FOUR YEARS DEGREE COURSE IN ENGINEERING & TECHNOLOGY COURSE AND EXAMINATION SCHEME WITH CREDIT GRADE SYSTEM

III - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Scl	neme	Examination Scheme									
Code		Но	ours p	er	No. of			Theor	у				Prac	tical	
			week		Credits										
		L	т	Ρ		Duration	Max.	ax. Max.			Min.	Max.	Max.	Total	Min.
						of Paper	of Paper Marks Marks Passing			Marks	Marks		Passing		
						(nrs.)							IVIALKS		
							ESE	MSE	IE			тw	POE		
EP-301	Applied Mathematics t III	4	0	0	4	3	80	10	10	100	40	-	-	-	-
EP-302	Network Analysis	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-303	C & Data Structures	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-304	Electronic Devices & Circuits	3	1	-	3	3	80	10	10	100	40	-	-	-	-
EP-305	Power Generation Systems	4	0	0	4	3	80	10	10	100	40	-	-	-	-
	Laboratories/ Practical														
EP-306	Network Analysis	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-307	C & Data Structures	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-308	Electronic Devices & Circuits	-	-	3	2	-	-	-	-	-	-	25	25	50	25
TOTAL 19 03 09 25						500 150									
	SEMESTER TOTAL		31		25						650				

(Note : One Lecture of one hour is equal to one credit, One Tutorial / Practical of three hours is equal to one credit, One Tutorial/ Practical of two hours is equal to one credit, One Practical/Lab, without theory paper of one hour equal to one credit)

FOUR YEARS DEGREE COURSE IN ENGINEERING & TECHNOLOGY COURSE AND EXAMINATION SCHEME WITH CREDIT GRADE SYSTEM

IV - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Sc	heme	Examination Sche						me			
Code		Но	ours p	er	No. of			Theor	'Y				Prac	tical	
			week		Credits										
		L	Т	Р		Duration	Max.	Ma	Max.		Min.	Max.	Max.	Total	Min.
						of Paper	Marks	arks <u>Marks</u>			Passing	Marks	Marks		Passing
						(Hrs.)		Sessional			Marks				Marks
							ESE	MSE	IE			тw	POE		
EP-401	Electrical Engineering Mathematics	4	0	0	4	3	80	10	10	100	40	-	-	-	-
EP-402	Electrical Machines t I	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-403	Analog & Digital Circuits	3	1	-	3	3	80	10	10	100	40	-	-	-	-
EP-404	Electrical Measurements & Instrumentation	3	1	-	3	3	80	10	10	100	40	-	-	-	-
EP-405	Electro Magnetic Fields	4	1	0	5	3	80	10	10	100	40	-	-	-	-
	Laboratories/ Practical														
EP-406	Electrical Machines t I	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-407	Analog & Digital Circuits	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-408	Electrical Measurements &	-	-	3	2	-	-	-	-	-	-	25	25	50	25
	Instrumentation														
	TOTAL	18	04	09	25	-		500)		-		15	50	
	SEMESTER TOTAL		31		25	- 650									

(Note : One Lecture of one hour is equal to one credit, One Tutorial / Practical of three hours is equal to one credit, One Tutorial/ Practical of two hours is equal to one credit, One Practical/Lab, without theory paper of one hour equal to one credit)

FOUR YEARS DEGREE COURSE IN ENGINEERING & TECHNOLOGY COURSE AND EXAMINATION SCHEME WITH CREDIT GRADE SYSTEM

V - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Sc	heme	Examination Scheme									
Code		Но	ours p week	er	No. of Credits			Theor	у		Р			ractical	
		L	т	Ρ		Duration of Paper (Hrs.)	Max. Marks	lax. Max. arks <u>Marks</u> Sessional		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
						ESE MSE IE TW						TW	POE		
EP-501	Electrical Machines t II	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-502	Microprocessors & Microcontroller	3	1	-	3	3	80	10	10	100	40	-	-	-	-
EP-503	Signals & Systems	3	1	0	4	3	80	10	10	100	40	-	-	-	-
EP-504	Electrical Power System t I	4	1	0	5	3	80	10	10	100	40	-	-	-	-
EP-505	Industrial Economics & Management	3	0	0	3	3	80	10	10	100	40	-	-	-	-
EP-506	Advanced Communication Skills	-	2	0	-		-			AUDIT	COURSE *	-	-		
	Laboratories/ Practical														
EP-507	Electrical Machines t II	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-508	Microprocessors & Microcontroller	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-509	Advanced Electrical Workshop	-	-	2	2	-	-	-	-	-	-	25	25	50	25
TOTAL 17 06 08 25						500 150									
	SEMESTER TOTAL		31		25 650										

(Note : One Lecture of one hour is equal to one credit, One Tutorial / Practical of three hours is equal to one credit, One Tutorial/ Practical of two hours is equal to one credit, One Practical/Lab, without theory paper of one hour equal to one credit)

