<u>Teaching Scheme and Syllabi of B.E. (Chemical Engineering)</u> (2019-2020)

First Year

1st SEMESTER

S. No.	Course code	Courses	hr	nta s pe		Total contact	Mid Term	End Term	Total Marks	Credits
			we	ek T	Р	hours				
1.	BS101	Mathematics –I	3	1	-	60	50	50	100	4
2.	BS102	Physics	3	1	-	60	50	50	100	4
3.	BS103	Chemistry (Inorganic)	3	-	-	45	35	40	75	3
4.	HSMC-	Communication Skills	1	-	-	15	10	15	25	1
	HASS 101									
5.	ESC-GES	Engineering Graphics	-	-	3	45	40	-	40	1.5
	151									
6.	ESC-GES	Engineering Workshop	-	-	3	45	40	-	40	1.5
	152									
7.	BS152	Physics Lab.	-	-	2	30	25	-	25	1
8.	BS153	Chemistry (Inorganic)	-	-	3	45	40	-	40	1.5
		Lab.								
9.	HSMC-	Communication Skills	-	-	2	30	25	-	25	1
	HASS 151	Lab.								
		Total	10	2	13	375	315	155	470	18.5

Note:

- NSS/NCC/Sports proficiency/Community services/Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)
- Discipline (1st to 4th year, 1 credit to be earned in 8th semester)
- L: Lectures/Week, T: Tutorials/Week, P: Practical Hours/Week

Assessment will consist of the following components

- 1. Mid-Term
 - a. One best of two minor tests (50% of Mid -term marks)
 - b. Assignments (20% of Mid-term marks)
 - c. Class Surprise Tests/ Quizzes/Presentations/Term paper (20% of Mid-term marks)
 - d. Attendance (10% of Mid-term marks)
- 2. End -Term

2nd SEMESTER

S. No.	Course code	Courses	hr	Contact hrs per week		hrs per		hrs per	Total contact hours	Mid Term	End Term	Total Marks	Credits
			L	Т	Р								
1.	BS104	Mathematics –II	3	1	-	60	50	50	100	4			
2.	BS105	Chemistry (Organic)	3	-	-	45	35	40	75	3			
3.	ESC- GES103	Electrical & Electronics Engineering	3	1	-	60	50	50	100	4			
4.	PCC- CS101	Material & Energy Balance	3	1	-	60	50	50	100	4			
5.	ESC- GES104	Computer Programming for problem solving	2	-	-	30	25	25	50	2			
6.	ESC- GES153	Electrical & Electronics Engineering Lab.	-	-	3	45	40	-	40	1.5			
7.	BS155	Chemistry (Organic) Lab.	-	-	3	45	40	-	40	1.5			
8.	ESC- GES154	Computer Lab.	-	-	2	30	25	-	25	1			
		Total	14	3	8	375	315	215	530	21			

Note:

- NSS/NCC/Sports proficiency/Community services/Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)
 Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

L: Lectures/Week, T: Tutorials/Week, P: Practical Hours/Week

Assessment will consist of the following components

- 1. Mid-Term
 - a. One best of two minor tests (50% of Mid -term marks)
 - b. Assignments (20% of Mid-term marks)
 - c. Class Surprise Tests/ Quizzes/Presentations/Term paper (20% of Mid-term marks)
 - d. Attendance (10% of Mid-term marks)
- 2. End -Term

SYLLABUS OF B.E. CHEMICAL ENGINEERING 2019-2020 FIRST YEAR

1st SEMESTER

Title	MATHEMATICS-I		Credits	04		
Code	BS101	Semester:-1 st	LTP	3 1 -		
Max.Marks	End term- 50	Mid term- 50	Elective	Ν		
Pre requisites			Contact	60		
_			Hours			
Objectives	To make the students					
		behaviour of infinite se				
		epts related to funct	ions of several	variables and their		
	applications.					
	 Understand the concept of Vectors and its applications. Learn the methods of evaluating multiple integrals and their applications to 					
		<u> </u>	ple integrals and	their applications to		
	various problems		1 1' 1' CC	<i></i>		
		ds to formulate and s		ential equations and		
		lve engineering proble				
Note for the	The semester question pa					
Examiner	equal marks. The paper from Section A and Sect					
	selecting atleast two que					
	will be 3 hrs.	stions nom each seet				
	will be 5 ms.	SECTION- A				
Infinite Series:		5201101(11				
Infinite series	and convergence, alterna	ting series, power se	eries and converg	ence. Taylor's and		
Maclaurin's Ser	ries.	• •	-	•		
Multivariable l	Functions:					
Limit, Continu	ity and Partial Deriva	atives; Euler's Theo	orem for Homo	geneous functions;		
Differentiability	v, Linearization and Diffe	erentials; Chain rule;	Extreme values	and Saddle Points;		
	pliers; Taylor's Formula.					
	tial Calculus and Integra					
	rgence, Curl, Statement of	of Green's, Gauss and	d Stoke's Theore	m and their simple		
applications.						
~ ** * ~		SECTION- B				
Solid Geometry						
	Cones, Cylindrical and Sph	erical Polar Coordinat	es			
Integral Calcul		f calida of normalistica	. Longtha of alon	A mana of		
	plane curves; Volumes of lution. Double integrals in					
				grais in Rectangular,		
Cylindrical and Spherical coordinates, Substitutions in Multiple Integrals. Ordinary Differential Equations:						
•	t differential equations, In	tegrating factor Ortho	oonal trajectories	Second and Higher		
	order Linear Differential Equations with constant coefficients, Differential Operators, Methods of Variation of Parameters and Undetermined Coefficients, Euler Cauchy Equation, Wronskian.					
Text books:						
	Pearson Education					
	2. E. Kreyszig: Advanced Engineering Mathematics, Eighth Edition, John					
	Wiley.			6 - <u>-</u>		
Reference		gher Engineering Mat	hematics, Tata Mo	Graw Hill.		
Books:		Higher Engineering				
	Publishers, Delhi.			,		
		tions, Frank Ayers, TM	1H			
	1	, ,				

Course	The students are able to
Outcomes	1. test the behaviour of infinite series.
	2. analyze functions of several variables and their applications.
	3. operate vectors and convert line integral to surface integral to volume
	integral.
	4. evaluate multiple integrals and apply them to practical problems.
	5. solve linear differential equations.

Title	PHYSICS				Credits	04
Code	BS102		Semester:-1 st		LTP	3 1 -
Max.Marks	End term- 50	Mid tern	n- 50		Elective	Ν
Pre requisites					Contact	60
					Hours	
Objectives	Basic concepts of optics and its applications, electromagnetism and magnetism properties, and Structural characterizations.					
Note for the Examiner						

SECTION A

1. Optics and Fibre Optics (12L + 4T)

- Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications.
- Polarisation: Introduction, polarisation by reflection, polarisation by double refraction, scattering of light, circular and elliptical polarisation, optical activity.
- Fibre Optics: Introduction, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres.
- Lasers: Introduction to interaction of radiation with matter, principles and working of laser: population inversion, pumping, various modes, threshold population inversion, types of laser: solid state, semiconductor, gas; application of lasers.

2. Structural Characterization: (16 hours+5T)

Crystal Lattice, points groups, Bravais lattices, crystal systems, X ray diffraction Symmetry X-ray generation, Bragg Law, factors influencing intensity, Techniques, Indexing, precise lattice parameter determination, residual stress measurement

SECTION B

3. Electromagnetism and Magnetic Properties of Materials (17L + 6T)

Dielectric Materials: Review of basic formulas, dielectric constant and polarizability, sources of polarizability, classical treatment of dipolar, ionic and electronic polarizability, piezoelectricity, ferroelectricity. (4)

Magnetic Materials: Review of basic formulas, magnetic susceptibility, classification of materials, Langevin diamagnetism, paramagnetism (only classical treatment), magnetism in metals, ferromagnetism in insulators, anti-ferromagnetism and ferrimagnetism, ferromagnetism in metals, ferromagnetic domains, hysteresis (8)

Superconductivity: Zero resistance, occurrence of superconductivity, Meissner effect, critical field, thermodynamics of superconducting transitions, electrodynamics of superconductors, qualitative idea of BCS theory. (3)

Nanotechnology: Nanomaterials and its applications, chemical and physical synthesis techniques of nano-powder and thin films. (2)

Text Books	1. Introduction to Solid State Physics: Charles Kittle 8 th Ed.
Reference	a. Material science and Engineering – An Introduction by William D
Books	Callister, Jr, Sixth Edition, John Wiley and Sons.
	b. Material science and Engineering – A First Course by V.Raghvan Fourth Edition, EasternEconomy Edition
	c. Introduction to Solids (Tata McGraw Hill, Third Edition) - Leonid V
	Azaroff
Course	Assessment will consist of the following components
Assessment	1.Mid-Term
Methods	a. One best of two minor tests (50% of Mid -term marks)
1. Icentous	b. Assignments (20% of Mid-term marks)
	c. Class Surprise Tests/ Quizzes/Presentations/Term paper (20% of Mid- term marks)
	d. Attendance. (10% of Mid-term marks)
	2.End –Term
Course outcome	5

Students will be familiar with

- Bragg's Law and introduced to the principles of lasers, types of lasers and applications
- Various terms related to properties of materials such as, permeability, polarization, etc.
- Some of the basic knowledge of structural properties, crystal structure as well as magnetic and dielectric properties of materials

Title	CHEMISTRY (INORGANIC)		Credits	03
Code	BS103	Semester:-1 st	LTP	3
Max.Marks	End term- 40	Mid term- 35	Elective	Ν
Pre requisites			Contact	45
-			Hours	
Objectives				
Note for the				
Examiner				

Section A

Introduction to quantum theory for chemical systems : Quantum theory and atomic structure: Introduction to wave mechanics, the Schrodinger equation, as applied to hydrogen atom, the origin of quantum numbers and shapes of orbitals from the Schroedinger equation . 06 hrs

Chemical Bonding and structure Part I : Molecular orbital and valence bond theories of bond formation and application of molecular orbital theory to the formation of homonuclear and heteronuclear diatomic molecules. Bonding in Coordination Compounds: Theories of bonding i.e., Werner's theory, effective atomic number, valence bond theory, crystal field theory, crystal fields plitting in tetrahedral, octahedral and distorted octahedral (square planar) crystal fields. Kinetic and Thermodynamic aspects of coordination compounds (crystal field stabilization energies of octahedral and tetrahedral complexes, spectrochemical series). Electronic spectra and magnetic properties of complexes.. 10 hrs

Homogeneous catalysis/mechanism of industrially important reactions :Organometallic Compounds: Nomenclature, types of ligands and bonding in organometallic compounds, The catalytic properties of the organometallic compounds and the mechanism of homogeneous catalysis for important industrial processes like hydrogenation, polymerisation and hydroformylation etc. 06 hrs

SECTION B

Chemical Bonding and structure Part II:LigandSubstitution reactions in complexes with coordination numbers 4 and 6 and their mechanism. Kinetic aspects of substitution in coordination

compounds; Magnetic behaviour of complexes – Para magnetism, diamagnetism, ferromagnetism and antiferromagnetism and measurement of magnetic susceptibility of complexes by Guoy's method. 09 hrs Inorganic polymers : Types of inorganic polymers, polyphosphazenes, polysiloxanes –their structures and properties. 05 hrs
Bio-inorganic Chemistry of Iron and cobalt - Heme proteins, Non-Heme iron proteins, Iron
Sulphur proteins and coenzyme B_{12} ; 05 hrs
Metal Toxicology : Toxic effects of heavy metals with special reference to Cd, Pb, Hg and As.
04hrs
Recommended Books:
1. Sharpe, A. G. : Inorganic Chemistry, 3rd Edition, Longman Publishers ELBS, 1992.
2. Lee, J. D. : Concise: Inorganic Chemistry, 5th Edition, Chapman and Hall Publishers, 1996.
3. Cotton, F. A. & Wilkinson, G. : Advanced Inorganic Chemistry, 3rd Edition, Wiley Eastern
Ltd., 1982.
4. Cotton, F. A. & Wilkinson, G. : Basic Inorganic Chemistry, Wiley EasternLtd., 1987. 12
5. Mark, J., West, R. &Allcock, H. : Inorganic Polymer, Prentice Hall, New Jersey Publishers,
1982.
6. Basola, F. & Pearson, R. G. : Inorganic Reaction Mechanism, 2nd Edition, Wiley Eastern
Publishers, 1984.
7. Amdur, Doull&Klaasen (Eds.) :Casarett and Doulls Toxicology, Pergamon Press, New York,
1991.
8. William &Burson (Eds.) : Industrial Toxicology: Safety and Health applications in the work
place, Van Nostrand – Reinhold, New York, 1985.

 Inorganic Chemistry: Principles Of Structure And Reactivity, 4e By James E. Huheey, Ellen A. Keiter, Richard L. Keiter

Title	COMMUNICATIO	N SKII I S	Credits	1	
Code	HSMC-HASS 101	Semester:- 1 st	LTP	1	
				-	
Max. marks	End term- 10	Mid term- 15	Elective	N	
Pre-			Contact	15	
requisites			hours		
Objectives	1. To incul	cate effective communication	skills in stud	ents for better	
	performa	nce in professional as well as pers	onal life		
	2. To impro	ve personality of students with a	dvanced techn	iques in verbal,	
	-	and para verbal communication			
Note for the		n paper of the subject will be of 5		g 8 questions of	
Examiner	equal marks. The paper	per will be divided into two par	ts having four	questions each	
	from Section A and Section B. The candidate is required to attempt total 5 questions				
	selecting atleast two questions from each Section. The duration of End Term exam				
	will be 3 hrs.	1			
	L	SECTION A			
Advanced Con	nmunication Skills				
Scope, Signifi	cance, Process of	Communication in an Organi	zation, Types	s and Levels,	
Communication	Networks, Technical	Communication, Tools of Effectiv	ve Communica	tion, Barriers of	
Communication	1.				
Speaking Skills	5				
Interpersonal C	Interpersonal Communication, Presentation Skills, Voice Modulation, Persuasion, Negotiation and				
Linguistic Programming, Public Speaking, Group Discussions, Interviews and Case Studies,					
Conducting Meetings and Conferences					
Personality Development					
Body Language and importance of Non Verbal communication, Social and Professional etiquettes.					
	<u>SECTION B</u>				
Communicatio	n and Media				

Social and Politic	al Context of Communication, Recent Developments in Media					
	iques in Speaking Skills					
Importance of Lis	stening/Responding to native and global accents, Telephonic Interviews and Video					
Conferencing						
Advanced Techn	iques in Technical Writing					
Job Application, O	CV Writing, Business Letters, Memos, Minutes, Reports and Report Writing					
Strategies, E-mail	Etiquette, Blog Writing, Instruction Manuals and Technical Proposals					
Text Books	1. Ashraf, M. Rizvi, "Effective Technical Communication", McGraw Hill					
	2. Bovee, Courtland L. and John, V. Thill, "Business Communication Today",					
	Pearson Education					
Reference	1. Sharma, R.C. and Mohan, K., "Business Correspondence and Report					
Books	Writing", Tata McGraw Hill					
	2. Raman, Minakshi and Sharma, S., "Technical Communication: Principles and					
	Practice", Oxford University Press					
	3. Scott, Bill, "Communication for Professional Engineers", Thomas Teleford					
	Ltd.					
	4. McMurrey, David A. and Joanne, Buckley, "Handbook for					
	TechnicalWriting", Cengage Learning					
	5. Harve, L., Locke, W. and Morey, A., "Enhancing Employability and					
	Recognizing Diversity", Universities UK and CSU					
	6. Lock, R., "Student Activities for taking charge of your Career Direction and					
	Job Search", Cole Publishing					
~	Pease, A., "Body Language", Sheldon Press					
Course	Assessment will consist of the following components					
Assessment	1.Mid-Term					
Methods	a. One best of two minor tests (50% of Mid -term marks)					
	b. Assignments (20% of Mid-term marks)					
	c. Class Surprise Tests/ Quizzes/Presentations/Term paper (20% of Mid-term marks)					
	d. Attendance. (10% of Mid-term marks) 2.End –Term					
Course						
Outcomes	1. Gain proficiency in English language as medium for communication in both professional and personal life					
Outcomes	2. Increase in employment prospective of students by developing technical					
	2. Increase in employment prospective of students by developing technical aspects of communication.					
	3. Personality development of students by thorough knowledge of effective and					
	enhanced communication skills					

Title	ENGINEERING GRAP	HICS (PRACTICAL)	Credits	1.5	
Code	ESC-GES 151	Semester:-1 st	LTP	3	
Max. Marks	Practic	al- 40	Elective	Ν	
Pre requisites			Contact	45	
			Hours		
PRACTICAL					
Objectives	Objectives of the Engineering Drawing course are:				
	1. To introduce the s	1. To introduce the students to visual science in the form of technical graphics.			
	2. To give general in	2. To give general instructions related to Theory of Orthographic Projection of			
	points, lines, plan	points, lines, planes and solids as per the BIS codes prevalent to drawing			
	practices.				
	3. To upgrade the basic understanding and visualization of geometric objects				
	and machine parts by introducing the students to section of solids,				
	intersection and	development of sur	faces, isometri	c projection and	
	orthographic proje	ection of simple solids/b	locks.		

