Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Orthoester Claisen Rearrangement, Diels Alder Reaction, Decarboxylation. Microwave assisted solid state reactions: Deacetylation, Deprotection. Saponification of esters, Alkylation of reactive methylene compounds, reductions, synthesis of nitriles from aldehydes; anhydrides from dicarboxylic acid; pyrimidine and pyridine derivatives; 1,2-dihydrotriazine derivatives; benzimidazoles.

Unit-4 Number of lectures=08 Title of the unit: Green Synthesis/Reactions-II

1. Ultrasound assisted reactions: Esterification, saponification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction. 2. Selective methylation of active methylene group using dimethylcarbonate: Solid-state polymerization of amorphous polymers using diphenylcarbonate; Use of "Clayan", a nonmetallic oxidative reagent for various reactions; Free Radical Bromination; Role of Tellurium in Organic Syntheses; Biocatalysis in Organic Syntheses.

Unit-5 Number of lectures=08 Title of the unit: Future Trends in Green Chemistry

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; oncovalent derivatization; Green chemistry in sustainable development.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8
CO1	Students would able to create new routes for the synthesis of useful compounds without consuming harmful solvents.	3	1	1	1	2	3	2	3
CO2	Students would be able to understand the principles of green chemistry	3	1	1	2	1	3	2	3
CO3	Students would able to apply the important tools for the synthesis of useful compounds without harming of environment.	3	1	1	2	1	3	2	2
CO4	Students would restate difference between different modes of chromatographic separation; apply knowledge of qualitative and quantitative analysis in various fields of chemical, pharmaceutical industry etc.	3	2	1	2	2	3	1	2
CO5	Students would able to illustrate the future of green chemistry	3	2	1	2	3	3	1	2

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- http://www.ch.ic.ac.uk/marshall/4l10/4l101.pdf
- 2. https://oregonstate.edu/instruct/ch390/lessons/media/lesson1.pdf
- 3. https://freevideolectures.com/course/2908/green-chemistry-an-interdisciplinary-approach-to-sustainability
- 4. http://aircconline.com/ijci/V6N2/6217ijci15.pdf
- i. https://www.researchgate.net/publication/228333980_GREEN_CHEMISTRY_POTENTIAL_FOR_PAST_PRESENT_AND_FUTURE_PERSPECTIVES

- 1. V.K. Ahluwalia & M.R. Kidwai: New Trends in Green Chemistry, Anamalaya Publishers (2005).
- 2. P.T. Anastes & J.K. Warmer: Oxford Green Chemistry- Theory and Practical, University Press (1998).
- 8. M.C. Cann & M.E. Connely: Real-World cases in Green Chemistry, American Chemical Society, Washington (2000).
- I. M.A. Ryan & M. Tinnesand, Introduction to Green Chemistry, American Chemical Society, Washington (2002).

1.Name of the Department: Chemistry										
2.Course Name	INDUSTRIAL HYGIENE	AND CHEMICAL SAF	FETY		L	Т	Р			
3.Course Code	de CH510					1	0			
4.Type of Course (use tick m	ark)	Core()	DE(√)	FC()						
5.Pre-requisite (if any)	B.Sc. with Chemistry	6.Frequency(use t	tick marks)	Even (√)	Odd ()	Either Sem ()	EverySem()			
7.Total Number of Lectures, Tutorials, Practicals										
Lectures=30			utorials=10		Practical=Nil					

8. COURSE OBJECTIVES: The purpose of the industrial hygiene and chemical safety course provides the prevention and control of hazards arising from work processes is occupational hygiene. The goals of occupational hygiene include the protection and promotion of workers' health, the protection of the environment and contribution to a safe and sustainable development.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO)	ATTRIBUTES
COI	Students will be able to understand the objectives, principles and practices of industrial hygiene cummings memorial lecture american industrial hygiene association
CO2	Students will create the science and art devoted to the anticipation, recognition, evaluation, and control of those environmental factors or stresses arising in or from the workplace, which may cause sickness, impaired health and well-being, or significant discomfort among workers or among the citizens of the community.
CO3	Students will be able to understand about the biological hazards can cause serious infections. These can be chronic, meaning they have a rapid onset and last for a short time, or acute, meaning they last for a long time and/or constantly recur. Both acute and chronic infections can be serious and even fatal.
(()4	Students will be able to understand about the key challenges of Some occupational hygienists working in manufacturing, petrochemical, pharmaceutical, steel, mining and other industries.
(*()5	Students will have a firm foundation on concept of hazardous chemicals through different types of exposures, including: Inhalation (breathing the chemical), Absorption (direct contact with the skin), Ingestion (eating or drinking the chemical).

10.Unit wise detailed content

Unit-1	Number of lectures=08	Title of the unit: Industrial hygiene

Concept, air and biological monitoring, occupational disease, operational control measures, personal protective equipments

Unit-2 Number of lectures= 08 Title of the unit: Occupational Safety; Health and Environment Management

Bureau of Indian standards on safety and health 14489 - 1998 and 15001 – 2000, OSHA, Process Safety Management (PSM) as per OSHA, PSM principles, OHSAS – 18001, EPA Standards.