FOUR YEARS DEGREE COURSE IN ENGINEERING & TECHNOLOGY COURSE AND EXAMINATION SCHEME WITH CREDIT GRADE SYSTEM

VI - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Sc	heme	Examination Scheme									
Code		Но	ours p	er	No. of			Theor	y				Prac	tical	
		L	<u>week</u> Т	Р	Credits	Duration of Paper (Hrs.)	Max. Max. Marks <u>Marks</u> Sessional		Max. Marks Sessional		Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			тw	POE		
EP-601	High Voltage Engineering	4	0	-	4	3	80	10	10	100	40	-	-	-	-
EP-602	Digital Signal Processing	3	1	0	3	3	80	10	10	100	40	-	-	-	-
EP-603	Control System Engineering	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-604	Electrical Power System t II	4	0	0	4	3	80	10	10	100	40	-	-	-	-
EP-605	Electrical Machine Design	4	0	0	4	3	80	10	10	100	40	-	-	-	-
EP-606	Professional Ethics & Personality	-	2	0	-					AUDIT	COURSE *				
	Development														
	Laboratories/ Practical														
EP-607	High Voltage Engineering	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-608	Control System Engineering	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-609	Minor Project & Seminar *	-	-	2	2	-	-	-	-	-	-	25	25	50	25
TOTAL 19 04 08 25						500 150									
	SEMESTER TOTAL	SEMESTER TOTAL 31 25 650													

(Note : One Lecture of one hour is equal to one credit, One Tutorial / Practical of three hours is equal to one credit, One Tutorial/ Practical of two hours is equal to one credit, One Practical/Lab, without theory paper of one hour equal to one credit)

*The marks allotted for TW shall be granted on the basis of work carried out by the candidate in pursuing the Minor Project, its results & the Seminar delivered on the same topic. However, the POE marks shall be granted on the basis of viva voce, conducted as per University norms. Each GROUP of Minor Project shall comprise of NOT MORE THAN THREE students.

FOUR YEARS DEGREE COURSE IN ENGINEERING & TECHNOLOGY-COURSE AND EXAMINATION SCHEME WITH CREDIT GRADE SYSTEM

VII - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject		Teach	ning S	cheme	Examination Scheme									
Code		Но	ours p week	er	No. of Credits			Theo	ory				Prac	tical	
		L	Т	Ρ		Durat ion of Paper (Hrs.)	Max. Marks	Max. Max. Aarks <u>Marks</u> Sessional		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			TW	POE		
EP-701	Power Electronics	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-702	Power System Protection & Switchgear	4	0	-	4	3	80	10	10	100	40	-	-	-	-
EP-703	Electrical Energy Utilization	4	0	0	4	3	80	10	10	100	40	-	-	-	-
EP-704	Power System Operation & Control	3	1	0	3	3	80	10	10	100	40	-	-	-	-
EP-705	Elective t I	3	0	0	3	3	80	10	10	100	40	-	-	-	-
	Laboratories/ Practical														
EP-706	Power Electronics	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-707	Switchgear & Protection	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-708	Modeling & Electrical Simulation	-	1	2	2	-	-	-	-	-	-	25	25	50	25
EP-709	Major Project Seminar	-	-	3	1	1 25 - 25					25	13			
TOTAL 18 03 11 25							500 175								
	SEMESTER TOTAL		32		25						675				

(Note : One Lecture of one hour is equal to one credit, One Tutorial / Practical of three hours is equal to one credit, One Tutorial/ Practical of two hours is equal to one credit, One Practical/Lab, without theory paper of one hour equal to one credit)

Elective – I

:

(1) EHV AC-DC Transmission

ansmission (2) Artificial Intelligence (3) Electrical Power System Management

(4) Programmable Logic & Sequential Systems

FOUR YEARS DEGREE COURSE IN ENGINEERING & TECHNOLOGY COURSE AND EXAMINATION SCHEME WITH CREDIT GRADE SYSTEM

VIII - SEMESTER B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

Subject	Subject	Т	eachi	ng Sc	heme	Examination Scheme									
Code		Но	ours p	er	No. of			Theor	Ъ				Prac	tical	
			week		Credits									1	
		L	т	Ρ		Duration of Paper	Max. Marks	Ma Mar	X.	Total	Min.	Max. Marke	Max. Marke	Total	Min.
						(Hrs.)	WIDIKS	Sessional			Marks	IVIdI KS	IVIdi KS		Marks
							ESE	MSE	IE			тw	POE		
EP-801	Computer Applications in Power System	4	1	-	4	3	80	10	10	100	40	-	-	-	-
EP-802	Power System Operation & control	3	1	0	4	3	80	10	10	100	40	-	-	-	-
EP-803	Advanced Electrical Drives	4	1	0	5	3	80	10	10	100	40	-	-	-	-
EP-804	Elective t II	3	0	0	3	3	80	10	10	100	40	-	-	-	-
	Laboratories/ Practical														
EP-805	Computer Applications in Power System	-	-	3	2	-	-	-	-	-	-	25	25	50	25
EP-806	Major Project	-	-	6	6	-	-	-	-	-	-	75	75	150	75
EP-807	Industrial Training **	I	-	1	1	-	-	-	-	-	-	25	-	25	13
TOTAL 14 03 10 25					25	400 225									
SEMESTER TOTAL 27 25											625				