	4. To introduce the students to Computer graphics to enhance understanding of the subject.			
1. Introduction to	1. Introduction to engineering drawing, instruments, symbols and conventions in drawing practice.			
2. Types of lines a	nd BIS codes for lines, dimensioning			
	nethods of projections: Orthographic projection, Isometric projection			
	ints, lines, planes and solids on principal and auxiliary planes.			
5. Sectioning of sc	lids, Intersection of solids			
6. Development of	surfaces			
7. Drawing of thre	aded fasteners and assembly drawing			
8. Introduction to	CAD software.			
Recommended	mended 1. P.S. Gill: Engineering Drawing			
Books:	2. R.K. Dhawan : A textbook of engineering Drawing, S. Chand & Co. Ltd. New			
	Delhi 2 nd edition.			
	3. P.S.Gill: Machine Drawing			
	4. Sham Tickoo : Understanding AutoCAD 2006, Wiley Publication			
	5. James D. Bethune : AutoCAD, Pearson Publishers			
Course	The students will be assessed based upon the practical assignments and viva			
Assessment	voce.			
Methods				
Course	Student will be able to			
Outcomes				
	2. visualize the different types of geometrical objects and the assembly			
	drawing of machine parts.			

Title	ENGINEERING WORKSHOP (PRACTICAL)	Credits	1.5
Code	ESC-GES 152 Semester:- 1 st	LTP	3
Max. marks	Practical – 40	Elective	Ν
Pre-		Contact	45
requisites		hours	
PRACTICAL			
Objectives	• To make the students understand the need and	l importance o	f different
	manufacturing techniques.		
	• To introduce the different tools and equipment	its used in mec	hanical
	workshops and develop the skill to use the sa	me.	
	: Description and use of carpenter's tools, Wood and		
•	vood. Different types of timber in common use, ma	iking of lap j	oint, Bridle joint,
dovetail joint an	5		
	Exercise of wiring in link clip and casting and causin		
-	ies and with 2 ways switches, Connecting energy met		
•	wiring installation for insulation resistance, Relevant		-
	Classification of fabrication processes, machine tool		
	ne, shapper, milling and drilling machines, power h		
	Simple turning, threading, drilling board and knurling		
•	uction to electric arc welding, gas welding and their u	ise in making	different types of
	int, butt joint and T joint.		
Reccomended	1. Raghuwanshi, B.S.: A course in Workshop to	echnology, Vo	1 1 & II, Dhanpat
Books	Rai & Sons, New Delhi.		
	2. Swarn Singh: Workshop Technology.		
Course	Students will be able to		
Outcomes	1. Understand the theory of different manufac	turing techniq	ues and tools .
	2. Do practices by hand		

Title	PHYSICS	LAB.	Credits	1
Code	BS152	Semester:- 1 st	LTP	2
Max. marks		Practical – 25	Elective	Ν
Pre-requisites			Contact hours	30
Objectives				
	udents the firs	thand experience of verifyir	ng various theoretical con	cepts learnt in
theory courses.		1 2	e	1
) experiments	to illustrate the concepts lea	arnt in Physics (Number of	of lab. Hrs. 2
per experiment)	1		•	
		p of the given semiconducto	r by four probe method.	
		a given semiconductor		
		constant of the given materi	als.	
		he ferromagnetic materials.		
		/m for electron by long sole		
		agnetic field with distance	along the axis of a circul	ar coil carryin
current by plo				
		f ultrasonics waves in a give		
		of A.C. mains using a sono		
		a capacitor using flashing an		
	between cur	rent and frequency in a seri	es LCR circuit and to fin	nd the resonar
frequency.	1 .1 0		1	
		odium light using Fresnel's		
		ength of He-Ne laser using the		
		dth using the diffraction pat		
		th of sodium light by Newto		
		th of sodium light using a d		
		n of sugar solution using a B nd used it find the refractive		
		ticles by chemical methods		ization through
X-ray diffract		ticles by chemical methods		ization throug
		and gap of nanomaterial usin	ng UV vis spectroscopy	
		spray pyrolysis technique.	ing 0 v-vis specifoscopy.	
		ing spin coater technique.		
Text Books		ractical Physics by CL Arora,	S Chand & Co	
I CAL DOOKS		Engineering physics by S.K. Sri		
Reference Books		of practical physics by Willia		
Marcheller Duors		e er praedear physics by Willia		
Course Assessmen	t One *proie	ct out of 6 carries 40% marks	s, 20% for respective viva	and 20% for
		ams and 10% for attendance.	,	
Methods				
<u>C</u>	The student	t will goin		
Course outcomes	The student	i will galli		

• Proficiency in technical aspects of performing the experiments.

• Proficiency in designing scientific projects

Title	CHEMISTRY	(INORGANIC) LAB.	Credits	1.5
Code	BS153	Semester:- 1 st	LTP	3
Max. marks		Practical – 40	Elective	Ν
Pre-			Contact	45
requisites			hours	
I. Vo	lumetric Analysi	s :		
(i) Redox 7	Titrations :-Titrati	ions involving		

a) KMnO4 (Estimation of C2O4 -2) 02
b) K₂Cr₂O₇ (Estimation of Fe+2/Fe+3) 02
c) Iodine [Iodometry&Iodimetry] (Standardisation with Sodium Thiosulphate,Estimation of Cu+2, AsO3 -3 and Sb+3) 04
(ii) Complexometric Titrations- Determination of Zn+2 by EDTA titration. 02
II Gravimetric Analysis

a) Estimation of Ba+2/SO4 -2 as BaSO4

b) Estimation of Fe+2/Fe+3 as Fe2O3 04

b) Estimation of Fe+2/Fe+3 as Fe2O3 U

Text Book: Vogel's Qualitative Inorganic Analysis, 7th Ed. By G. Svehla, Pearson Education.

Course Outcomes

The student will be able to

- 1. apply the concept of normality, molarity and oxidation and reduction and apply redox titrations involving potassium dichromate and Iodine
- 2. use Complexometric Titrations to determine metal ions by EDTA method.
- 3. use gravimetric procedures for estimation (Estimate $Ba^{+2}/SO4^{-2}$, and Fe^{+3})

Title	COMMUNIC	CATION SKILLS LAB.	Credits	1
Code	HSMC-	Semester:- 1 st	LTP	2
	HASS 151			
Max. marks		Practical – 25	Elective	N
Pre-			Contact	30
requisites			hours	
Objectives		p better pronunciation and communi		
	2.To be ab	e to face interviews and participate	in conferences of	or any personal or
		ls discussions with confidence.		
		p technical writing skills.		
	4.To be abl	e to articulate ones voice and overcon	ne stage fright.	
0	l Communicat			
		unication at different levels of organi	ization, Role Play	y, Interaction with
Bosses and Co	<u> </u>			
Speaking Tecl	A			
1		articipation in Group Discussions	and Case Stud	lies, Making and
	ver Point Lectur			
	aking Techniq			
		ferences, Exposure to different Acc		and responding in
		e Interviews/Conversations, Video Co	onferencing	
Technical Wr	0			
		utes, Notes, CV, Job Applications	, Reports and e	e-mails, Preparing
	nuals and Techn			
Course	1.	888		
outcomes	2.	Students will become self confident	t in handling bot	h professional and
		personal meetings/discussions.		
	3.	Students will be able to demons	strate improved	technical writing
		skills.		
	4.	Overall personality of students as	well as their con	nmunication skills
		will be developed.		

2nd SEMESTER

Title	MATHEMATICS-II		Credits	4
Code	BS104	Semester:- 2 nd	LTP	3 1 -
Max	End term- 50	Mid term- 50	Elective	Ν
marks				
Pre-			Contact	60
requisites			hours	
Objectives	The students shall			
	• Learn to expand vari	ious functions in terms of Fo	ourier series.	
	• Learn the methods to	o formulate and solve partial	l differential equ	ations.
	• Be taught to apply	the method of separatio	n of variables	to solve partial
	differential equation	s of engineering interest.		
	• Learn to find Laplac	e transforms and inverse tra	insforms and app	ply these to solve
	differential equation	S.		
	• Understand the cond	cept of Complex functions	and their applic	ations to various
	problems.			
Note for		per of the subject will be of		
examiner		ll be divided into two parts		
		B. The candidate is require		
	e i	ons from each Section. The	duration of End	l Term exam will
	be 3 hrs.			
		SECTION A		
Fourier Serie			C · A 1	011 1 5
		ons for Expansion, Chang		
	-	eriodic Functions, Introduct	ion to Harmonic	Analysis.
	rential Equations (Pde's)	differential equations first	andan linaan ag	untions standard
	-	differential equations, first	-	
coefficients.	i intear equations, Charpi	t's method, homogeneous	intear equation	is with constant
	Applications OfPde's			
0 0	* *	ion of partial differential equ	nations of engine	eering interest hy
-	separation of variables.	ion of partial afforential equ	autons of englis	coming interest by
		SECTION B		
Laplace Trai	isforms	SECTIONE		
▲		functions, Properties of T	ransforms, Inve	erse Transforms,
		unction, Dirac's Delta Fun		
		form to the solution of ordin		
	Complex Functions		·	
Functions of	complex variables, analytic	e functions, Cauchy-Riemar	nn equations, Ca	auchy's theorem,
		to Tayler's series and Lau	rent's series, R	esidues, Residue
	ts simple applications.			
Text Books		L. Finney: Calculus and An	nalytic Geometr	y, Ninth Edition,
	Pearson Education			
		nced Engineering Mathema		
Reference		ligher Engineering Mathema		
Books		Higher Engineering Math	nematics, 41^{st}	Edition, Khanna
	Publishers, Delh			
<u> </u>		ations, Frank Ayers, TMH		
Course	The students are able to:			
Outcomes		s in terms of Fourier series.	iona	
		lve partial differential equat		
	-	erential equations of engine	•	to colve verieve
	4. find Lapalacetra	nsforms, inverse transforms	and apply these	e to solve various

differential equations.
5. evaluate complex integrals and apply these to various problems.

Title	CHEMISTRY (ORGANIC)		Credits	3
Code	BS105 Semester:- 1 st		LTP	3
Max	End term- 40	Mid term- 35	Elective	Ν
marks				
Pre-			Contact	45
requisites			hours	

SECTION A

Reactivity of organic molecules: Shapes and Molecular orbital structures of compounds containing C, N and O. Conformations of cyclic and acyclic systems, structures of dienes, pyridine, pyrrole, aromatic compounds. Factors affecting acidity, basicity and nucleophilicity of molecules (Kinetic as well as thermodynamic aspects) 08hrs

Delocalisation: Concept of aromaticity, stability of cycloalkanes, resonance concept, inductive and mesomeric effects, directive effects, activating and deactivating groups. 06hrs

Stereochemistry : Enantiomers, Diastereomers, Meso-and Racemic compounds, Resolution of racemic mixture. Asymmetric synthesis, Walden Inversion, Configuration (D and L nomenclature), Absolute con figuration (R, S, E and Z nomenclature) 08hrs

SECTION B

Organic Reagents and Reaction Intermediates : free radicals, carbonium and carbanions and the mechanism of important substitution, elimination as well as important rearrangenet reactions-- : House synthesis, halogenation of alkanes, free radical mechanism, orientation, reactivity and selectivity ;catalytic hydrogenation, dehydration of alcohols, dehydrohalogenation, Saytzeff rule, electrophillic addition reactions, peroxide effect, mechanism of allylic substitution, acidity of 1-alkynes, conjugated dienes, 1,2-and 1,4- additions, free radical and ionic mechanisms of addition polymerisation reactions, ringopening reactions of cyclopropane and cyclobutane, chemistry of benzene and alkylbenzenes, aromatic electrophillic substitution reactions, nucleophilic substitution Friedel-Crafts reactions, Anisole nucleophilic addition, Aldol condensation 18hrs

Synthetic utility of diazonium salts, synthetic utility of Grignard reagents and alkyllithiumsk, basicity of amines, multistep synthesis. 05hrs

Books Recommended:

- 1. Bahl, B. S. &Bahl, Arun : Text-book of Organic Chemistry, 16th Edition, S. Chand and Company Ltd., New Delhi.
- 2. Solomons, T. W. G. : Fundamentals of Organic Chemistry, John Wiley and Sons, Inc., New York, 1994.
- 3. Morrison & Boyd : Organic Chemistry, Pearson education, 6th edition, 2007.
- 4. F.A.Carey: Organic Chemistry, Tata McGraw Hill, 7th edition, 2008.
- 5. Mukherji& Singh: Reaction mechanism in organic chemistry, Macmillan India Ltd.,

Title	ELECTRICAL AND ELE	ECTRONICS	Credits	4	
	ENGINEERING				
Code	ESC-GES103	Semester:- 2 nd	LTP	3 1 -	
Max. marks	End term- 50	Mid term- 50	Elective	Ν	
Pre-			Contact	60	
requisites			hours		
Objectives	 To provide students about basic knowledge of A.C and D.C circuits, theorems, laws. Introduce to the students about difference between single phase and three 				
	phase system.	nts basic principle of opera			

	alastrias] mashings
1	electrical machines.
	• To make them aware of the difference between analog and digital system
NT. 4 . C.	and study diodes, rectifiers, digital circuits.
Note for	The semester question paper of the subject will be of 50 marks having 8 questions of
examiner	equal marks. The paper will be divided into two parts having four questions each
	from Section A and Section B. The candidate is required to attempt total 5 questions
	selecting atleast two questions from each Section. The duration of End Term exam will be 3 hrs.
	SECTION A
DC Circuits a	nd Single Phase A.C. Fundamentals
	duction to Electrical Engineering, Kirchoff'sLaws ,Mesh and Node analysis,
	theorem, Thevenin Theorem, Norton Theorem, Maximum power transfer theorem.
Generation of	alternating voltages and currents, Equations for AC quantities, cycle, time period,
frequency, amp	plitude, calculation of R.M.S values, Average values for different waveforms, solution
and phasor dia	agram of single phase AC circuit with sinusoidal source of excitation, series and
parallel combin	nation of R-L-C circuits.
	AC Fundamentals
	of single phase system, star and delta connection in three phase circuits, relation
	nd phasor quantities, power in three phase system, solution of three phase balanced
· •	and power factor measurement by two wattmeter method.
Electrical Mac	
	e and construction of transformers, E.M.F equation, approximate equivalent circuit,
	n, losses, efficiency and condition for maximum efficiency, open circuit and short
	single phase transformers. Operating principle and construction of three phase
	ors, Operating principle and construction of DC Machines, types of DC Machine &
E.M.F equation	1S SECTION B
Semiconducto	r Diodes and Transistors
	uction to Electronics.Concept of stiff Voltage and Current Source. PN Junction,
	er, Barrier Potential, Forward and Reverse Bias, Breakdown voltage, V-I
	Half wave and full wave rectifiers, Zener diode. Introduction to junction transistors,
	lifying action, CB, CE, CC-configuration characteristics.
Digital Electro	
Binary and He	exadecimal number system, conversion of numbers from one system to other, OR,
Relations: Co	mmutative, Associative and Distributive Laws. Concept of flip-flops, RS, JK flip flops,
shift register.	
Text Books	1. Edward Hughes: Electrical and Electronic Technology, Pearson Education
	Publication, Asia, 2003.
	2. Nagsarkar, T.K. and Sukhija M.S.: Basic Electrical Engg., Oxford University
	Press, 2004.
	3. Bhargava: Basic electronics and Linear circuits, Tata McGraw Hill.
Reference	1. Nagrath, I.J. and Kothari, D.P.: Basic Electrical Engg., TMH, New Delhi.
Books	2. Malvino: Digital Principles and Applications, Tata McGraw Hill
Course	1. The student will understand how various loads are connected in circuits
Outcomes	and difference between single and three phase system.
	2. The students will know the principles and working of different types of
	electrical machines used in industry The students will have the basic knowledge of digitalization and
	3. The students will have the basic knowledge of digitalization and
l	conversion of physical quantity to digital quantity.