Unit-3 Number of lectures=08 Title of the unit: Safety and Health Management

Occupational Health Hazards, Promoting Safety, Safety and Health training, Stress and Safety, Importance of Industrial safety, role of safety department, Safety committee and Function.

Unit-4 Number of lectures=08 Title of the unit: Chemical Hazards

Classification of hazardous chemicals, storage, transportation, handling, risk assessments, challenges and solutions.

Unit-5 Number of lectures=08 Title of the unit: Radiation and Industrial Hazards

Types and effects of radiation on human body, Measurement and detection of radiation intensity, Effects of radiation on human body, Measurement –disposal of radioactive waste, Control of radiation. Different air pollutants in industries, Effect of different gases and particulate matter, acid fumes, smoke, fog on human health.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	Students will be able to understand the objectives, principles and practices of industrial hygiene	_							
COI	cummings memorial lecture american industrial hygiene association		1	1	1	2	2	1	1
	Students will create the science and art devoted to the anticipation, recognition, evaluation, and								
CO2	control of those environmental factors or stresses arising in or from the workplace, which may cause								
COZ	sickness, impaired health and well-being, or significant discomfort among workers or among the	3	1	2	2	2	2	2	2
	citizens of the community.								
	Students will be able to understand about the biological hazards can cause serious infections. These								
соз	can be chronic, meaning they have a rapid onset and last for a short time, or acute, meaning they last								
603	for a long time and/or constantly recur. Both acute and chronic infections can be serious and even	3	1	2	2	2	2	2	2
	fatal.								
CO4	Students will be able to understand about the key challenges of Some occupational hygienists working	_		_		_	_		
CO4	in manufacturing, petrochemical, pharmaceutical, steel, mining and other industries.	3	1	2	2	2	3	2	2
	Students will have a firm foundation on concept of hazardous chemicals through different types of								
CO5	exposures, including: Inhalation (breathing the chemical), Absorption (direct contact with the skin),	3	1	1	2	2	3	2	2
	Ingestion (eating or drinking the chemical).	3	-	1		2	,	2	

3 Strong contribution, 2 Average contribution, 1 Low contribution

12.Brief description of self-learning /E-learning component

- 1. https://www.osha.gov/Publications/OSHA3143/OSHA3143.htm
- 2. https://nptel.ac.in/courses/114106017/
- $3. \qquad https://www.academia.edu/38181906/SAFETY_AND_HEALTH_MANAGEMENT_AND_ORGANIZATIONAL_PRODUCTIVITY_edited.pdf$
- 4. https://nptel.ac.in/content/storage2/courses/108101092/Week-2-RF-Radiation-Hazards-July2016-extra.pdf
- 5. https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/103107156/lec56.pdf

- 1. The Factories Act with amendments 1987, Govt. of India Publications DGFASLI, Mumbai
- 2. Grimaldi and Simonds, Safety Management, AITBS Publishers, New Delhi (2001)
- 3. Industrial Safety National Safety Council of India
- 4. R.K.Jain and Sunil S.Rao , Industrial Safety , Health and Environment Management Systems, Khanna publishers , New Delhi (2006)
- 5. Slote.L, Handbook of Occupational Safety and Health, John Willey and Sons, NewYork.
- 5. Frank P Lees Loss of prevention in Process Industries, Vol. 1 and 2, Butterworth- Heinemann Ltd., London (1991).
- 7. R. K. Jain and Sunil S. Rao, Industrial Safety, Health and Environment Management Systems, Khanna publishers, New Delhi (2006)

1. Name of the Department: Chemistry													
2.Cour	2.CourseName INDUSTRIAL TRAINING & PROJECT EVALUATION					L			Т			P	
3.CourseCode CH512							0			0			
4.Type of Course(use tick mark)							Core(√)			DE()		FC()	
5.Pre-requisite (if any) B.Sc. with Chemistry 6.Fr			6.Frequency (u	use tick marks)	Even (√)	(Odd ()		Either S	er Sem () EveryS		verySe	m()
7.Total Number of Lectures, Tutorials, Practicals													
Lectures=30 Tutorials=10						Pract	ical=Nil						
8. COURSE OBJECTIVES: The main objective is to enhance the technical skills and to provide students industrial exposure.													
9. COURSE OUTCOMES (CO):													
		completion, learners will a	levelop following	g attributes:									
COURSI	COURSE OUTCOME (CO) ATTRIBUTES												
	CO1 Hands on training												
	CO2	CO2 Integrate class room theory with industrial practice.											
	CO3 Understanding professional ethics of industry.												
11. CO-P	O mapping												
COs			Attributes			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	CO1 Hands on training					3	3	3	2	2	3	2	3
CO2	CO2 Integrate class room theory with industrial practice.				3	2	3	2	2	2	2	3	
CO3 Understanding professional ethics of industry.						3	3	3	2	3	2	1	3
3 Strong contribution, 2 Average contribution, 1 Low contribution													