(Note : One Lecture of one hour is equal to one credit, One Tutorial / Practical of three hours is equal to one credit, One Tutorial/ Practical of two hours is equal to one credit, One Practical/Lab, without theory paper of one hour equal to one credit)

Elective – II

:

(1) F ACTS & Reactive Power Controller(4) Power Quality

(2) Electrical Installation & Design

(3) Embedded Systems

**Industrial Training : Every student shall undergo relevant Industrial Training of TWO WEEKS and shall su<u>bmit a comprehensive report, signed by the Competent Authority from the concerned Industry.</u> This Training may be taken up by the students preferably at the end of VI – Semester of their Course. One separate period (as practical) is allotted to facilitate proper assessment of industrial training by the staff.

FACULTY OF ENGINEERING & TECHNOLOGY

CONSOLIDATED STATEMENT OF VARIOUS PARAMETERS IN TEACHING & EXAMINATION SCHEME OF B.E. ELECTRICAL (ELECTRONICS & POWER) ENGINEERING

SR.NO.	SEMESTER	NO. OF THEORY SUBJECTS	NO. OF LABS/ PRACT	TEACHING HOURS (TH) (L+T)	TEACHING HOURS (PRACT)	TOTAL CREDITS	MAX. THEORY MARKS	MAX. PRACT MARKS	MAX. MARKS TOTAL
1	I (A)	04	04+01*	16	15	26	400	200	600
2	II (B)	05	04	20	11	28	450	200	650
3	Ш	05	03	22	09	25	500	150	650
4	IV	05	03	22	09	25	500	150	650
5	V	05+01*	03	23	08	25	500	150	650
6	VI	05+01*	03	23	08	25	500	150	650
7	VII	05	04	21	11	25	500	175	675
8	VIII	04	()2+IND. TR.	17	10	25	400	225	625
		40	26+01* +IND. TR	164	81	204	3750	1400	5150

*Audit course : No University examiv_š]}vA•Z_ooA_A_}v_µ_š_A(}ŒA_h_/dA_KhZ^_XA,}Á_À_ŒUA_•_A}vA/vš_Œv_oA_À_oµ_š]}vUAšZ_A_v_]_š_[•A‰_Œ(}Œu_v_A•Z_ooA_APŒ__d in thre i.e. A,B and C, which will be reflected in their Memo of Marks to be given by the University.

SUBJECT WISE BOARD OF STUDIES AFFILIATION

BOARD OF STUDIES	SUBJECT CODES
APPLIED SCIENCES & HUMANITIES	EP-301, EP-401, EP-506
ELECTRONICS	EP-304, EP-308, EP-403, EP-407, EP-502, EP-503, EP-507, EP-602, EP-804 (EMBEDDED SYSTEMS)
ELECTRICAL	REST ALL, EXCEPT ABOVE ENLISTED

COURSE :B.E. III SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:APPLIED MATHEMATICS -III

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes	Credits
			duration)	
04	00	00	04	04

	Evaluation System											
Theory Practical												
MSE	IE	ESE	TOTAL	TW	POE	TOTAL						
10	10	80	100	NA	NA	NA						

UNIT	CONTENTS	HOURS
I	Laplace Transform Definition, Properties (statements only). Periodic functions and unit step function, Inverse Laplace transform by partial fractions and convolution theorem. Solution of ordinary linear differential equations with constant coefficients by Laplace transform	15
II	Matrices Inverse of matrix by ad-joint and partitioning method, Rank of a matrix and consistency of system of linear simultaneous equations., Linear dependence, Linear and orthogonal transformation, Eigen values and Eigen vectors, Reduction to diagonal form	11
	Matrices Cayley-,_u]oš}vAdZ_}Œ_uAUA^ÇoÀ_•š_Œ[•AdZ_}Œ_uAAA~statements only), Solution of second linear differential equation with constant coefficient by matrix method. Largest Eigen value and corresponding eigen vector by iteration.	l order 11
	Partial Differential Equations	
IV	>]vŒAW_Œš]_oA_]((_Œ_vš]_oA_<µ_š]}v•A(]Œ•šAA}ŒŒA_v_A(]Œ•šAPŒA]X_XA>_P form, Linear homogeneous equations of higher order with constant coefficients Method of separation of variables	Œ_vP_[∙A 11
v	Fourier series and Fourier Transforms Periodic functions and their Fourier series expansion, Fourier Series for even and odd functions, Change of interval, Half range expansions, Fourier integrals and Fourier Transforms.	12
		60