Title	MATERIAL AND ENEI	RGY BALANCE	Credits	04
Code	PCC-CS101	Semester:-2 nd	LTP	3 1 -
Max.Marks	End term- 50	Mid term- 50	Elective	Ν
Pre requisites			Contact	60
			Hours	
Note for				
examiner				
		SECTION-A		
Review: Stoic	niometric and composition	relationship gas laws; Ga	aseous mixtur	es, vapor pressure,
humidity, etc.				
Material Bala	nces for Non-reaction syst	ems including balances	involving re-	cycle and by-pass
streams.				
		SECTION-B		
Combustion C	ces for Reacting systems inc alculations. es on nonreactive and reactive		recycle and p	urge streams.
	Boo	ks Recommended:		
1. Bhatt, V	. I. & Vora, S. M.	: Stiochiometry, 3 rd Edi	ition, Tata Mc	Graw Hill, 1984.
2. Himmel	bleau, D. M.	: Basic Principles ar		
		Engineering, 6 th Editi		
3. Felder, I	R. M. & Rousseau R.W.	: Elementary Principle		
		Edition, John Wiley a		
4. Reklaith	is, G. V.	: Introduction of Mate	rial and Energ	gy balances, John
		Wiley, 1983.		
5. Lubyber	, L.W. & Winzel, L. A.	: Chemical Process A	Analysis, 2 nd	Edition, Prentice
		Hall, 1988.		

Title	COMPUTER PRO	GRAMMING FOR	Credits	2		
	PROBLEM SOLVING					
Code	ESC-GES 104	Semester:-2 nd	LTP	2 -		
Max. Marks	End term- 25	Mid term- 25	Elective	Ν		
Pre requisites			Contact	30		
			Hours			
Objectives	1. To develop logica	al skills so that students sho	ould be able to sol	lve basic		
-	computing proble	ems.				
	2. To learn the synta	ax and usage of C++ progra	mming construct	S.		
Note for the	The semester question p	paper of the subject will	be of 50 marks	having 8		
Examiner	questions of equal marks	. The paper will be divided	l into two parts h	aving four		
	questions each from Sec	ction A and Section B. Th	ne candidate is r	required to		
	attempt total 5 questions selecting atleast two questions from each Section. The					
	duration of End Term exa	um will be 3 hrs.				
	SECTIO	N- A		Hrs		
Introduction To Pro	ogramming:			04		
Basic introduction to	computers, block diagram	of computer.Evolution of	anguages:			
Machine languages,	Assembly languages, High	-level languages. Software	requirements			
for programming: Sy	for programming: System softwares like operating system, compiler, linker, loader.					
Application programs like editor. Overview of Algorithm and Flowcharts.						
Programming In C-	++:			04		
		r printing integer, floating	point numbers,			
characters and string			-			

Operators And Ex	pression:	04
Expressions in C++	and their evaluation. Precedence and associativity rules. Operators:	
arithmetic operators	, relational operators, logical operators, miscellaneous operators.	
Statements:		03
Decision making st	ructures: if, if-else, nested if and if-else, switch-Case. Loop control	
structures: for, while	e, do-while. Role of statements like break, continue, go to.	
	SECTION- B	
Arrays:		04
Concept and use of	arrays, declaration and usage of 1-dimensional arrays and 2-	
dimensional arrays.		
Functions:		04
	larizing C++ program into functions, function definition and function	
	s of passing parameters to a function: call-by-value, call-by-reference;	
	nctions, Recursion, Library functions.	
	ser-Defined Data Types:	04
Structures- definitio	n, declaration, use. Unions: definition, declaration, use, introduction	
to classes and Prope	rties of object oriented programming.	
	merical Methods And Spreadsheet Calculations:	03
Developing program	ms to solve engineering computation problems and working with	
spreadsheets.		
Text books:	1. Arora, Sumita"Computer Science with C++" Dhanpat Rai & C	
	2. Balaguruswamy, "Object Oriented Programming in C++", Tata	a McGraw
	Hill.	
Reference Books:	1. Kamthane, "Object Oriented Programming in ANSI and Tu	ırbo C++"
	Pearson Education India	
	2. Lafore ,Robert "Object Orients Programming in C++"	
Course	Assessment will consist of the following components	
Assessment	1.Mid-Term	
Methods	a. One best of two minor tests (50% of Mid -term marks)	
	b. Assignments (20% of Mid-term marks)	
	c. Class Surprise Tests/ Quizzes/Presentations/Term paper (209	% of Mid-
	term marks)	
	d. Attendance. (10% of Mid-term marks)	
	2.End –Term	
Course	1. The student will demonstrate proficiency in C++ pro	gramming
Outcomes	language.	
	2. The student will be able to solve basic engineering co	omputation
	problems using C++	

Title	ELECTRICAL ANI	D ELECTRONICS	Credits	1.5		
	ENGINEERING LAB.					
Code	Code ESC-GES 153 Semester:-2 nd					
Max. Marks	Practio	cal- 40	Elective	Ν		
Pre requisites			Contact	45		
-			Hours			
Objectives	transformer and draTo identify diode cha experiments related t	meter and wattmeter t test and short circuit	characteristics ar full-wave)	nd perform		

	experiments.
1. Overview of	the equipments, instruments and procedure to be used, safety precautions and
report writing	g.
2. To study reso	onance in R-L-C series and parallel circuit.
	t of power and power factor by three voltmeter method.
	t of power and power factor by three ammeter method.
5. To measure	power and power factor using a single wattmeter in a single phase circuit.
6. Measurement method.	t of power and power factor of three phase balanced load by two wattmeter
	open circuit test and short circuit test on a single phase transformer and ent circuit.
8. To obtain ma	agnetization characteristics of DC Machine
9. Study the for	ward and reverse biased diode characteristics.
	B, CE, CC transistor characteristics.
	e waveforms of half wave rectifier circuit on CRO.
	ne waveforms of full wave rectifier circuit on CRO.
13. Verification	of basic and universal gates.
14. To verify the	thevenin theorem, nortan theorem, Maximum power transfer theorem
Course Outcomes	Students will
	 have hands on knowledge about the design, purpose and working of R- L-C and parallel circuits
	• become confident in taking accurate readings of voltmeter, ammeter and wattmeter
	• have in depth knowledge about transformers, transistors, diodes and rectifiers and will be able to understand their applications in industry.
	• have knowledge about networking theorems and their utility in industry.

Title		CHEMISTRY (ORGAN	NIC) LAB.	Credits	1.5				
Code		BS155	Semester:-2 nd	LTP	3				
Max. N	larks	Pract	ical- 40	Elective	Ν				
Pre req	luisites			Contact	45				
				Hours					
1. 2.	determinatio Identification and preparat	n of melting point and perc of unknown organic com	ration of Benzamide& Asp centage yield. pounds through group detec carbons, Phenols, Aldehydd	ction, physical co	nstants				
	outcomes :								
		dentifying simple organic compounds							
Use dif	ferent analytic	cal procedures							

Title	COMPUTER LAB.		Credits	1				
Code	ESC-GES 154	Semester:-2 nd	LTP	2				
Max. Marks	Pr	actical- 25	Elective	Ν				
Pre requisites			Contact	25				
			Hours					
Objectives	1. To develop pro	grams using C++						
	2. To make the	2. To make the students design programs by using logic and become						

	confident in handling numerical problems.					
1. Programs based on input & output in C++						
2. Programs u	sing Decision Statements if-else, CASE					
3. Programs u	sing while statements, do- while and for Loops					
4. Array based	1 programs					
5. Developing	user defined Functions with and without recursion					
6. How to crea	ate and access user defined data types					
7. Implementa	ation of engineering computation programs using MATLAB and EXCEL					
spreadsheet						
Course	The students will be assessed based upon the practical assignments and viva voce					
Assessment						
Methods						
Course	1. The students will be able to demonstrate proficiency in C++					
Outcomes	2. The student will become confident in solving any computation problem					
	using his programming skills.					

Teaching Scheme and Syllabi of B.E. (Chemical Engineering) [2019-2020]

Third Semester

S No.	Course	Subject	L	Т	Ρ	Credits	Pract	Mid	End	Total	Category
	code						ical	term	term	marks	
1	CHE 201	Physical Chemistry	3	1	3	5	25	50	50	125	CHE
2	CHE 202	Fluid Flow	3	1	3	5	25	50	50	125	CHE
3	CHE 203	Process Plant Material &	3	1	-	4	-	50	50	100	CHE
		Energy Balance									
4	CHE 204	Engineering Materials	3	1	-	4	-	50	50	100	CHE
5	ESC 201	Strength of Materials	3	1	-	4	-	50	50	100	ESC
6	ESC 202	Process Equipment Design	-	-	3	1	25	-	-	25	ESC
		Total	15	5	9	23	75	250	250	575	
		Total contact hours/week	29	•							

- NSS/NCC/Sports proficiency/Community services/ Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)
- > Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

Fourth Semester

S No.	Course	Subject	L	Т	Ρ	Credits	Practic	Mid	End	Total	Category
	code						al	term	term	marks	
1	BSC 201	Mathematics – III	3	1	-	4	-	50	50	100	BSC
2	CHE 205	Heat Transfer	3	1	3	5	25	50	50	125	CHE
3	CHE 206	Chemical Engineering	3	1	-	4	-	50	50	100	CHE
		Thermodynamics									
4	CHE 207	Organic Chemistry	3	1	3	5	25	50	50	125	CHE
5	CHE 208	Mechanical Operations	3	1	3	5	25	50	50	125	CHE
6	CHE 209	Comprehensive Viva	-	-	-	1	-	-	25	25	CHE
		Total	15	5	9	24	75	250	275	600	
		Total contact	29								
		hours/week									

Note:

NSS/NCC/Sports proficiency/Community services/ Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)

> Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

Fifth Semester

S No.	Course	Subject	L	Т	Ρ	Credits	Practic	Mid	End	Total	Category
	code						al	term	term	marks	
1	CHE 301	Numerical methods in	3	1	-	4	-	50	50	100	CHE
		Chemical Engineering									
2	CHE 302	Energy Technology	3	1	-	4	-	50	50	100	CHE
3	CHE 303	Chemical Reaction	3	1	3	5	25	50	50	125	CHE
		Engineering-I									
4	CHE 304	Mass Transfer-I	3	1	-	4	-	50	50	100	CHE
5	CHE 305	Chemical Technology	3	1	3	5	25	50	50	125	CHE
		(Inorganic)									
6	CHE 306	Process Plant Design-I	-	-	3	1	25	-	-	25	CHE
7	CHE 307	Chemical Engineering	-	-	3	1	25	-	-	25	CHE
		Computation lab									
		Total	15	5	12	24	100	250	250	600	
		Total contact	32								
		hours/week									

- Sports proficiency/Community services/ Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)
- > Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

Sixth Semester

S No.	Course	Subject	L	Т	Ρ	Credits	Practic	Mid	End	Total	Category
	code						al	term	term	marks	
1	CHE 308	Chemical Reaction Engineering-II	3	1	-	4	-	50	50	100	CHE
2	CHE 309	Mass Transfer-II	3	1	3	5	25	50	50	125	CHE
3	CHE 310	Process Dynamics & Control	3	1	3	5	25	50	50	125	CHE
4	CHE 311	Chemical Technology (Organic)	3	1	3	5	25	50	50	125	CHE
5	CHD 301	Departmental Elective-I	3	1	3	5	25	50	50	125	CHD
		Total	15	5	12	24	100	250	250	600	
		Total contact	32								
		hours/week									

- Sports proficiency/Community services/ Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)
- > Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

Seventh Semester

S	Course	Subject	L	Т	Р	Credits	Practical	Mid	End	Total	Categor
No.	code							term	term	marks	у
1	CHE 401	Transport	3	-	-	3	-	35	40	75	CHE
		Phenomena									
2	CHE z402	Environmental	3	1	3	5	25	50	50	125	CHE
		Engineering									
3	CHE 403	Process Modelling	-	-	3	1	25	-	-	25	CHE
		and Simulation									
4	CHE 404	Industrial Training	-	-	-	1	-	25	-	25	CHE
5	CHE 405	Process Plant	-	-	3	1	25	-	-	25	CHE
		Design-II									
6	CHE 406	Project work	-	-	2	-	-	-	-	-	CHE
7	CHO 401	Open Elective - I	3	-	-	3	-	35	40	75	СНО
8	CHD 401	Department	3	1	-	4	-	50	50	100	CHD
		Elective-II									
		Total	12	2	11	18	75	195	180	450	
		Total contact	25								
		hours/week									

- Sports proficiency/Community services/ Professional society activities/Technical activities related to the field of Engineering (1st to 3rd year, 2 credits to be earned in 7th semester)
- **>** Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

Eighth Semester

S	Course	Subject	L	Т	Ρ	Credits	Practical	Mid	End	Total	Category
No.	code							term	term	marks	
1	CHE 407	Process	3	1	-	4	-	50	50	100	CHE
		Instrumentation									
2	CHE 408	Process Engineering	3	1	-	4	-	50	50	100	CHE
		Economics									
3	CHE 406	Project work	-	-	2	2	-	-	'S' or	-	CHE
									'X'*		
4	CHE 409	Comprehensive viva	-	-	-	1	-	-	25	25	CHE
5	CHE 410	Literature Survey,	-	-	3	NC	-	-	-	-	CHE
		Report Writing and									
		Seminar									
6	CHO 402	Open Elective-II	3	-	-	3	-	35	40	75	СНО
7	CHO 403	Open Elective-III	3	-	-	3	-	35	40	75	СНО
8	CHD 402	Department	3	1	-	4	-	50	50	100	CHD
		Elective-III									
		Total	15	3	5	21	-	220	255	475	
		Total contact	23								
		hours/week									

*'S' (Satisfactory) or 'X' (Repeat)

Note:

> Discipline (1st to 4th year, 1 credit to be earned in 8th semester)

S. No. List of Departmental Electives

- 1 Petroleum Processing Engineering
- 2 Industrial Safety and Hazards
- 3 Plant Utilities
- 4 Petrochemical Technology
- 5 Biochemical Engineering

S.No. List of Open Electives

- 1. Fuel Cell Technology
- 2. Nanotechnology
- 3. Polymer Science and Engineering
- 4. Operations Research
- 5. Supply Chain and Logistic Management
- 6. Project Management and Entrepreneurship

- 1. Mid term evaluation shall be as per the format already approved by the competent authority (as indicated in the scheme already approved for the first year)
- 2. Departmental electives (I, II and III) shall be offered amongst the list indicated above depending on the available resources.
- 3. Open electives (I, II and III) shall be offered amongst the list indicated above depending on the available resources.
- 4. List of electives (open and departmental) is subject to change and as approval of the competent authority from time to time.