- 1. Higher Engineering Mathematics By B.S.Grewal
- 2. Probability and Statistics by Murray R Spiegel
- 3. Higher Engineering Mathematics By H.K.Dass
- 4. A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal

::7::

GONDWANA UNIVERSITY, GADCHIROLI

COURSE :B.E. III SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:NETWORK ANALYSIS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes	Credits
			duration)	
04	01	03	05+03=08	04+02=06

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS
I	Nodal and Mesh analysis of networks, source transformation, mutual inductances in mesh and nodal analysis, Duality.	12
=	E_šÁ}ŒlAdZ_}Œ_u•A~_‰‰o]š]}v•Aš}AAv_šÁ}Œl••WA^μ‰_Œ‰}•]š]}vAšZ_}Œ_uUAdZ_ネ šZ_}Œ_uUAE}Œš}v[•AšZ_}Œ_uUAD_Æ]uμuA‰}Á_ŒAšŒ_v•(_ŒAšZ_}Œ_uUAZ]‰Œ}_]šÇAšZ_ D]oou_v[•AšZ_}Œ_uUAC}u‰_v•_š]}vAšZ_}Œ_uUAd_oo_P_v[•AšZ_}Œ_uX	_v]v[∙A _}Œ_12∪A
=	Fourier series, Evaluation of Fourier coefficients, waveform symmetries as related to Fourier coefficients, Exponential form of Fourier series, steady state response to periodic signals, Fourier integral and transform. Graph theory: Graph of a network, tree, co-tree, basic loop and basic cut set, incidence matrix, cut set matrix, Tie-set matrix.	12
IV	Definition of Laplace transform, properties of Laplace transforms, Laplace transform theorems, inverse Laplace transform, Laplace transform of periodic functions, Convolution integral, Partial fractions, applications of Laplace transforms. Transient behavior, initial conditions, concept of complex frequency, driving points and transfer functions, Poles and zeros of network functions, restrictions on Pole and Zero locations for driving point functions, restrictions on Pole and Zero functions, time domain behavior from the Pole and Zero plot.	12
v	Relationship of two-port variables, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationships between parameter sets, parallel connection of two port networks. Three phase unbalanced circuits and power calculations.	12
		60

Recommended Books

- (1) Network analysis by M.E. Van Valkenburg, Prentice Hall of India Pvt.Ltd.
- (2) Linear network theory by Kelkar and Pandit, Pratibha publication, Nagpur.
- (3) Engineering Network analysis and filter design by Gopal Bhise, Prem Chaddha, D. Kulshreshtha, Umesh publication, Delhi.
- (4) Circuit theory by a. Chakrabarti, Dhanpat Rai and co.
- (5) Circuit and Networks by A. Sudhakar, Shyammohan, Tata McGraw Hill.

(Minimum Eight practical based on above syllabus)

COURSE : **B.E. III SEMESTER (ELECTRONICS & POWER ENGG.)** SUBJECT: **C & DATA STRUCTURE**

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	03	08	04+02 = 06

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	тw	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS
	Introduction to C Programming	
	Variables, Datatypes, Declarations, Operators, Expressions, Decision Making the While, The	12
1	For, The Do While Loops, Nesting of loops, Switch, Defining & Using Functions, Parameter	
	passing, Recursion, Pass by value, Pass by Reference, Storage Classes.	
	Introduction to Data Structure	
	Arrays, Matrix Manipulation,	
П		12
	Searching & Sorting Algorithms	
	Quick Sort, Merge Sort, Heap Sort, selection & Bubble Sort, Linear Search, Binary Search.	
	Structures & Pointers	
	Using structures, arrays of structures, Pointers for structure, pointer to pointer Linked Lists:	
Ш	Singly Linked List, Examples on linked list, circular linked list, doubly linked list & dynamic	12
	storage management.	
	Stacks & Queues	
	Stacks & Queues using array, Fundamentals, Evaluation of expressions, Polish expressions &	
IV	their compilation, Application of stacks, Multiple stacks & Queues, Priority queues, Circular	12
	Queue	
	Trees	
	Basic Terminology, Basic trees, Binary tree representations, binary tree traversals, binary	
	search trees, Application of trees.	
v	Graphs	
	Definition & terminology, Graph representation : matrix representation of Graph, List of	12
	structure, other representation of graphs, Breadth First Search, Depth First Search, Hash	
	Tables.	
		60

- 1. Fundamentals of Data Structures by Horowitz & Sahani , Galgotia Publication
- 2. C & Data Structures by P. S. Deshpande, O. G. Kakde, Edition 2008, Dreamtech Press Publication
- Programming in ANSI C by E. Balguruswamy, 6th Edition
 Let us C by Y.P. Kanetkar, 8th Edition, BPB Piblication.