SYLLABUS OF B.E. CHEMICAL ENGINEERING 2019-2020

		THIRD SEMESTER		
Title	PHYSICAL CHEMIS	TRY	Credits	05
Code	CHE 201	Semester:-3 rd	LTP	3 1 3
Max.Marks	End term- 50 Mid	term- 50 Practical -25	Elective	N
Pre			Contact	42
requisites			Hours	14 (Practical
-				Sessions)
THEORY		Time		3 Hours
Note for the		per of the subject will be of 50 r		
Examiner		divided into two parts having fo		
		idate is required to attempt total	5 questions	selecting atleast two
	questions from each Section			
Colutiona Ideal	and non ideal colutions	SECTION- A		halmy and antropy
		Raoults's law, change of free		
-		y solutions. Partially miscible	•	
•		er systems. Henry's law, Nerr		
	litute solutions. Abnorm	al molar mass, degree of d	issociation a	and association of
solutes.				
Chamical Kin-+	on Data aquation of the	tions of various and an anter	achaniam I	ination of complete
	•	tions of various orders, rate n		•
		and energy of activation.		
	,	o order reactions. Rates of flo	ow systems.	Lindemann theory
of unimolecular	reactions.			
Conference Dhaman		and her added Transa of ada		
-		ses by solids. Types of adso	•	•
		equation for determination of		
• •		kinetics of surface reactio	ns. Introdu	ction to micelles,
emulsions and §	gers.	SECTION D		
Dhatashawista	. I amo of shatashasa	SECTION- B		
•	•	istry, principles of photocl	nemical exe	citation, quantum
enciency, kiner	ics of photochemical rea	cuons		
Flactrachamistr		alutic colutions transformers	numberand	ite determination
		olytic solutions, transference		-
		ion of ions, Interionic attracti	• •	• •
		equilibria. Ionizaton of water	: ionization	
acids and weak	hacac hydrolycic nH ca			
	bases, fiyurofysis, pri, co	mmonion effect, solubility pro		
			duct and sa	t effect.
	Cells: Reversible and ir	reversible cells, e.m.f. and it	duct and sal	t effect. ent, cell reactions
and e.m.f., the	<i>Cells</i> : Reversible and ir rmodynamics of electro	reversible cells, e.m.f. and it de potentials, half- cell pote	duct and sa s measurem ential and	t effect. ent, cell reactions its determination,
and e.m.f., the Nernst equation	<i>Cells</i> : Reversible and ir rmodynamics of electron, concentration cells, lic	reversible cells, e.m.f. and it de potentials, half- cell pote uid junction potential, deter	duct and sa s measurem ential and	t effect. ent, cell reactions its determination,
and e.m.f., the Nernst equation	<i>Cells</i> : Reversible and ir rmodynamics of electro	reversible cells, e.m.f. and it de potentials, half- cell pote uid junction potential, deter	duct and sa s measurem ential and	t effect. ent, cell reactions its determination,
and e.m.f., the Nernst equation	<i>Cells</i> : Reversible and ir rmodynamics of electro n, concentration cells, lic cial data, potentiometric	reversible cells, e.m.f. and it de potentials, half- cell pote uid junction potential, deter	duct and sa s measurem ential and	t effect. ent, cell reactions its determination,
and e.m.f., the Nernst equation from cell poten	<i>Cells</i> : Reversible and ir rmodynamics of electro n, concentration cells, lic cial data, potentiometric	reversible cells, e.m.f. and it de potentials, half- cell potential, detern uid junction potential, detern titrations. Books recommended:	duct and sal s measurem ential and mination of a	t effect. ent, cell reactions its determination, activity co-efficient
and e.m.f., the Nernst equation from cell poten	<i>Cells</i> : Reversible and ir rmodynamics of electro n, concentration cells, lic cial data, potentiometric	reversible cells, e.m.f. and it de potentials, half- cell pote uid junction potential, detern titrations.	duct and sal s measurem ential and mination of a	t effect. ent, cell reactions its determination, activity co-efficient

- Glasstone, Samuel
 Textbook of Physical Chemistry, MacMillan and Co. Ltd. London
 Demon M. Canden
 Demon M. Canden
- 3. Barrow, M. Gorden : Physical Chemistry, McGraw Hill, N.Y.

- 6. Negi, A.S. and Anand, S.C. : A Text Book of Physical Chemistry, Wiley Eastern Ltd. New Delhi. : Chemical Kinetics, Tata McGraw-Hill Co. Ltd., New Delhi.
- 7. Laidler, Keith J. 8. Moore, W.J. Basic Physical Chemistry, Prentice-Hall of India, New Delhi. :
- 9. Atkin, P.W. A Text Book of Physical Chemistry, Oxford University Press. :

Paper Title : PHYSICAL CHEMISTRY LAB. (Practical)

Paper Code CHE 201

4. Rose, J.

Max. Marks 25

Credits : 1

- 1. Surface tension of liquids using Stalagmometer and calculation of Parachor values.
- 2. Distribution of Iodine between water and carbon tetrachloride.
- 3. Kinetics of the hydrolysis of methyl acetate in the presence of hydrochloric acid.
- 4. Adsorption of acetic acid on activated charcoal.
- 5. Viscosity of liquids and composition of a binary solution.
- 6. Conductometry
 - Variation of equivalent conductance and specific conductance on dilution.
 - Dissociation constant of acetic acid.
 - Solubility of sparingly soluble salts.
 - Conductometric titrations of HCl vs NaOH and acetic acid vs. NaOH.
- 7. Potentiometric titration of HCl vs NaOH and acetic acid vs NaOH and determination of dissociation constant of acetic acid.
- 8. Colorimetry
 - Verification of Lambert-Beer Law.
 - Determination of concentration of solution of KMnO₄/K₂Cr₂O₇.
 - Determination of composition of Fe-Salicylic Acid Complex by Job's Method.

Books Recommended:

1. Lavitt, B.P.

: Findlay's Practical Physical Chemistry, Longman Group Ltd.

Title	FLUID FLOW	7				Cr	edits	05
Code	CHE 202 Semester:-3 rd		L	ΤP	3 1 3			
Max.Marks	End term- 50	Mid ter	-m- 50	Practica	l -25	Ele	ective	N
Pre						Co	ntact	42
requisites						Ho	urs	14 (Practical
								Sessions)
THEORY	Tim			Time	e		3 Hours	
Note for the Examiner	marks. The paper and Section B. Th	The semester question paper of the subject will be of 50 marks having 8 questions of equal marks. The paper will be divided into two parts having four questions each from Section A and Section B. The candidate is required to attempt total 5 questions selecting atleast two questions from each Section.						
			SECTIC	DN- A				
Fluid Statics: N Buoyancy and S		fluids, P	ressure	Measurem	ents,	Force	es on S	Submerged bodies,
Fluid Properties	: Newtonian and r	on-Newt	onian Flui	ids, Nature	of Tur	bule	nce, Edo	dy Viscosity, Flow in
• •	<i>Fluid Properties</i> : Newtonian and non-Newtonian Fluids, Nature of Turbulence, Eddy Viscosity, Flow in Boundary Layers, Basic Equation of Fluid Flow, Bernoulli's Equation, Navier stokes equation. <i>Flow of Incompressible Fluids</i> : Laminar and Turbulent flow in pipes, Velocity Distribution in Pipes,							
Frictional Losse	s in Pipes and Fit	ttings, Fa	nning eq	uation, Est	timatic	on of	econo	mic pipe diameter.

Deri	ivation of HAGEN-POISEULLI and f=1	6/Re	equations.			
			ECTION- B			
Dim	ensional analysis and its Applications					
	v of compressible fluids: Compressib					
	<i>Flow Measurements</i> : Pilot tube, Orifice, Venturi, Rotameter and Notches, wet gas metre etc.					
			formance of Pumps, Turbines, Compressors, and			
	wers,Selection and Specification, Ne					
	· · · ·	- ·	ks Recommended:			
1.	Mc Cabe, W.L. and Smith, J.C.	:	Unit Operation of Chemical Engineering, McGraw Hill.			
2.	Fox, R.W. and McDonald, A.T.	:	Introduction of Fluid Mechanics (SI Version) 4th ed. John			
			Wiley and Sons, 1996.			
3.	Coulson, J.M. and Richardson, J.F.	:	Chemical Engineering, Vol. I, Pergamon			
4.	Foust, A.S., Wensel, L.A., Clump,	:	Principles of Unit Operations, John Wiley.			
	C.W., Maus, L. and Anderson, L.					
5.	Badger, W.L. and Banchero, J.T.	:	Introduction to Chemical Engineering, Tata McGraw Hill			
			Pub. Co. Ltd., 1997.			
6.	Chattopadhya, P.	:	Unit Operations of Chemical Engineering, Vol. I, Khanna			
			Publishers, Delhi, 1997.			

Paper Title: FLUID Flow (Practical)

Paper Code CHE 202

Max. Marks 25

Credits: 2

- 1. General study of pipe fittings, valves and other equipments in the unit operations laboratory.
- 2. Pressure drop for flow through pipelines, valves & fittings.
- 3. Characteristics of pumps.
- 4. Flow measurement by the use of orifice meter, venturimeter, rotameter & pitot tube.
- 5. Flow over weirs and notches.
- 6. Flow measurement of compressible fluids.

Title		LANT	MATE	RIAL A	ND	Credits	04						
~ .	ENERGY BAL	ANCE	G	, ord		7 F N	2 1						
Code	CHE 203	CHE 203 Semester:-3 rd		LTP	3 1 -								
Max.Marks	End term- 50	Mid ter	m- 50	Practical	l	Elective	Ν						
Pre						Contact	42						
requisites						Hours							
THEORY					Tin	ne	3 Hours						
	1.												
Note for the	The semester ques	tion paper	of the su	bject will be	of 50) marks having	8 questions of equal						
Examiner							each from Section A						
Laumner	and Section B. Th	ne candidat	te is requ	ired to attem	pt to	tal 5 questions	selecting atleast two						
	questions from eac	ch Section.											
		S	SECTIO	DN- A									
Review	: Stoichiometric	and comp	osition 1	relationship	gas	laws; Gaseou	is mixtures, vapor						
pressure	e, humidity, etc.	-		-	-		-						
-	•	n-reaction	systems	including b	alanc	es involving i	ecycle and by-pass						
streams			<i>J</i>	8-			, , r						
		5	SECTIO	DN- B									
Materia	l Balances for R				alanc	es involving	recycle and purge						
streams		0.	-	0		0	alances for Reacting systems including balances involving recycle and purge						

Combustion Calculations.
Energy balances on nonreactive and reactive systems

		Books Recommended:
1.	Bhatt, V. I. & Vora, S. M.	: Stiochiometry, 3 rd Edition, Tata McGraw Hill, 1984.
2.	Himmelbleau, D. M.	: Basic Principles and Calculations in Chemical
		Engineering, 6 th Edition, Prentice Hall, 1977.
3.	Felder, R. M. & Rousseau R.W.	: Elementary Principles of Chemical Processes, 3 rd Edition,
		John Wiley and Sons, 1986.
4.	Reklaithis, G. V.	: Introduction of Material and Energy balances, John
		Wiley, 1983.
5.	Lubyben, L.W. & Winzel, L. A.	: Chemical Process Analysis, 2 nd Edition, Prentice Hall,
		1988.

Title	ENGINEERING	MATE	Credits	04		
Code	CHE 204	Semester:- 3 rd			LTP	3 1 -
Max. Marks	End term- 50	Mid te	erm- 50	Practical	Elective	N
Pre					Contact	42 (Theory)
requisites					Hours	

THEORY		Time	3 Hours
Note for the Examiner	The semester question paper of the subject will be marks. The paper will be divided into two parts he and Section B. The candidate is required to atten	aving four questions of	each from Section A
	questions from each Section.		6

SECTION-A

Atomic Structure: Review of bonding in solids, structure –property-processing Relationships

Crystal Structure : Space lattice, crystal systems, Miller indices, effect of radius ratio on co-ordination, structures of common metallic, polymeric, ceramic, amorphous and partly crystalline materials.

Imperfections in atomic arrangement: various defects in atomic arrangement, diffusion phenomenon in solids, Fick's first and second law of diffusion, solid solution, slip systems, various methods of strengthening materials, Schmid's law.

SECTION- B

Phase Diagrams and phase transformation: binary phase diagrams – Fe-Fe₃C, Cu-Ni, Pb-Sn. microstructure development, TTT diagrams, heat treatment processes-hot and cold working, hardening and softening processes.

Materials: Standards and specifications, unified alloy numbering system, ferrous metals and alloys, non-ferrous metals and alloys; overview of ceramic, polymeric and composite materials; Mechanical tests: standard test procedures for mechanical property determination-strength, toughness, fracture toughness, hardness, deformation, fatigue, creep etc.

Corrosion: Types and mechanism of corrosion, factors influencing corrosion, combating corrosion, selection of materials of construction for handling different chemicals

		Books Recommended:
1.	Askelland, Donald R.	: The Science & Engineering of Materials, PWSKENT.
2.	Shackleford, J.F.	: Introduction to Material Science for Engineers, Mc Millan.
3.	Van-Vlack, L.H.	: Elements of Material Science & Engineering, Addison
		Wesley
4.	Raghavan, V.	: Material Science & Engineering, Prentice Hall of India
5.	Callister Jr. William D.	: Materials Science and Engineering- An Introduction, Wiley

Title	STRENGTH OF	STRENGTH OF MATERIALS			04	
Code	ESC 201	Semes	ter:-3 rd	LTP	3 1 -	
Max. Marks	End term- N	Aid	Practical-	- Elective	Ν	
	50 to	erm- 50				
Pre requisites				Contact	42 (Theory)	
_				Hours		
THEORY				Time	3 Hours	
Note for the	The question pap	er should	be divided i	nto Section A a	nd Section B Total of 8	
Examiner	questions. 4 ques	stions fron	n section A a	nd 4 questions f	rom section B are to be	
set. The students will be required to attempt				mpt 5 questions	selecting at least 2 from	
	each section.					

SECTION-A

Stresses and Strains: Concept of simple stress and simple strain, mechanical properties of solids, types of load, Tensile stress, compressive stress, shear stress, complementary shear stress, thermal stresses, tensile test, stress strain curve, Hooke's law, modulus of elasticity, modulus of rigidity, Principle of St. Venant strain, factor of safety, compound bars, Compound Stresses and Compound Strains in two-dimensional stress system, Stresses on oblique plane due to pure shear, principle planes and principle stresses, maximum shear stress, Mohr's circle of stress, Poisson's ratio, volumetric strain, elastic constants and relations between them.

Shearing Force and Bending Moments in Beams: Shearing force, bending moment, types of beams, types of load on beams, types of supports, sign- conventions for shearing force and bending moment, point of inflection, relations between bending moment and shearing force shearing force and bending moment diagrams for beam under different loads. Concentrated loads, uniformly distributed loads, numerical problems.

Bending Stresses and Shearing Stresses in Beams: Pure bending, graphical determination of moments of inertia, bending stress, composite beams, reinforced concrete beams, General eccentric loading, combined direct and bending stresses, eccentric longitudinal loads, Shear stress distribution in rectangular section and circular section, numerical problems.

Deflection of Beam: Introduction, Macauly's integration method, simply supported beam with load at mid span and beam with eccentric load, moment area method, deflection due to shear, numerical problems.

SECTION-B

Torsion of Shafts: Torsion of thin circular shaft, composite shaft, combined bending and torsion. equivalent torque, equivalent bending moment, numerical problems.

Struts and Columns: Definition of strut and column, Euler's Column theory and assumptions made, Strut with both ends pinned, strut with one end fixed and one end free, strut with both ends free, Slenderness ratio, limitations of Euler theory, Rankine's Empirical formula, strut with eccentric loading, numerical problems.

Stresses and Strains in Thin Shells: Thin cylinder under internal pressure, thin spherical shell under internal pressure, volumetric strain, modifications for built-up shells, numerical problems.

Stresses and Strains in Springs: Types of Springs, stresses in Close coiled helical springs, open coiled helical springs, leaf springs, springs in parallel and in series, numerical problems.

Strain Energy and Theories of Elastic Failure: Strain energy and resilience, Strain energy in tension and compression due to suddenly applied load and impact loads, strain energy due to shear, strain energy due to bending, strain energy due to torsion, theories of elastic failure and their graphical representation, numerical problems.

		Books Recommended:
1.	Ryder, G. H.	: Strength of Materials, 3 rd Edition S.I. Units Macmillan, 1969.
2.	Bedi, D. S.	: Strength of Materials, 6 th Edition Khana Book Publishing Co. (P)Ltd.
3.	Timoshenko, S.	: Strength of Materials Part-I, 3 rd Edition, Cbs Publishers, 1986.
4.	Singal & Sharma	: Strength of Materials , Modern Publisher.

Title	PROCESS EQU	IPMENT DESIG	Credits	01			
Code	ESC-202	Semester:-3 rd		LTP	3		
Max. Marks	End term	Mid term-	Practical- 25	Elective	N		
		-					
Pre requisites				Contact	14 (Practical		
_				Hours	Sessions)		
PRACTICAL	PRACTICAL						
LIST OF PRACTICALS							

- 1. Study of factors influencing the design of vessels; classification of pressure vessels, applications, method of fabrications, fundamental principles and equations.
- 2. Study of pressure vessel codes specifications and standards; Review of code and its development, ASME codes, API-ASME code, Section VIII of ASME codes
- 3. General design considerations for pressure vessels; Design pressure, design temperature, materials, design stress (nominal design strength), corrosion allowance, design loads, minimum practical wall thickness.
- 4. Design of thin-walled vessels under internal pressure; Cylinders and spherical shells, heads and closures, design of flat ends, design of domes ends, conical sections and end closures.
- 5. Design of vessels subject to external pressure; Cylindrical shells, design of stiffening rings, vessels heads.
- 6. Design of vessels subject to combined loading: Weight loads, wind loads (tall vessels), torque.
- 7. Design of welded joints and Bolted flanged joints.
- 8. Design of Foundation and supports.