COURSE :B.E. III SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:ELECTRONIC DEVICES AND CIRCUITS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	03	07	03+02 = 05

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	тw	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS
I	Semiconductor Devices and Applications Diode as a Half Wave Rectifier, Full Wave Rectifier, Breakdown in diodes, Zener and Avalanche Mechanism, Voltage regulator using Zener Diode, Characteristics of BJT, Biasing of BJT, Fixed Bias, Collector to Base Bias, Self Bias, Stability Factor, Thermal Runaway, Thermal compensation	11
	Small Signal Analysis of BJT	
Ш	Two Port Network, H Parameters, Small Signal Analysis of CB, CE & CC Amplifiers, Millers Theorem, High Input Impedance Circuits, Bootstrapping	09
	Power Amplifiers	
111	Classification of amplifiers, Class A, Class B, Class AB, Push pull Configuration, Complementary Symmetry, Harmonic Distortion, Cross Over Distortion	07
	Oscillators	
IV	Feedback Topologies, Voltage Shunt, Voltage Series, Current Shunt & Current Series Feedback, Barkhausen Criterion, Hartley, Colpitt, RC Phase Shift, Wein Bridge & Crystal Oscillator.	09
	FET and its Analysis	
v	JFET: Principle of Operation, Characteristics, Biasing, Small signal Analysis of CG, CS, & CD amplifiers, MOSFET: Principle of Operation, Characteristics, Enhancement Type, Depletion Type MOSFET	09
		45

- 1. Electronic Devices and Circuits tMillman and Halkias
- 2. Integrated Electronics -Jacob Millman and Christos C. Halkias
- 3. Electronic Devices and Circuits- Allen Mottershead .
- 4. Electronic Devices and Circuits-S.Salivahanan and N.Suresh Kumar.
- 5. Electronic Principles tAlbert Malvino

::10::

GONDWANA UNIVERSITY, GADCHIROLI

COURSE :B.E. III SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:POWER GENERATION SYSTEMS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	00	00	04	04

Evaluation System						
	Theory Practical					
MSE	IE	ESE	TOTAL	тw	POE	TOTAL
10	10	80	100	NA	NA	NA

UNIT	CONTENTS	HOURS	
	Sources of Electrical Energy		
	Coal, oil and natural gas, water, power, nuclear fission & fusion, their scopes and	04	
	Potentialities for energy conversion.		
	Power Generation		
I	Different factors connected with a generating stations, connected load, maximum demand , der	hand factor	load factor,
	diversity factor, plant capacity and utilization factor, load curve, load duration curve, load survey	,	
	base load and peak load station, advantages of interconnection	08	
	Thermal Power Plant		
	Selection of site, working of various parts: Economizer, air pre-heater, condenser,		
	cooling tower, coal handling system, ash handling system., cost of generation.	12	
П	Effect of different factors on cost.		
	Hydro Power Plant		
	Hydrology, stream flow, flow duration curve, power duration curve, mass curve reservoir		
	capacity, types of hydro plants and their field of use,	06	
	Pumped storages plant & their utility, surge tanks, governing characteristics of turbine and		
	hydro generators.	06	
	Nuclear Station		
	Principle of nuclear energy, materials , types of nuclear reactors, breeder reactors, location,		
	material for moderator and control rods, cost economics	06	
N/	Different consideration of flat rate and two part, three part, and block rate tariff. Economical	00	
IV		06	
	Non-conventional sources of energy		
	Solar Energy : Introduction, principle & applications, Photovoltaic Cell, A basic photovoltaic	00	
v	system integrated with grid, use of photovoltaic system, solar energy storage. Solar electric	00	
v	power generation		
	wind Energy: introduction, Principle & Applications, wind Energy Conversion, Dasic		
	Diagos Diants and Applications – Diamass Diants and applications	06	
	ן סוטצמג דומותג מווע אַנְשְׁוּוּלמנוטווג, , שוטווומגג דומותג מווע מַנְשְׁוּוּלמנוטווג	60	
		00	J

- 1. Elements of Electrical Power Station Design by M.V. Deshpande
- 2 Electrical Power Stations by Car
- 3. Electrical Power Station Control by H.P. Young
- 4. Non-conventional Energy sources by G.D. Rai
- 5. Energy conservation and Power Generation by L.D. Agrawal and G.K. Mittal

:: 11 ::

GONDWANA UNIVERSITY, GADCHIROLI

COURSE :B.E. IV SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:ELECTRICAL ENGINEERING MATHEMATICS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	00	00	04	04

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	тw	POE	TOTAL
10	10	80	100	NA	NA	NA