Battacharyya, B.C. Introduction to Chemical Equipment Design Mechanical aspects, Chemical Engineering Education Development Centre. 2. Brownell and Young : Process Equipment Design , Willey Publication 3. Joshi, M.V. : Process Equipment Design, Macmillan India.

FOURTH SEMESTER

Title	MATHEMATICS	Credits	4		
Code	BSC 201			LTP	3 1 -
Max	End term- 50	Mid term- 50	Practical		
marks					
Pre-	Mathematics-I (10	1) & Mathematics	II (103)	Contact	42
requisites	Tradicination 1 (10		II (100)	hours	
requisites				nours	
Theory			Time		3 hours
Objectives	The students shall		Thic		5 110015
Note for	 Learn to solv Learn to fir difference equa Be taught to a equations. 	apply the series solutio Probability distribution	with constant coef inverse Z-transfo n method to solve s, test of significar	ficients. firms and app Bessel and Le nce and goodne	y these to solve gendre differentia ss of fit.
examiner	marks. The paper wi A and Section B. The two questions from e	ll be divided into two candidate is require	parts having four	r questions eac	ch from Section
		SECTION A			Hrs
	ank of a matrix, Elem				
vectors, Cayle	ey-Hamilton Theorem	and its application	to find inverse of	f a matrix.	5
	equations: Solution		ns with constant	coefficients,	
Complementa	ary function and Partie	cular solution.			5
	ms: Introduction, Son				
	, Some standard resul	-			
	heorem, Evaluation o	of inverse transforms	, Applications in	the solution	12
of difference	equations.				
~		SECTION B			Hrs
series with re-	ion of differential of ference to Bessel and egendre functions.	-		-	10
	inomial distribution, e for large samples, C				10
	lent's t-distribution, c			of two large	10
samples, Stud	lent's t-distribution, c 1. G. B. Thomas Education.	hi ² -test, Goodness of s, R. L. Finney: Calcu	fit.	Geometry, Nint	h Edition, Pearson
samples, Stud Text Books	1. G. B. Thomas Education. 2. E. Kreyszig: 4	hi ² -test, Goodness of	fit. lus and Analytic C Mathematics, Eig	Geometry, Nint hth Edition, Jol	h Edition, Pearson
samples, Stud Text Books Reference	1. G. B. Thomas Education. 2. E. Kreyszig: 4 1. B. V. Rama 2. B. S. Grey Delhi.	hi ² -test, Goodness of s, R. L. Finney: Calcu <u>Advanced Engineering</u> ana: Higher Engineerin val: Higher Engineeri	fit. Ius and Analytic C Mathematics, Eig g Mathematics, Tang Mathematics,	Geometry, Nint hth Edition, Jol ata McGraw H	h Edition, Pearson nn Wiley. 111.
samples, Stud Text Books Reference Books	I. G. B. Thomas Education. 2. E. Kreyszig: A 1. B. V. Rama 2. B. S. Grey Delhi.	hi ² -test, Goodness of s, R. L. Finney: Calcu <u>Advanced Engineering</u> ana: Higher Engineerin	fit. Ius and Analytic C Mathematics, Eig g Mathematics, Tang Mathematics,	Geometry, Nint hth Edition, Jol ata McGraw H	h Edition, Pearson nn Wiley. 111.
samples, Stud Text Books Reference Books Course	1. G. B. Thomas Education. 2. E. Kreyszig: A 1. B. V. Rama 2. B. S. Grey Delhi. Assessment will cor 1.Mid-Term	hi ² -test, Goodness of s, R. L. Finney: Calcu Advanced Engineering ana: Higher Engineerin val: Higher Engineeri isist of the following c	fit. Ius and Analytic C Mathematics, Eig g Mathematics, Ta ng Mathematics, omponents	Geometry, Nint hth Edition, Jol ata McGraw H 41 st Edition, K	h Edition, Pearson nn Wiley. 111.
	1. G. B. Thomas Education. Education. 2. E. Kreyszig: A 1. B. V. Rama 2. B. S. Grev Delhi. Delhi. Assessment will cor 1.Mid-Term a. One best of b. Assignment c. Class Surp	hi ² -test, Goodness of s, R. L. Finney: Calcu <u>Advanced Engineering</u> ana: Higher Engineerin val: Higher Engineeri	fit. Ius and Analytic C Mathematics, Eig ag Mathematics, Ta ag Mathematics, omponents of Mid -term mar narks) sentations/Term p	Geometry, Nint hth Edition, Jol ata McGraw H 41 st Edition, K ks)	h Edition, Pearson nn Wiley. Ill. Thanna Publishers

find 7 transformer and invessor 7 transformer and apply these to asly differences
find Z-transforms and inverse Z-transforms and apply these to solve difference equations.
apply the series solution method to solve Bessel and Legendre differential equations. apply various probability distributions, test of significance and goodness of fit.

Title	HEAT TRANSF	ER	Credits	05		
Code	CHE 205		Semest	er:-4 th	LTP	3 1 3
Max. Marks	End term- 50	Mid te	erm- 50	Practical-25	Elective	Ν
Pre					Contact	42 (Theory)
requisites					Hours	14 (Practical
_						Sessions)

THEORY		Time	3 Hours				
Note for the	The semester question paper of the subject will be	-					
Examiner	marks. The paper will be divided into two parts having four questions each from Section A						
	and Section B. The candidate is required to atten	npt total 5 questions	selecting atleast two				
	questions from each Section.						

SECTION-A

Conduction: Steady state conduction in one dimensional system, general conduction equation, effect of variable thermal conductivity, steady state conduction involving internal heat generation, lagging on pipes, the critical thickness of insulation on pipes, extended surfaces of uniform thickness and fin effectiveness, fin efficiency.

Convection: Free and forced convection, concept of heat transfer co-efficient, dimensionless numbers in free and forced convection, Dimensional analysis, Determination of Heat transfer coefficient using heat and momentum transfer analogies, experimental determination of heat transfer coefficient and common working correlations.

Radiation Heat Transfer: Black Body radiation, and grey body radiation, physical mechanism, radiation properties and shape factor, heat exchange between non-black bodies, radiation shields pyrometry and effect of radiation on temperature measurement

SECTION-B

Condensation and Boiling: Condensation heat transfer phenomenon, film condensation on vertical plates and cylinders as well as on horizontal cylinders. Effects of non-condensable gases and vapor velocity on condensation, pool boiling, forced convection boiling, working correlations for pool boiling.

Evaporation: Types of Evaporators, single and multiple effects, single and multiple effects calculations, evaporator capacity, economy, effect of liquid head and boiling point elevation, methods of feeding.

Heat Exchangers: Various types of heat exchangers, overall heat transfer coefficients, heat exchanger mean temperature differences, heat exchanger effectiveness and the number of transfer units.

Books Recommended:

1.	Mc Cabe, W.L., Smith, J.C.	:	Unit Operations of Chemical Engineering McGraw Hill.
2.	Holman, J.P.	:	Heat Transfer, McGraw Hill Book Co.
3.	Mc Adams, W.H.	:	Heat Transmission, McGraw Hill Book Co.
4.	Chapmann, A.J.	:	Heat Transfer, Mc Millan Publishing Co.
5.	Kern, D.O.	•	Process heat Transfer, McGraw Hill Book Co.

- Kreith, F.
 Principles of Heat Transfer, Harper & Row Pub., London.
 Geankoplis, C.J.
 Transport Processes and Unit Operations, Prentice Hall of
- 7. Geankophs, C.J. Fransport Processes and Ont Operations, Prentice Half of India Pvt. Ltd., 3rd Edition, 1999.

Paper Title : HEAT TRANSFER (Practical)

Paper Code CHE 204 Max. Marks 25

1. Determination of heat transfer coefficient for different types of heat transfer equipment. Wilson plots.

Credits : 1

- 2. Unsteady state heat transfer in jacketed vessels. (Open pan evaporator)
- 3. Correlation of instantaneous heat transfer coefficients with time study deposition of scale on a heating surface.
- 4. Determination of heat losses for insulated pipes
- 5. Study of double pipe heat exchanger and to determine overall heat transfer coefficient
- 6. Study the performance characteristics of a 1,2 shell and tube heat exchanger
- 7. Study and **operation** of long tube, forced circulation and multiple effect evaporators.
- 8. Duhring plot for solutions involving nonvolatile solutes

Title	CHEMICAL ENGINEERING THERMODYNAMICS				Credits	04		
Code	CHE 205		Semest	t er:- 4 th		LTP	3 1 -	
Max. Marks	End term- 50	Mid te	erm- 50	Practica	l -	Elective	Ν	
Pre				•		Contact	42 (Theory)	
requisites						Hours		
THEORY					Tin	ne	3 Hours	
Note for the Examiner The semester question paper of the subject will be of 40 marks having 8 questions of equal marks. The paper will be divided into two parts having four questions each from Section A and Section B. The candidate is required to attempt total 5 questions selecting atleast two questions from each Section.								
	SECTION- A							

Brief review of the terms: state functions, types of systems, internal energy, heat and work and reversible and irreversible processes. First Law of Thermodynamics and its Engineering Applications i.e. constant volume processes, constant pressure processes, isothermal and adiabatic processes, pumps, turbines, compressors, nozzles, heat exchangers, pitot tube, venturimeter and orifice meter. Throttling Processes, Joule-Thomson Coefficient, liquefication of gases, thermochemistry includes a brief review of heat capacities and their measurement, standard heat of reaction, standard heat of formation, standard heat of combustion, flame temperature, H-x diagrams, heat of solution, partial, molar enthalpies, enthalpy for phase change etc. Equation of state for real gases and their mixtures. Principle of corresponding states and generalized compressibility factor.

Review of Second law of thermodynamics, entropy concept, Entropy and lost work calculations. Microscopic interpretation of entropy. Third Law of thermodynamics and its applications. Free energy functions and their significance in phase and chemical equilibria, Clapeyron's equation and some important correlations for estimating vapor pressures. Estimation of thermodynamic properties by using graphs and tables.

SECTION-B

Partial molar properties, partial molar Gibbs free energy, Chemical potential and its dependence on temperature and pressure Ideal solutions (Lewis-Randel Rule).

Fugacity and its calculations. Dependence of fugacity of temperatures and pressure

Solution behaviour of real liquids and solids. Activity and activity coefficients. Variation of activity coefficient with temperature and composition. Activity coefficients of electrolytes standard states. Properties of mixing. Excess Properties, Gibbs-Duhem equation and its application to vapour-liquid equilibria.

Chemical Equilibria:

Phase Equilibria:

Equilibrium constant in terms of measurable properties variations of equilibrium constant with temperature and pressure.

Adiabatic reactions, Gibbs phase rule, equilibria in heterogeneous reactions.

Books Recommended:

1.	Smith, J.M., Van Ness, H.C. and	:	Introduction to Chemical Engineering Thermodynamics, 7 th					
	Abbott, M.M.		Edition, McGraw Hill Professional, 2005					
2.	Elliott, J.R and Lira, C.T.	:	Introductory Chemical Engineering Thermodynamic,					
			Prentice Hall PTR., 1999.					
3.	Rao, Y.V.C.	:	Chemical Engg. Thermodynamics, Orient Blackswan, 1997.					
4.	Dodge, B.F.	:	Chemical Engg. Thermodynamics, McGraw Hill, 1944,					
			Original from the University of Michigan, 2007.					
5.	Narayanan, K.V.	:	A Textbook of Chemical Engineering Thermodynamics, PHI					
			Learning Pvt. Ltd., 2004.					

Title	ORGANIC CHEMISTRY			Credi	ts	05		
Code	CHE 207	Semester:-4 th		LT	Р	3 1 3		
Max. Marks	End term- 50	Mid te	erm- 50	Practical-	- 25	Electi	ve	Ν
Pre						Conta	ct	42 (Theory)
requisites						Hours	5	14 (Practical
								Sessions)
THEORY				r	Tim	e		3 Hours
	1							·

	1.
Note for the	The semester question paper of the subject will be of 40 marks having 8 questions of equal
Examiner	marks. The paper will be divided into two parts having four questions each from Section A
	and Section B. The candidate is required to attempt total 5 questions selecting atleast two
	questions from each Section.

SECTION-A

Classification of organic compounds: IUPAC nomenclature, Structural isomerism, Cis-trans isomerism. Shapes and Molecular orbital structures of compounds containing C, N and O. Conformations of alkanes. Organic reagents and reaction intermediates structures of dienes, pyridine, pyrrole, aromatic compounds. Optical isomerism, Chirality and optical activity; Enantiomers, Diastereomers, Meso-and Racemic compounds, Resolution of racemic mixture. Asymmetric synthesis, Walden Inversion, Configuration (D and L nomenclature), Absolute con figuration (R and S nomenclature)

Chemistry of hydrocarbons: House synthesis, halogenation of alkanes, free radical mechanism, orientation, reactivity and selectivity. Cracking effect of structure on physical properties of compounds. Alkenes, catalytic hydrogenation, dehydration of alcohols, dehydrohalogenation, Saytzeff rule, electrophillic addition reactions, peroxide effect, mechanism of allylic substitution, acidity of 1-alkynes, conjugated dienes, 1,2-and 1,4-additions, free radical and ionic mechanisms of addition polymerisation reactions, ring-opening reactions of cyclopropane and cyclobutane, chemistry of benzene and alkylbenzenes, aromatic electrophillic substitution reactions, Friedel-Crafts reactions

SECTION-B

Delocalisation: Concept of aromaticity, stability of cycloalkanes, resonance concept, inductive and mesomeric effects, directive effects, activating and deactivating groups. Hydrogen-bonding.

Chemistry of functional groups: Alkyl and aryl halides, nucleophilic substitution, synthetic utility

of Grignard reagents and alkyllithiums, mechanism of Grignard reactions of alcohols, benzylalcohol, acidity of phenols epoxy compounds, Anisole nucleophilic addition, benzaldehyde, acetophene, benzophenone, aldol condensation, acidity of acids, alkyl and aryl amines.

Synthetic utility of diazonium salts, basicity of amines, multistep synthesis.

Books Recommended:

1. Bahl, B. S. & Bahl, Arun : Text-book of Organic Chemistry, 16th Edition, S. Chand and Company Ltd., New Delhi.

2. Solomons, T. W. G. : Fundamentals of Organic Chemistry, John Wiley and Sons, Inc., New York, 1994.

3. Morrison & Boyd : Organic Chemistry, Pearson education, 6th edition, 2007.

4. F.A.Carey: Organic Chemistry, Tata McGraw Hill, 7th edition, 2008.

5. Mukherji & Singh: Reaction mechanism in organic chemistry, Macmillan India Ltd.,

Paper Title : ORGANIC CHEMISTRY (Practical)

Paper Code CHE 206Max. Marks 25Credits : 11. Lab – Safety

- Preparation of Benzamide & Aspirin-Purification, determination of melting point and percentage vield.
- Identification of unknown organic compounds Hydrocarbons, Phenols, Aldehydes, Ketones, Carboxylic acids, Amides and Amines.

Title	MECHANICAL	OPERA		Credits	05		
Code	CHE 208	Semester:-4 th			LTP	3 1 3	
Max. Marks	End term- 50	Mid te	erm- 50	Practica	l- 25	Elective	Ν
Pre						Contact	42 (Theory)
requisites						Hours	14 (Practical
							Sessions)
THEORY Time 3 Hours							
Note for the Examiner The semester question paper of the subject will be of 40 marks having 8 questions of equal marks. The paper will be divided into two parts having four questions each from Section A and Section B. The candidate is required to attempt total 5 questions selecting atleast two questions from each Section.							
		2	SECTIO	N-A			
Size Reduction: Crushers and Grinders: jaw crusher, crushing rolls, Gyratory Crusher Tumbling/revolving mills, hammer Mill and Fluid energy mill. Closed and open circuits grinding. Power requirements. Laws of crushing. Mechanical Separation: Screening: Stationery screens, Grizzlies, Trommel and Vibrating screens.							
	handand Canaana O		•	-	-		•

International Standard Screens & Indian Standard Screens. Screening Analysis-differential and cumulative.

- Motion of particle through a fluid: Stoke's Newton's law. Free and hindered setting.
- Setting tank and double cone classifiers
- Batch and continuous thickeners

Settling chamber, cyclone, filter bag and electrostatic precipitators.

SECTION-B

Filtration: Plate and frame filter press, continuous rotary vacuum filter, filter aids, theory of filtration for non-compressible cakes.

Centrifugation: Tubular bowl centrifuge, disk centrifuge and batch basket centrifuge. *Fluidization*: Conditions for fluidization: Aggregate and particulate fluidization. Ergun's and Carman-Kozeny equations.