UNIT	CONTENTS	HOURS
I	Z- Transform Definition and properties, Inverse Z-transform by partial fractions and convolution theorem. Application to solve difference equation with constant coefficients.	10
II	Complex Variables Analytic functions Cauchy Riemann conditions, Conjugate functions, Singularities, C_µ_ZÇ[• /vš_PŒ_oAšZ_}Œ_uA_v_AC_µ_ZÇ[• A/vš_PŒ_oA&}Œuµo_A~•š_š_u_vš• AA}voÇ• >_µŒ_vš[• AdZ_}Œ_uA~•š_š_u_všA}voÇ• AAZ •] µ AdZ_}Œ_uA_v_A ‰‰o] š]}vA}(AAŒ_ to evaluate Real integral of the form F(x) has no zeros on real axis.	•]_µ <u>1</u> \$ s
	Numerical Methods Solution of algebraic and transcendental equations by False position method, Newton-Raphson method. Non linear simultaneous equations by Newton-Raphson Method. Solution of system of simultaneous linear equations by Gauss Jordan method, Gauss Seidel method, Crouts method.	11
IV	Numerical Methods ^}ομš]}vA}(A}Œ_]v_ŒÇA(]Œ•šA}ŒŒA(]Œ•šA_PŒA_]((_Œ_vš]_oA_‹μ_š]}vA_ÇAd_Ç method, , Runge-<μšš_AðšZA}ŒŒAu_šZ}_UA_μo_Œ[•Au}_](]Au_šZ}_UAD]ov_[•AWŒ]_ Corrector method. Largest Eigen values and corresponding Eigen vector by iteration method.	o}Œ[•A•_Œ]_•/ ;}ŒA11
v	Random Variables, and Probability Distribution Random variables Distribution functions of discrete and continuous random variables, Joint distributions, Mathematical Expectations, Moments, Moments generating function and Characteristic function. Coefficient of skewness and Kurtosis.	14
		60

- 1. Higher Engineering Mathematics by B.S.Grewal
- 2. Probability and Statistics by Murray R Spiegel
- 3. Higher Engineering Mathematics by H.K.Dass
- 4. A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal

:: 12 ::

GONDWANA UNIVERSITY, GADCHIROLI

COURSE :B.E. IV SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:ELECTRICAL MACHINES-I

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes	Credits
			duration)	
04	01	03	08	04+02 = 06

Evaluation System						
	The	ory			Practical	
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS
I	Review of single phase transformer, Three phase Transformer operation and principle, OC. & SC. test on three phase transformer, determination of equivalent circuit parameters, Regulation, Efficiency, Polarity test,	12
II	Various connections with vector groups, Three phase to two phase conversion. Parallel operation of three phase transform_ŒUA^μu‰v_Œ[•Aš_•šUA_μš}šŒ_v•(}Œu_Œ	14
ш	Construction, Basic principle and operation, emf generated, Types according to methods o excitation, Commutation and armature reaction, Compensating winding, Inter-poles, Characteristics, applications	f 10
IV	Construction, principle, Comparison of motor and generator action, Back EMF, torque equation, Types according to methods of excitation, characteristics, applications, Starting and speed control of dc shunt and series motor, Constant horse power & constant torque drive of D.C. Motor.	10
v	Types of induction motor and production of torque. Torque-slip characteristics. No load blocked rotor test, equivalent circuit & determination of equivalent circuit parameters. Circle diagram, losses, efficiency, double cage motor, operating characteristics & influence of machine parameter on the performance of motor	14
		60

Text Books

- 1. Electric Machines, By I.J.Nagrath and D.P.Kothari, Tata McGraw Hill
- 2. Electrical machinery by Dr.P. S. Bimbhra, Khanna Publisher
- 3. Performance & Design Of AC Machines By M.G Ray, CBS Publishers & Distributors
- 4. Electric Machines by Ashfaq Husain, Dhanpat Rai and Co.

Reference Books -

- 1. _X_XA&]šÌP_Œ_o_UACX<]vP•o_ÇA:ŒA_v_Ahu_v•U_o_šŒ]_AD_Z]v_ŒÇ_A McGraw Hill, International Student Edition.
- 2. Theory and Performance of Electrical Machine by J. B. Gupta, S.K.Katariya and Sons
- 3. Electrical Machines by P.K.Mukharjee and S.Chakraborty, Dhanpat Rai Publication

:: 13 ::

GONDWANA UNIVERSITY, GADCHIROLI

COURSE : B.E. IV SEMESTER (ELECTRONICS & POWER ENGG.) SUBJECT: ANALOG & DIGITAL CIRCUITS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	03	07	03+02 = 05

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	тw	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS
I	Introduction to Combinational logic Standard representation for logic functions, Karnaugh Map representation for logic functions, Simplification of sum of products and product of sums, minimization of logical functions for minterms & maxterms [up to 4 var]o_•• U_}v[šAŒ_A_}v_]š]}v• UA_•]PvA_Æ_u‱o_•WA_ Circuits, BCD to seven segment decoders, Code converters ,Adders, Subtractors, (Half & Full), Look ahead carry , ALU, Digital comparator, Parity generator , Parity checker, Multiplexers and Demultiplexers and their use in combinational logic design, Decoders, Encoders	Œ]š ZQ9 š]_A
=	Introduction to Sequential logic One bit memory cell , Introduction to Latches, Concept of clock, Flip-Flops: SR,JK,D,T, Master slave JK Flip-Flop, Use of reset and clear terminals , Characteristics table , Excitation tables Conversion of one type of Flip-Flop to another type of Flip-Flop, applications of Flip-Flops, Registers, Shift registers, Counters (Synchronous, Asynchronous),UP/DOWN Counters, Ring counter, Johnson counter	07
	Basic Operational Amplifier Block Diagram of Operational Amplifier, Operational Amplifier characteristics [ideal and non- ideal], Operational Amplifier Transfer characteristics, Study of IC uA 741,Offset nulling, I/p bias current, I/P offset voltage, O/P offset voltage, Slew rate, CMRR, SVRR, Unity gair bandwidth, Thermal Drift, Gain Bandwidth Product, Error measurement of various parameters	09
IV	Linear Applications of Operational Amplifier Inverting, non-inverting Amplifier, Voltage Follower, Summing amplifiers, integrator, differentiator, Differential amplifier, bridge amplifiers, instrumentation amplifiers, Precision rectifiers, Voltage to current converter, RMS to DC converter, constant current source, constant voltage source	09
v	Non-linear Applications of operational amplifiers & Timer circuits OP-AMP circuits for clipping, clamping ,Comparator, Log amplifier, Antilog amplifier, Schmitt Trigger, Astable, monostable & bistable multivibrators using OP-AMP & 555 Timer IC, Wein Bridge Oscillator , RC phase shift Oscillator, Active filters tButterworth filter up to 4th order	11
		45

Recommended Books

í•_D}__ŒvA_]P]š_oA_o__šŒ}v]_•_UAZXWX:_]vUd_š_AD_'Œ_ÁA,]ooUïŒ_A__]š]}v

î•_&µv__u_vš_o•A}(A_]P]š_oAC]Œ_µ]š•_U_X_v_v_A<µu_ŒUWŒ_vš]__A,_ooA/v_]_

ï•_K‰-_u‰•A_v_A>]v__ŒA/vš_PŒ_š__AC]Œ_μ]š•_UAZ_u_l_všA_X'_Ç_IÁ__UAWŒ_vš]__A,_ooA/v_]_UAïŒ_A__]š]}v

ð•^__•]PvAÁ]šZA}‰-_u‰A_v_A_v_o}PA]vš_PŒ_š}ŒA_]Œ_µ]š•_UA^_ŒP]}A&Œ_v_}UAd_š_AD_'Œ_ÁA,]ooA, 3rd edition

ñ•A_K‰_Œ_š]}v_oA_u‰o](]_ŒA~A>]v__ŒA]vš_PŒ_š__AC]Œ_µ]š•_UZ}__ŒšA&XC}µPZo]vA&Œ___Œ]_IA&X_Œ]•_}ooUAWŒ_vš]__A iœ<u>_A[P]**š**šioA_</u>•]Pv_UAD}Œ]•AD_v}UAWŒ_vš]__A,_ooA/v_]_Uîv_A__]š]}v

(Minimum Eight practical based on above syllabus)

ó•__]P]š_oAWŒ]v_]‰o_•A~A_‰‰o]__š]}v•_U_XWXD_oÀ]vo,D.P.Leech, Tata McGraw Hill,4th edition

:: 14 ::

GONDWANA UNIVERSITY, GADCHIROLI

COURSE :B.E. IV SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:ELECTRICAL MEASUREMENTS & INSTRUMENTATION

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	03	07	03+02 = 05

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	тw	POE	TOTAL
10	10	80	100	25	25	50