Mixing and Agitation: Basic ideas and characteristics of mixing equipment power consumptions scale-up.

Conveying: Mechanical and pneumatic conveying systems, storage & handling of materials.

Books Recommended:

1.	Mc Cabe, Warren L., Smith, Juluain C. and Harroit, Peter	:	Unit Operations of Chemical Engineering, 5 th Edition, Mc Graw Hill Int. ed (Chemical Engineering Series) Mc Graw Hill Book Company, New York, 1993.
2.	Foust, Alan S., Wenseli, Leonard A., Clump, Curtis W., mans, Louis and Anersen, L. Bryce	:	Principles of Unit Operations, Wiley International Edition, John Wiley & Sons Inc., New York.
3.	Coulson, J.M. and Richardson, J.F.	:	Unit Operations (Volume 2 of Chemical Engineering) New York: Mc Graw – Hill Book Co;, Inc.
4.	Gupta, Santosh K.	:	Momentum Transfer Operations, Tata McGraw-Hill, New Delhi.
5.	Badger, Walter L. and Banchero, Julius T.	:	Introduction to Chemical Engineering, Mc Graw-Hill, Kogakusha Ltd., New Delhi.
6.	Brown, C.G.	:	Unit Operations, John Wiley & Sons, Inc., New York.
7.	Chattopadhyay, P.	:	Unit Operations of Chemical Engineering, Vol. I, Khanna Publishers, New Delhi.

Paper Title : MECHANICal OPERATIONS (Practical) Paper Code CHE 207 Max. Mark

aper Code CHE 207 Max. Marks 25 Credit
--

- 1. Pressure drop and two phase flow characteristics in packed and fluidized beds.
- 2. Measurement of drag force.
- 3. Batch settling of slurries.
- 4. Constant pressure filtration.
- 5. Mixing, crushing, grinding, screening and particle size analysis (Anderson Pipette)

Title	COMPREHENSIVE	VIVA	Credits	01				
Code	CHE 209	Semester:-4 th			LTP			
Max. Marks	End term25	Mid te	erm	Practical-	Elective	N		
Pre					Contact			
requisites					Hours			
SECTION- A								

The viva-voce examinations will be comprehensive and covering all subjects taught during first to fourth semesters.

Fifth Semester

	2	NUMERICAL ENGINEERING	METHOD G	S IN CHEMICAL	Credits	4
Code	е	CHE 301		Semester:-5 th	LTP	3 1 -
Max	.Marks	End term 50	Mid tern 50	n Practical :	Elective	N
Preı	requisites	-	I		Contact Hours	42
THE	ORY					
Note	for the			The question paper sh		
Exam	niner			stions. 4 questions fro e students will be requi		
		at least 2 from		_	red to attempt 5 que	stions selecting
				ECTION- A		
Error	s in Numerical	Calculations, S	Solution of <i>i</i>	Algebratic and Transco	endental Equations	The Bisection
				eration Method, New	•	
	•	-		of a Polynomial, New		•
		•		Interpolation with U		
		•		terpolation, Curve Fit	ting, Least-Squares	Curve Fitting
	-	ed Least Squar	• •		acon'c 1/2 Dulo (impeon's 2/9
		es and Romber	-	rapezoidal Rule, Sim	uson's 1/3 -Rule, 3	5/8-
Ruie,	Weddie 3 Rule		gintegratio			
			SF	ECTION- B		
Solut	ion of Linear	Systems, Gaus	sian Elimin	ation Method, Gauss	-Jordan Method, Ja	acobi Iteration
		del Iteration M				
Nume	erical Solution	of Ordinary I	Differential	Equation: Taylor's Se	eries Expansion Me	thod, Picard's
		-	-Kutta Metl	nods, Predictor-Corre	ctor Methods, Sim	ultaneous and
•	er Order Equat					
				quations: Finite-Differ	ence Approximatio	n to Laplace's
	tion, Parabolic	Equations and	Hyperbolic	Equations		
Equa						
•	mmended R	ooks				
Reco	mmended B Hildebrand.		Introduc	tion to Numerical Ana	lvsis.	
	ommended B Hildebrand, Scarborough	F.B. :		tion to Numerical Ana al Mathematical Analy	-	Pub. Co.
Reco	Hildebrand,	F.B. : I, J.B. :	Numeric	tion to Numerical Ana al Mathematical Analy al Methods for Engine	sis, Oxford and ISH	Pub. Co.
Reco 1. 2.	Hildebrand, Scarborough	F.B. : I, J.B. :	Numeric	al Mathematical Analy	sis, Oxford and ISH	Pub. Co.
Reco 1. 2. 3.	Hildebrand, Scarborough Chopra, S.C. R.P.	F.B. : I, J.B. :	Numeric Numeric	al Mathematical Analy al Methods for Engine	rsis, Oxford and ISH ers.	
Reco 1. 2.	Hildebrand, Scarborough Chopra, S.C.	F.B. : I, J.B. :	Numeric Numeric Introduct	al Mathematical Analy al Methods for Engine tory Methods of Nume	rsis, Oxford and ISH ers.	
Reco 1. 2. 3.	Hildebrand, Scarborough Chopra, S.C. R.P.	F.B. : I, J.B. :	Numeric Numeric	al Mathematical Analy al Methods for Engine tory Methods of Nume	rsis, Oxford and ISH ers.	

Title	ENERGY T	ECHNOLOG	Credits	4	
Code	ode CHE 302 Semester:-5 th			L T P	3 1 -
Max.Marks	End term	Mid term	Practical	Elective	Ν
	50	50			
Pre requisites	-			Contact Hours	42
THEORY					
Note for the	Note for the I	Paper setter: Th	e question paper	should be divided into	Section A and
Examiner				rom section A and 4 o	
				be required to attemp	pt 5 questions
	selecting at le	ast 2 from each	section.		
SECTION- A					
• 1				Non-conventional/rene	wable energy
sources, their importa					
				coal, coal preparation	
				ation, products of carb	
				d Fischer Tropsch pro	
				il, uses of petroleum p	
· · ·	al gas, manufac	ture of water g	as and producer g	gas, gas cleaning meth	ods.
SECTION- B					
Principles of combus					
		•	ace atmosphere,	Portland cement con	tinuous rotary
kiln, blast furnace, gl		nace			
Alternate sources of e		4	C 1: : :		
				nt on a solar collector.	
Applications of s and solar thermal			solar water neate	er, solar cooker, solar	concentrators
 Types of solar ph 			otions		
 Photosynthesis and 					
 Wind Energy: N 					
Other renewable energy			-	ive	
outer renewable energ	y sources such a	s geotileiniai, a	iai, occur and we		
Recommended Bo	oks				
1. Gupta, O.P.	: Elen 2007		Furnaces & Refr	actions, 5 th Edition, K	Thanna Publis
2. Rao, S. and	: Ener	gy Technolog	y – Non-convent	tional, Renewable &	Conventional
Parulekar, B.B			blishers, 2007.		
3. Dayal, M.	: Rene	ewable Energy	– Environment	and Development, k	Konark Publis
		Ltd., 1989.			
4. Sukhatme, S.P				Collection and Storage	e, 2 nd Edition,
			lishing Company l		
5. Sharma, S.P. a			stion, Tata Mc-0	Graw Hill Publishing	g Company
Mohan, C.	1984	ŀ.			

Title	CHEMICA	Ĺ	REACTION	Credits	5
	ENGINEER	RING-I			-
Code	CHE 303		Semester:-5 th	LTP	3 1 3
Max.Marks	End term 50	Mid tern 50	m Practical : 25	Elective	N
Pre requisites	-			Contact	42 (Theory)
-				Hours	14 (Practical
					Sessions)
THEORY					
Note for the Examiner	Section B Te	otal of 8 q to be set. 1	er: The question paper uestions. 4 questions The students will be re ion.	from section A a	nd 4 questions from
SECTION- A					
			s of homogeneous re		
•	e data from co	onstant vol	ume and constant pre	essure systems.	
Single Ideal reactors.					
Design for single read	ctions.				
SECTION- B					
Design for multiple re					
			ture and pressure effe		
-			hemical conversion.	One parameter r	models to represent
the behaviour of che	mical reactor	5.			
Practical					
 Kinetic studie Kinetic studie 					
3. Kinetic studie		w reactor.			
4. Kinetic studie		atch reacto	nr.		
5. RTD studies i			<i>.</i>		
6. Dispersion nu		ked hed re	Pactor		
7. Adiabatic bat					
Recommended Bo					
1. Levenspiel, O.		: Chem 2004.	-	ering, 3 rd Edition	i, John Wiley and So
2. Smith, J.M.		: Chem	ical Engineering, Kine	tics, 3 rd Edition, a	and McGraw Hill, 1982
4. Dinbigh, K. and K.G.	l Turner,		•		CambridgeUniv. Pres
5. Scott Fogler, H		: Eleme Hall, 2		action Engineerir	ng, 4 th Edition, Prent

Title	MASS TRANSFER – I				Credits	4	
Code	CHE 304		Semester:-5 th		L T P	3	1
						-	
Max.Marks	End term 50	Mid ter 50	m	Practical 0	Elective	N	
Pre requisites	-				Contact Hours	42	
THEORY	1				1	1	
Note for the Examiner	Note for the	Paper set	ter: '	The question paper	• should be divided into	Sectio	n A

	from sect	ion	B Total of 8 questions. 4 questions from section A and 4 questions B are to be set. The students will be required to attempt 5 questions east 2 from each section.
SEC	CTION- A		
Mass	s transfer operations, classific	cati	on of mass transfer operations, choice of separation methods,
meth	nods of conducting mass trans	fer	operations, design principles.
Intro	duction to mass transfer and c	liffu	ision, molecular diffusion in gases and liquids, diffusion coefficients
for g	ases and liquids, diffusion in sol	ids,	types of solid diffusion.
Mass	s transfer coefficients, types	of	mass transfer coefficients, mass transfer coefficients in laminal
flow,	, theories of mass transfer.		
Inter	phase mass transfer, concept	of	overall mass transfer coefficient.
	CTION- B		
		ii bi	ndustrial applications of various gas liquid contacting equipments
		y a	gitated vessels, tray towers, packed towers, spray chambers
vent	uri scrubbers.		
vent Hum	uri scrubbers. idification operations, psyc	hor	metric chart, adiabatic saturation temperatures, wet bulk
vent Hum temp	uri scrubbers. idification operations, psyc perature, adiabatic operations	, hor	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers.
vent Hum temp Princ	uri scrubbers. idification operations, psyc perature, adiabatic operations siple of drying, batch drying, d	, hor	ngitated vessels, tray towers, packed towers, spray chambers, metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. Ing curve, constructional details and working of different dryers
vent Hum temp Princ Rec	uri scrubbers. idification operations, psyc perature, adiabatic operations iple of drying, batch drying, d ommended Books	hor , ty ryir	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers
vent Hum temp Princ	uri scrubbers. idification operations, psyc perature, adiabatic operations siple of drying, batch drying, d ommended Books Treybal, Robert E.	hor , ty ryir :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981.
vent Hum temp Princ Rec	uri scrubbers. idification operations, psyc perature, adiabatic operations ciple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford,	hor , ty ryir :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers
vent Hum temp Princ Rec 1.	uri scrubbers. idification operations, psyc perature, adiabatic operations siple of drying, batch drying, d ommended Books Treybal, Robert E.	hor , ty ryir :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981.
vent Hum temp Princ Rec 1.	uri scrubbers. idification operations, psyc perature, adiabatic operations ciple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford,	hor , ty ryir :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981.
vent Hum temp Princ Rec 1.	uri scrubbers. idification operations, psyc perature, adiabatic operations iple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford, Robert L. and Wilke,	hor , ty ryir : :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981.
vent Hum temp Princ Rec 1. 2.	uri scrubbers. idification operations, psyc perature, adiabatic operations siple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford, Robert L. and Wilke, Charles R. Sharma, K.R.	hor , ty ryir : :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981. Mass Transfer, McGraw-Hill. Principles of Mass Transfer, Prentice Hall of India Pvt. Ltd., 2007.
vent Hum temp Princ Rec 1. 2.	uri scrubbers. idification operations, psyc perature, adiabatic operations siple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford, Robert L. and Wilke, Charles R. Sharma, K.R.	hor , ty ryir : :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981. Mass Transfer, McGraw-Hill. Principles of Mass Transfer, Prentice Hall of India Pvt. Ltd.,
vent Hum temp Princ Rec 1. 2. 3.	uri scrubbers. idification operations, psyc perature, adiabatic operations siple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford, Robert L. and Wilke, Charles R. Sharma, K.R.	hor , ty ryir : :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981. Mass Transfer, McGraw-Hill. Principles of Mass Transfer, Prentice Hall of India Pvt. Ltd., 2007.
vent Hum temp Princ Reco 1. 2. 3.	uri scrubbers. idification operations, psyc perature, adiabatic operations ciple of drying, batch drying, d ommended Books Treybal, Robert E. Sherwood, T.K., Pifford, Robert L. and Wilke, Charles R. Sharma, K.R. McCabe, Warren L., Smith	hor , ty ryir : :	metric chart, adiabatic saturation temperatures, wet bulk pes of cooling towers. ng curve, constructional details and working of different dryers Mass Transfer Operations, 3 rd Edition. McGraw-Hill, 1981. Mass Transfer, McGraw-Hill. Principles of Mass Transfer, Prentice Hall of India Pvt. Ltd., 2007. Unit Operations of Chemical Engg., 7 th Edition, McGraw-Hill,

Title	CHEMICAL (INORGANIC)		TECHNOLOGY		Credits	5	
Code	CHE 305	CHE 305		mester:-5 th	LTP	3 1 3	
Max.Marks	End term 50	Mid tern 50	n Practical-25		Elective	N	
Pre requisites	-				Contact Hours	42 (Theory) 14 (Practical Sessions)	

THEORY

Note	for	the	Note for the Paper setter: The question paper should be divided into Section A and
Examiner			Section B Total of 8 questions. 4 questions from section A and 4 questions from section
			B are to be set. The students will be required to attempt 5 questions selecting at least 2
			from each section.

SECTION- A

Chlor-Alkali Industry: Voltage efficiency, Current efficiency, Current density, Decomposition efficiency, Manufacture of soda ash by Solvay and Modified Solvay process, Manufacture of caustic soda. *Sulphuric Acid*: Introduction, Manufacture of sulphuric acid by Chamber and Contact process, Material of construction, Storage and handling.

Cement & Glass: Cement-Types of cement, Constituents of cement, Manufacture of Portland cement.

Glass-Introduction, Types of glass, Raw materials, Manufacture of glass. *Ceramics:* Introduction, Properties of ceramics, Classification of refractories, Important steps involved in the manufacture of refractories

SECTION-B

Industrial gases: Manufacture and uses of carbon dioxide, oxygen and nitrogen, acetylene. *Paints*: Introduction, Classification of paints, Manufacture of paints, Requirement of a good Paint.

Fertilizers: Nitrogeneous fertilizers- Manufacture of Ammonia, Nitric acid, Urea, CAN, Ammonium Sulphate. Phosphatic fertilizers- superphosphate and triple superphosphate. Potassic fertilizers- Potassium Chloride and Potassium Sulphate, Safety aspects.

Practical

- 1. Fertilizers (i) Determination of N-P-K Values
 - (ii) Determination of micronutrients
- 2. Cement: Loss of ignition, silica, insolubles, estimation of Mg, Ca, Fe.

3. Water

Reco	ommended Books		
1.	Shreev, R.N. & Brink, J.A.	:	Chemical Process Industries, 5 th Edition, McGraw Hill,
			1987.
2.	Austine, G.T.	:	Shreeves Chemicals Process Industries, 5 th Edition, Mc
			Graw Hill, 1984.
3.	Dryden, C.E., Rao M.G. & Silting,	:	Outlines of Chemical Technology, 3 rd Edition, Affiliated
	М.		East West Press Pvt. Ltd., N. Delhi, 2008.
4.	Pandey, G.N.	:	Chemical Technology, Volume-I, Lion Press, Kanpur.