UNIT	CONTENTS	HOURS
	MEASURING INSTRUMENTS	
	Classification, deflecting, controlling, damping torques.Basic principles of operation of	
I.	Ammeter & Voltmeter, PMMC, Moving Iron, and Electrodynamometer type instrumen	ts. 05
	Principle of operation, Torque Equation, Errors, merits & demerits of each type.	
	Analog & Digital instruments. Advantages of digital instruments. Absolute & secondary	04
	Instruments., Indicating & Recording type instruments. Shunt & Multiplier	
	GENERALIZED INSTRUMENTATION SYSTEM	
	General block diagram of instrumentation system, Active and passive transducers. Strain	
II	Gauges, Resistive, Inductive & Capacitive Transducers. Transducers for measurement o	05
	Displacement, Velocity, Force, & Torque.	
	Static and dynamic characteristics and performances of instruments. Statistical treatment of	
	measurement errors. Gaussian error distribution, probability tables, combination of errors	04
	MEASUREMENT OF POWER & ENERGY	
	Measurement of active & reactive power in single & three phase circuits, using dynamometer	05
	type instruments. Errors in Power Measurement.	
111	Measurement of Energy in single & three phase circuits using indication type instruments.	04
	Errors in energy measurements. Maximum Demand Indicator.	
	MEASUREMENT OF CIRCUIT PARAMETERS	
	D•μŒ_u_všA }(A o}ÁA Œ_•]•š_vA _ÇA <_oÀ]v[•A _}μ_o_A _Œ]_P_XA A D•μŒ_u_všA }(/	AD_0]БииА
IV	Resistance by Wheatstone Bridge. Measurement of high resistance by loss of charge method.	
	Earth Resistance Tester.	
	Measurement of Inductance & Capacitance: General theory of AC bridges, study of Maxwell,	04
	A• μšÇ[•A~AAA^ Z Œ]vPA Œ] P •UA š š}Œ•A}(A C bridges.	
	MISCELLANEOUS MEASUREMENTS	
	Temperature Measurement: Laws of thermo-electric circuits, thermocouples, thermistors,	0.5
v	optical pyrometers, temperature compensation of temperature sensors. Pressure	05
	measurement: Manometer, Bellows, Bourdon tube, Diaphragms.	
	Dower factor & Frequency Measurement, Constal Theory of Instrument Transferrer	04
	extension of range using CT 8.PT and its applications	04
		45

Recommended Books

1. Electrical Measurement & Measuring Instruments by Golding

2. Instrumentation Devices and Systems by Rangan

3. Electronic Instrumentation & Measurement Technique by W.D. Cooper

4. Electrical and Electronics Measurement & Instrumentation by A.K. Sawhney.

(Minimum Eight practical based on above syllabus)

:: 15 ::

. GONDWANA UNIVERSITY, GADCHIROLI

COURSE :B.E. IV SEMESTER (ELECTRONICS & POWER ENGG.)SUBJECT:ELECTRO MAGNETIC FIELDS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	00	05	05

Evaluation System								
Theory				Practical				
MSE	IE	ESE	TOTAL	тw	POE	TOTAL		
10	10	80	100	NA	NA	NA		

UNIT	CONTENTS	HOURS	
I	$s_\check{s}\ (e_A,v_a,v_a)\ (e_A)=A^{A}$ Vector analysis: Idea of vector & scalars, vector algebra, vector addition, vector subtraction, dot product, scalar product in Cartesian co-coordinator system, conversion of variables from Cartesian to cylindrical system and vice-versa. Spherical co-ordinate system, transformation of Cartesian to spherical and vice versa.	14	
-	_}μo}u_[• Ao_ÁUAs}oμu_A_Z_ŒP_A_v•]šÇ Static Electric field, _ošŒ]_A&]_o_A/vš_v•]šÇA_v_A_v•]šÇWAA(]_o_A}(AZv[A‰}]všA_Z_ŒP continuous volume charge distribution, field of line charge, field of sheet charge. Introduction and application of Gauss law, divergence theorem.	_•A 10 (]_0	_A_µ_ tc
ш	Energy and Potential Energy: Expended in moving a point charge in an electric field. Line Integral. Potential: Potential difference and potential , potential field of a point charge, Potential gradient, Energy Density in Electrostatic Field, Dipole and Dipole Moment.	14	
IV	$\label{eq:second} \begin{tabular}{lllllllllllllllllllllllllllllllllll$]}v 10	
v	Steady Magnetic, Time Varying fields & Uniform Plane Waves Steady Magnetic fields: B]}šA^_À_ŒŠ[•Ao_ÁUA_u‰_Œ_[•A_]Œ_µ]š_oAo_ÁUACµŒoUA^šŒ Magnetic flux And Magnetic Flux Density, Scalar & Vector magnetic potential. Time Varying Fields: D_ÆÁ_oo[•A_<µ_š]}v•WA&_ŒÇ[•A>_ÁUA_]•‰ou_všACµŒŒ_všA U P W: Elementary Idea of electromagnetic waves, Uniform Plane Waves.	12 }l_• AdZ_}O _v_Av•]š	E_uUA y.
		60	

Recommended Books

- 1. Hayt W.H : Engineering Electromagnetics
- 2. N. N. Rao: Elements of Engineering Electromagnetics
- 3. TVS Arun Murthy: Electromsgnetic Fields
- 4. Joseph A Edminister: Electromagnetics (Schaums Outlines)

Note: Syllabus for the V to VIII Semester courses shall be prescribed in due course of *time*.