Title Code		PROCESS PLA	NT DESIGN -	Credits	1	
		CHE 306		Semester:-5 th	LTP	3
Ma	ax.Marks	End term	Mid term	Practical:25	Elective	Ν
Pre requisites		-			Contact Hours	14 Practical
						Sessions
		·				•
Pr	actical					
1.	Design of pipin	g & piping netv	vorks.			
2.	Selection, spec	ification & pow	er requireme	nts of process pump	os, fans and blowers.	
3.	Design of settli	ng equipments	like Dor thick	eners, dust chambe	ers, cyclone separator	s and
	centrifuges.					
4.	Design of agita	ted vessels usir	ng various type	es of impellers.		
5.	Design of Conv	eyor system for	r solids.			
Re	commended H	Books				
1.	Luding, E.E.		: A	pplied Process De	sign in Chemical in	Petrochemical
			Р	lants, Gulf Publishir	ng Company.	
2.	Perry, J.H.		: C	Chemical Engineers	Handbook, McGraw H	Hill.
3.	3. Joshi, M.V. : Process Equipmer				Design, Macmillan Inc	lian.

4. Peters, M.S. and Timmerhaus, K.D. Plant Design and Economics for Chemical Engineers McGraw Hill.

Title	CHEMICAL LAB. (Practica		NG	COMPUTATION	Credits	1
Code	CHE 307		Se	emester:-5 th	L T P	3
Max.Marks	End term	Mid tern	1	Practical: 25	Elective	N

Pre requisites	-		Contact Hours	14 Practical
				Sessions
Practical				
Errors analysis, S	olution of linear a	nd non-linear algebric equations.		
Numerical differ	ential & integratio	n.		
Interpolation.				
Least squares ap	proximation.			
Ordinary and pa	rtial differential eq	juations.		
Development of	computer program	ms based on the above topics usir	ng Matlab and their	applications in
chemical proces	s computations.			
Recommended	Books:			
1. Grewal, B	S. :	Numerical Methods in Engine	eering and Science	e, Khanna
		Publishers, N. Delhi, 2001.		
2. Sastry, S.S	. :	Introductory Methods of Nume	rical Analysis, Prent	tice Hall of
		India.		

Sixth semester

Title	CHEMICAL ENGINEERIN	NG-II	REACTION	Credits	4
Code	CHE 308	S	Semester:-6 th	LTP	3 1 -
Max.Marks	End term 50	Mid term 50	Practical	Elective	Ν
Pre	-		L.	Contact Hour	rs 42
requisites					
THEORY					
Note for the Examiner	Section B Total	of 8 questions The students	s. 4 questions from	n section A and 4 o	ed into Section A and questions from section ons selecting at least 2
SECTION- A					
catalyst poisonin Fluid Solid cata	ng and catalyst relation: I	egeneration. Kinetics; exter	rnal transport pro	cesses, Reaction	paration of catalysts, -and diffusion withir ffectiveness factors.
SECTION- B					
Fluid - fluid read	ctions rate equat	ions and their	application to the	e design of reactor	s.
Fluid Solid non-	catalytic reactor	s rate equation	ns and their appli	cation to the desig	n of reactors.
•	0	tline and sele	ction of fixed bed	d, fluidised bed an	nd slurry reactors for
fluid solid cataly					
Recommende					
1. Levenspiel, O	:		action Engg., Joh		
2. Fogler, H.S.	:			etics, McGraw Hi	11.
3. Smith, J.M.	•		gineering Kinetic		11:11
4. Walas, S.M. 5. Hills, C.J.				ll Engg., McGraw g., Kinetics and R	
J. 11115, C.J.	•	All Introducti		g., Kineties and K	eactor Design.
Title	MASS TR	RANSFER-II	(Theory)	Credits	5
Code	CHE 309		Semester:-6 th	LTP	3 1 3
Max.Marks	End term 50	n Mid tern 50	n Practical : 2	25 Elective	N
Pre requisites			11	Contact	42 (Theory)
1				Hours	14 (Practical
					Sessions)
THEORY					
Note for Examiner	Section B section B a	Total of 8 qu	estions. 4 questio he students will be	ons from section A	ided into Section A a A and 4 questions fro npt 5 questions selecti
SECTION- A					
predictions, Sele	ection of absorb	ent, limiting		absorption factor	use in design of pla
predictions, Sele absorbers. Krem	ection of absorb nser equation fo	ent, limiting r ideal plates	liquid gas ratios,	absorption factor f ideal plates to re	ry's law for solubili use in design of pla eal plates using vario

Distillation: Limitations and applications, prediction of VLE using thermodynamic & experimental

techniques. Dew point & bubble point estimations for binary & multicomponent mixtures. Distillation methods – flash distillation, differential distillation for binary systems, steam distillation, optimum reflux ratio. Fractionation of binary mixtures using McCabe – Thiele method and enthalpy concentration method (Ponchon and Savarit method). Packed distillation columns. Azeotropic & extractive distillation preliminaries and molecular distillation.

SECTION-B

Liquid-Liquid Extraction: Ternary Equilibria and its representation on various plots. Selection criteria for solvent, Multistage extraction using partially miscible & immiscible solvents. Stagewise contact for countercurrent and crosscurrent extraction. Constructional details of equipment like mixer-settler, packed columns, pulsed extractor, sieve-tray extractor and centrifugal extractor.

Leaching: Preparation of solid, countercurrent and crosscurrent multistage contact Shank's system. Constructional details of equipment like Rotocel extractor, Hildebrandt extractor, Bollman extractor, Kennedy Extractor & Beet-Sugar Diffusion battery extractor.

Adsorption: Types of adsorption, nature of adsorbents, equilibria for adsorption systems. Brief manufacture and commercial applications and characteristics for common adsorbents. Stagewise & continuous contacting of fluid and solid phase. Description of contact filtration adsorption system. Hypersorber Ion-exchange system.

Crystallization: Growth and properties of crystals saturation, nucleation, growth of crystals, effect of impurities on crystal formation, effect of temperature on solubility, fractional crystallization, yield of crystals, crystal purity, yield calculation using phase diagram, energy requirements using enthalpy-concentration diagram. Methods of creating super saturation-Meirs supersolubility curve. Mechanism and methods for nucleation. Derivation for ideal growth of crystals and discussion of actual growth. Swanson-Walker and various vacuum crystallizers.

Practical

- 1. Determination of mass transfer coefficients for naphthalene-air system.
- 2. To determine drying rate curves for different wet solids in a batch drier under constant drying conditions
- 3. Fractional approach to equilibrium for liquid-liquid extraction from single drop.
- 4. Verification of Rayleigh's equation for differential distillation.
- 5. Determination of flooding velocities in packed columns.
- 6. Determination of HETP for packed distillation columns.
- 7. Study and operation of a pilot sized distillation column under total reflux.
- 8. Study of different mass transfer equipments.

Recommended Books

1	Troubal Dabart C		Mass Transfer Onerstians 2rd Edition McCrow Hill 1001
1.	Treybal, Robert E.		Mass Transfer Operations, 3 rd Edition, McGraw-Hill, 1981.
2.	Sherwood, T.K., Pigford, R.L	:	Mass Transfer, McGraw-Hill, Chemical Engineering Series,
	& Wilke,C.R.		1975.
3.	Skelland, A.H.P.	:	Diffusion Mass Transfer, John Wiley & Sons., New York, 1974.
4.	McCabe, Warren L., Smith	:	Unit-Operations of Chemical Engg., 7th Edition, McGraw-Hill,
	Julian C. and Harriot, H.P.		2005.
5.	King, C.J.		Separation Processes, Tata McGraw Hill Publishing Co. Ltd.,
		:	New Delhi , 1982.
6.	Geankoplis, C.J.	:	Transport Process and Separation Processes, 4th Edition,
			Prentice Hall Inc., New Delhi, 2003.

Title	PROCESS D	YNAMICS (& CON	TROL	Credits	5		
Code	CHE 310			ster:-6 th	L T P	3 1 3		
Max.Marks	End term	Mid term		actical :	Elective	N		
	50	50	25					
Pre	-				Contact Hours	s 42 (Theory)		
requisites					0011000110011	14 (Practical		
requisites						Sessions)		
						Second (
THEORY								
Note for the Examiner	Note for the Note for the Paper setter: The question paper should be divided into Section A and							
SECTION-A								
	•		-	•	•	system. Difference		
between feedb	ack and feed fo	orward cont	rol coi	nfiguration.	Hardware elem	ents of a control		
system, Block D	iagrams.							
•					•	d and distributed		
	-		f first a	and higher	order systems, in	nteracting and non-		
interacting syst	ems, dead time.							
Different mod characteristics,		actions ar	nd the	ir basic c	haracteristics, co	ntrollers and their		
SECTION-B								
Closed-loop tra criterion, Root I		s, transient	respoi	nse of sim	ple control syste	ms, Routh stability		
			-			frequency response: n and phase margin.		
	o advanced co nferential contro		iiques	such as ca	scade control, fe	eed forward control,		
Practical								
	manometer							
(a) To	plot the response	se curve for a	a given	input to a L	J-tube manometer			
			-	•	onse curve obtaine			
	onstant of a mer							
		-		nometer and	d compare the the	eoretical value of its		
time co	nstant with the	experimenta	al value					
3. Analysis	s of valve							
Develo	o a block diagrar	n representi	ng the o	dynamic bal	havoiur of the give	n globe valve.		
4. (a) Liqu	uid level measur	ement						
Wit	h the given Bub	bler System	for Liq	uid Level N	leasurement, eval	uate liquid height in		
the	tank and compa	are it with ac	ctual va	lues.				
(b) Cali	bration of Press	ure Gauge						
	brate a pressure		e range	e 0 psi to 60	psi.			
5. Tempe	rature control sy	ystem						

To maintain the temperature of the fluid at the set point value.

- Time constant of liquid level tank
 To study the dynamics of liquid level in a tank and compare the analytical value of the time
 constant with the experimental value.
- 7. Liquid level control
 (a) To carry out the closed loop experiment on the given liquid level control system and record its response for step change in the inlet flow.
 (b) To plot the experimental response curve and comment on the response obtained.
- Compurec
 Pressure control simulation with step input and sinusoidal input.

Recommended Books

1. Coughanowr, D.R. : Process Systems Analysis and Control, 2nd Edition. Mc Graw Hill, 1991.

2. Stephanopolous G. : Chemical Process Control -An Introduction to Theory and Practice, Prentice Hall of India, New Delhi, 2008.

3. Luyben W. L. and Luyben M.L.: Essentials of Process control, Mc Graw Hill International Editions, 1997.

4. Ogata K.: System Dynamics, 4th Edition, Pearson Education, 2004.

5. Harriott, P. : Process Control, TMH Edition, Tata McGraw Hill Publishing

Co. Ltd., New Delhi, 1972.

Title	CHEMICAI (ORGANIC		TECHNOLOGY	Credits	5		
Code	CHE 311	S	emester:-6 th	LTP	3 1 3		
Max.Marks	End term 50	Mid tern 50	n Practical: 25	Elective	N		
Pre requisites	-			Contact	42 (Theory)		
				Hours	14 (Practical		
					Sessions)		
THEORY							
Note for the			: The question paper				
Examiner			estions. 4 questions fr a students will be requ				
	at least 2 from		-	uneu to attempt	5 questions selecting		
SECTION- A							
Oils & Fats: Intro	duction, Extr	action of	oils from vegetable	e oils, refining	of oils and fats,		
hydrogenation of o	ils.						
Soaps and Deterg	<i>ents</i> : Introdu	iction, Rav	v materials, Manufa	acture of soap	o, Classification of		
deterdents, finishin	• •						
			on patterns; Impuriti	es: dissolved, su	uspended, colloidal;		
Hardness of water;							
	•	-	porative processes, I	•			
flash, vapour comp	flash, vapour compression; Membrane processes, Reverse osmosis, electrodialysis.						
SECTION- B							
	duction Daw	Astorials to	mac of pulp Manufa	sture of paper			
	-		pes of pulp, Manufa	• •	ontration		
crystallization, dryir		-	tion, sulphitation, car	i bonation, conc	entration,		
•			•	ns raw matoria	ls and manufacture		
Carbon Technology: Introduction, Classification of activated carbons, raw materials and manufacture							

pol	lyacrylor	nitrile, manufacture of carbo	n b	carbon fibres, manufacture of carbon fibres from lack by furnace black process, applications. is of nano particles by RF plasma process.			
Pract	icals						
	1.	Oils & Fats: Determination	of	Acid value, Iodine value, Saponification value.			
	2.						
	3.	<i>Soaps</i> : Determination of insoluble.	free	e and combined alkali, total fatty matter, moisture and			
Reco	ommen	ded Books					
1.	Shreev	r, R.N. & Brink, J.A.	:	Chemical Process Industries, 5 th Edition, McGraw Hill, 1987.			
2.	Austin	e, G.T.	:	Shreeves Chemicals Process Industries, 5 th Edition, Mc Graw Hill, 1984.			
3.	Dryder M.	n, C.E., Rao M.G. & Silting,	:	Outlines of Chemical Technology, 3 rd Edition, Affiliated East West Press Pvt. Ltd., N. Delhi, 2008.			
4.	Pander	y, G.N.	:	Chemical Technology, Volume-II, Lion Press, Kanpur.			
5.		t J. B., Bansal R. C.		Carbon Fibres, Marcel Dekker Inc.			
6.	Donne M. J.	t J. B., Bansal R. C., Wang	:	Carbon Black, Marcel Dekker Inc.			
7.	Bansal F	R. C., Donnet J. B., Stoeckli	:	Active Carbon, Marcel Dekker Inc.			

SEVENTH SEMESTER

Title	Transport P	Transport Phenomena				3
Code	CHE 401		Se	mester:-7 th	LTP	3
Max.Marks	End term 40	Mid term 35		Practical	Elective	N
Pre requisites	-				Contact Hours	42

THEORY

Note for	the	Note for the Paper setter: The question paper should be divided into Section A and
Examiner		Section B Total of 8 questions. 4 questions from section A and 4 questions from
		section B are to be set. The students will be required to attempt 5 questions
		selecting at least 2 from each section.

SECTION-A

Transport of momentum, heat and mass by molecular motion-Newton's law of Viscosity, Fourier's law of heat conduction, Fick's law of diffusion.

Transport properties – Viscosity, thermal conductivity and mass diffusivity.

Emphasis on the analogy between momentum, heat and mass transfer with respect to transport mechanism and governing equations.

Development of mathematical models of transfer process through shell momentum balance, shell energy balance and shell mass balance for solving specific problems of transport of momentum, heat and mass in laminar flow or in solids in one dimension.

SECTION-B

Development of general differential equations of fluid flow, heat transfer and mass transfer and their applications in solving one-dimensional steady state and unsteady state problems of momentum, heat and mass transfer.

Interphase transport of momentum, heat and mass and dimensionless correlation for each one of them.

Momentum, heat and mass transfer analysis.

Books Recommended:

- 1. Bird, R.B., Stewart, W.E. and : Transport Phenomena, 2nd Edition, John Wiley & Sons, 200 Lightfoot, E.N.
- Weity, J.R. Wilson, R.E. and : Fundamentals of Momentum Heat and Mass Transfe Wicks, C.E.
 Edition, John Wiley & Sons, 2001.
- 3. Bennett.C.O. and Myres J.E. : Momentum, Heat and Mass Transfer, McGraw Hill.

Title	Environme	ental Engi	neering	Credits	5		
Code	CHE 402	S	emester:-7 th	L T P	3 1 3		
Max.Marks	End	Mid	Practical: 25	Elective	Ν		
	term 50	term 50					
Pre requisites	-			Contact	42 (Theory)		
				Hours	14 (Practical		
					Sessions)		
THEORY							

Note for the ExaminerNote for the Paper setter: The question paper should be divided into Section A
and Section B Total of 8 questions. 4 questions from section A and 4 questions
from section B are to be set. The students will be required to attempt 5 questions
selecting at least 2 from each section.

SECTION-A

Ambient air and water standards. Principal sources of pollution. Inter-relationship between energy and environment pollution. Prevention of environmental pollution through conservation, raw material substitutions, process and equipment modifications. A case study on the concept of zero discharge.

Air Pollution:

- Principal air pollutants and their usual sources.
- Effect of air pollutants on human health, animals, vegetation and materials.
- Atmospheric dispersion of air pollutants, temperature inversions, Estimation of pollutants by Gaussian plume model.
- Process and equipments used for the control of particulate pollutants.

SECTION-B

Water Pollution:

- Types of water pollutants, their sources and effects.
- BOD and COD
- Waste water treatment techniques and equipments, flocculation, skimming, floatation, etc.
- Primary Treatment-through settling.
- Secondary Treatment-Aerobic and anaerobic digestion, activated sludge process, trickle filter and oxidation ponds.
- *Solid wastes:* Control and disposal, sanitary landfill, incineration, pyrolysis gasification and recycling.

Books Recommended:

1.	Perkins, H.C.	:	Air Pollution, McGraw Hill, N.Y.
2.	Rao, C.S.	:	Environmental Pollution Control Engineering, 2 nd Edition, New A International Pvt. Ltd., 2006.
3.	Williamson, S.J.	:	Fundamental of Air Pollution, Addison Wesley Co. N.Y.
4.	Numerow, N.L.	:	Liquid Wastes of Industry, Addison Wesley Co., N.Y.
5.	Sincero, A.P. and		Environmental Engineering, Prentice-Hall of India, 1999.
	Sincero, G.A.	:	
6.	Hammer, M.J. and Jr.	:	Water and Wastewater Technology, 6 th Edition, Prentice-Hall
	Hammer, M.J.		India, 2008.
7.	Mahajan, S.P.	:	Pollution Control of Process Industries, Tata McGraw Hill.
8.	Metcalf and Eddy	:	Waste-Water Engineering, 4 th Edition, Tata McGraw Hill, 2007.

Environment Engineering Laboratory (PRACTICALS)

- 1. To find BOD of water sample.
- 2. To find COD of waste sample.
- 3. To find the total dissolved solids (TDS) and its volatile and non-volatile components.
- 4. To find the total suspended solids (TSS) and its volatile and non-volatile components.
- 5. To do the chromium separation by different techniques from electroplating wastes.
- 6. To find the phenol content of water sample and evolution of parameters.
- 7. To operate the electrodialysis apparatus.
- 8. To find the biodegradation constant (K) and the effect of timing on it.
- 9. To use the membrane separation techniques for salt brine and reverse osmosis process for sugar.
- 10. To use stack monitoring kit to find:
 - a. Efficiency of a cyclone.
 - b. Dust sampling.

Note: Any six of the above mentioned experiments are to be conducted.

Title	Process Mo	Process Modelling & Simulation			1
Code	CHE 403		Semester:-7 th	LTP	3
Max.Marks	End term	Mid term	Practical:25	Elective	Ν
Pre requisites	-			Contact Hours	14 (Practical Sessions)

Practical

Functional design, property estimate as inputs for design. System concepts for computer aided design, computer aided flow sheet design. Process analysis. Process variables selection, equipment design through the selection of free parameters subject to constraints and other parameters, modular design. Simulation optimality. Dynamic design including control stability.

Typical equipments to be considered: heat exchangers, distillations columns, reactor and process equipments.

Books Recommended:

 Luyben, W.L.
 Process Modeling, Simulation & Control, Mc Graw-Hill Book Co.
 Franks, R.G. E.
 Modeling and Simulation in Chemical Engineering, Wiley Interscience.

3. Mischke, C. : Computer Aided Design, Prentice Hall.

Title	Process	Process Plant Design-II			1
Code	CHE 40)5	Semester:-7 th	LTP	3
Max.Marks	End term	Mid term	Practical:25	Elective	N
Pre requisites	-			Contact Hours	14 (Practical Sessions)

Practical

- 1. Process design and specifications of double pipe heat exchanger, shell and tube heat exchanger, plate type heat exchanger, condenser and reboiler.
- 2. Design of distillation column, calculation of number of plates, height and design of fractionator internals- sieve tray.
- 3. Absorber/Stripper design of stage-wise and continuous contact equipment (packed column), height of column and diameter calculations. HTU and NTU.
- 4. Design aspects of fixed bed reactors and fluidized bed reactors.

Books Recommended:

1.	Coulson, Richardson & Sinnott, R.K.	:	Chemical Engineering, Volume 6 – An Introduction to Che Engineering Design, 4 th Edition, Pergamon Press, 2007.
2.	Ludwig, E.E.	:	Applied Process Design in Chemical and Petrochemical P 2 nd Edition, 1977.
3.	Perry, J.H.	:	Chemical Engineers Handbook, 8 th Edition, McGraw Hill, 20
4.	Kern, D.Q.	:	Process Heat Transfer, McGraw Hill, 1965.
5.	Shell and Tube Type Heat Exchangers, Indian Standards.	:	Instt., IS: 43-197.
6.	Treybal, Robert E.	:	Mass Transfer Operations, 3rd Edition, McGraw- 1981.

7.	Levenspiel, O.	:	Chemical Reaction Engineering, 3rd Edition, John Wiley and Sons, 2004.
8.	Walas, S.M.	:	Reaction Kinetics for Chemical Engg., McGraw Hill.
9.	Scott Fogler, H.	:	Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall, 2007.

EIGHT SEMESTER

	Process Inst	rumentation		Credits	4
Code	CHE 407	Se	emester:-8 th	LTP	31-
Max.Marks	End term	Mid term	Practical	Elective	N
	50	50			
Pre requisites	-			Contact Hours	42
THEORY					
Note for the				should be divided into	
Examiner				rom section A and 4 q	
		e to be set. The ast 2 from each		be required to attemp	t 5 questions
	selecting at le		ION-A		
			easurements an	d instruments, Basic	and auxiliary
functional elements					
Static and Dynamic (and statio smar	المعرفين والمتالية ومعرفا المعرف	ift constitute
and dead zone.	s. Kange and sp	an, accuracy a	inu static error,	reproducibility and dri	int, sensitivity
	tics: Sneed of r	esponse and la	g fidelity and dy	namic error, dead time	2
Temperature measu	•		b, nacity and dy	name er or, acaa time	
•		netallic thermo	ometers, liquid-i	n-glass thermometer	and filled-in
system thermomete				0	
Thermocouples, me		hermometers ;	and thermistors	antical and radiation	nuromotoro
mermocoupies, me		incrition increases a	anu mermistors,	oplical and radiation	pyrometers
radiation receiving e					pyrometers
radiation receiving e	lements.		anu thermistors,		pyrometers
radiation receiving e Pressure measurem Use of manometer	lements. ent: s, Bourdon gau	ge, bellows ty	pe gauge. Vacı	uum measurement–M	cleod gauge
radiation receiving e Pressure measurem Use of manometers thermoionic type ion	lements. ent: s, Bourdon gau nization gauge, J	ge, bellows ty pirani vacuum	pe gauge. Vacı		cleod gauge
radiation receiving e Pressure measurem Use of manometer	lements. ent: s, Bourdon gau nization gauge, J	ge, bellows ty pirani vacuum	pe gauge. Vacı	uum measurement–M	cleod gauge,
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu	lements. ent: s, Bourdon gau nization gauge, J id seal and purg	ge, bellows ty pirani vacuum je system.	pe gauge. Vacı	uum measurement–M	cleod gauge,
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure	ent: ent: s, Bourdon gau nization gauge, j id seal and purg ement:	ge, bellows ty pirani vacuum g ge system. SECT	pe gauge. Vacu gauge. Measurer T ION-B	uum measurement–M nent of pressure in co	cleod gauge rrosive fluids
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measuremen	ent: ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level	ge, bellows ty pirani vacuum g ge system. SECT –Float & tape	pe gauge. Vacu gauge. Measurer T ION-B	uum measurement–M	cleod gauge rrosive fluids
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measuremen hydraulic remote tra	ent: ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level ansmission of liq	ge, bellows ty pirani vacuum g e system. SECT –Float & tape uid level.	pe gauge. Vacu gauge. Measurer 'ION-B liquid level gaug	uum measurement–M nent of pressure in co ge, float and shaft liqu	cleod gauge rrosive fluids uid level unit
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measurem Direct measuremen hydraulic remote tra Level measurement	ent: ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessel	ge, bellows ty pirani vacuum ge system. SECT –Float & tape uid level. s: Bubbler syst	pe gauge. Vacu gauge. Measurer T ION-B liquid level gaug tem, diaphragm	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s	cleod gauge rrosive fluids uid level unit
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measurem Direct measuremen hydraulic remote tra Level measurement measurement in pr	ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessel ressure vessels	ge, bellows ty pirani vacuum ge system. –Float & tape uid level. s: Bubbler syst – Differential	pe gauge. Vacu gauge. Measurer T ION-B liquid level gaug tem, diaphragm	uum measurement–M nent of pressure in co ge, float and shaft liqu	cleod gauge rrosive fluids uid level unit system. Leve seals with a
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measuremen hydraulic remote tra Level measurement measurement in pr manometer, displace	ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessel ressure vessels	ge, bellows ty pirani vacuum ge system. –Float & tape uid level. s: Bubbler syst – Differential	pe gauge. Vacu gauge. Measurer T ION-B liquid level gaug tem, diaphragm	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s	cleod gauge rrosive fluids uid level unit
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measuremen hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.)	ent: ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level ansmission of liq in open vessel ressure vessels ement float liqu	ge, bellows ty pirani vacuum ge system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge.	pe gauge. Vacu gauge. Measurer ION-B liquid level gaug cem, diaphragm pressure mano	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s	cleod gauge rrosive fluids uid level unit system. Leve seals with a
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measurem Direct measurement hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of viso	ent: ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessel ressure vessels ement float liqu cosity, conductiv	ge, bellows ty pirani vacuum ge system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a	pe gauge. Vacu gauge. Measurer T ION-B liquid level gaug cem, diaphragm pressure mano	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid	cleod gauge rrosive fluids uid level unit system. Leve seals with a
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measurement hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of visi Density measureme	elements. ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level in open vessel ressure vessels ement float liqu cosity, conductiv nt – liquid level	ge, bellows ty pirani vacuum g e system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a method, displa	pe gauge. Vacu gauge. Measurer T ION-B liquid level gaug rem, diaphragm pressure mano and pH. cement meter ar	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid nd hydrometer.	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measurement hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of vise Density measureme Measurement of we	ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level in open vessel ressure vessels ement float liqu cosity, conductiv nt – liquid level ight – spring sca	ge, bellows ty pirani vacuum g e system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a method, displa	pe gauge. Vacu gauge. Measurer ION-B liquid level gaug rem, diaphragm pressure mano and pH. cement meter ar force meter and	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measuremen hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of vise Density measureme Measurement of we Process Instrumenta	ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessel ement float liqu cosity, conductiv nt – liquid level ight – spring sca ation–Recording	ge, bellows ty pirani vacuum ge system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a method, displa ale, pneumatic instruments, i	pe gauge. Vacu gauge. Measurer ION-B liquid level gaug eem, diaphragm pressure mano and pH. cement meter ar force meter and ndicating and sig	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid nd hydrometer. hydrostatic force mete	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measurement hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of vise Density measureme Measurement of we	ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessel ement float liqu cosity, conductiv nt – liquid level ight – spring sca ation–Recording	ge, bellows ty pirani vacuum ge system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a method, displa ale, pneumatic instruments, i instrumentatic	pe gauge. Vacu gauge. Measurer ION-B liquid level gaug eem, diaphragm pressure mano and pH. cement meter ar force meter and ndicating and sig	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid nd hydrometer. hydrostatic force mete	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measuremen hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of vise Density measureme Measurement of we Process Instrumenta	elements. ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level in open vessel ement float liqu cosity, conductiv nt – liquid level ight – spring sca ation–Recording rument reading,	ge, bellows ty pirani vacuum g e system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a method, displa ale, pneumatic instruments, i instrumentatic Books Rec	pe gauge. Vacu gauge. Measurer TON-B liquid level gaug cem, diaphragm pressure mano and pH. cement meter and force meter and ndicating and sig on diagrams. ommended:	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid nd hydrometer. hydrostatic force mete	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6 er. ontrol centre
radiation receiving e Pressure measurem Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measurem Direct measurement hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of visi Density measurement Measurement of we Process Instrumenta transmission of instr	elements. ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level in open vessel ement float liqu cosity, conductiv nt – liquid level ight – spring sca ation–Recording rument reading, ald P. : Inc 20	ge, bellows ty pirani vacuum g e system. –Float & tape uid level. s: Bubbler syst – Differential id level gauge. vity, humidity a method, displa ale, pneumatic instruments, i instruments, i instrumentatic Books Rec dustrial Instrur 104.	pe gauge. Vacu gauge. Measurer TON-B liquid level gaug cem, diaphragm pressure mano and pH. cement meter ar force meter and ndicating and sig on diagrams. ommended: mentation, CBS	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid nd hydrometer. hydrostatic force mete gnaling instruments, co	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6 er. ontrol centre
radiation receiving e Pressure measureme Use of manometers thermoionic type ion Diaphragm seal, liqu Liquid level measure Direct measurement hydraulic remote tra Level measurement measurement in pr manometer, displace Hrs.) Measurement of vise Density measureme Measurement of we Process Instrumenta transmission of instr 1. Eckman, Dona	elements. ent: s, Bourdon gau nization gauge, j id seal and purg ement: t of liquid level insmission of liq in open vessels ement float liqu cosity, conductiv nt – liquid level ight – spring sca ation–Recording rument reading, ald P. : Inc 20 : Inc N. : Pri	ge, bellows ty pirani vacuum g e system. —Float & tape uid level. s: Bubbler syst — Differential id level gauge. vity, humidity a method, displa ale, pneumatic instruments, i instruments, i instruments, i dustrial Instrume 04.	pe gauge. Vacu gauge. Measurer TON-B liquid level gaug cem, diaphragm pressure mano and pH. cement meter and ndicating and sig on diagrams. ommended: mentation, CBS ntation and Controls	uum measurement–M nent of pressure in co ge, float and shaft liqu box system, air trap s meter, use of liquid nd hydrometer. hydrostatic force mete gnaling instruments, co Publisher and Distribu	cleod gauge rrosive fluids uid level unit system. Leve seals with a (6 er. ontrol centre utors, Indian w – Hill, 2007. McGraw Hil

			Ltd., 1962.							
5.	Patranabis, D.	:	Principles c	of Industrial	Instrumentation,	2 nd	Edition,	Tata	McGraw	Hill
			Publishing C	o. Ltd., 1999.						

Title	Process Eng	ineering Eco	Credits	4	
Code	CHE 408	Semester:-8 th		L T P	3 1 -
Max.Marks	End term 50	Mid term 50	Practical	Elective	N
Pre requisites	-			Contact Hours	42

THEORY

Note	for	the	Note for the Paper setter: The question paper should be divided into Section A and
Examir	ner		Section B Total of 8 questions. 4 questions from section A and 4 questions from
section B are to be set. The students will be required to attempt 5 question			
			selecting at least 2 from each section.

SECTION-A

Cost estimation: Factors affecting investment and production costs. Capital investments, fixed investments and working capital. Cost indices. Estimating equipment costs by scaling 6/10 factor rule. Methods for estimating capital investment. Estimation of total product cost. Different costs involved in the total product costs. Different costs involved in the total product for a typical chemical process plant.

Interest and Investment Costs: Simple and compound interest. Nominal and effective rates of interest. Continuous interest ordinary annuity. Perpetuities and capitalized costs.

Taxes and Insurance: Types of taxes and tax returns, types of insurance and legal responsibility.

Depreciation: Types of depreciation. service life salvage value, present value and methods of determining depreciation, single unit and group depreciation.

SECTION-B

Profitability, Alternative Investments and Replacements: Mathematical methods of profitability evaluation. Cash flow diagrams. Determination of acceptable investments. Alternatives when 'an investment must be made and analysis with small increment investment, replacement. Breakeven analysis. Balance sheet and income statement.

Optimum Design: Procedure with one variable, optimum reflux ratio in distillation and other examples.

Preliminary Steps in Plant Design: Plant design factors. project organization, plant location, preliminary data collection, process engineering

Books	Recommended:	
DOOKS	neconniciaca.	

1.	Peters, M.S. & Timmerhaus, K.D.	:	Plant Design and Economics of Chemical Engineers, Mc Graw Hill New York, 4 th Edition, 1991.
2.	Ulrich, G.D.	:	A Guide to Chemical Engineering Process Design & Economics, Johr Wiley, 1984.
3.	Guthrie, K.M.	:	Process Plant Estimating, Evaluation & Control, Craftsman Soland Beach, Calif, 1947.
4.	Jelen, F.C.	:	Cost and Optimisation Engineering, McGraw Hill, New York, 1970.
5.	Holland, F.A. & Wastson, F.A.	:	Introduction to Process Economics, 2 nd Edition, Wiley, 1983.
6.	Bassel, W.D.		Preliminary Chemical Engineering Plant Design, Elsevier, New York 1976.

Paper Title : PROJECT WORK

Paper Code CHE 406

Each student is required to submit a project report on the design of a chemical plant, selecting the best process with optimum equipment size and operating conditions. The object is to test the ability of the student to apply his entire knowledge of Chemical Engineering principles to conceptualize, analyze and solve the problems. To judge his knowledge and originality and capacity for application of laboratory data in designing chemical plants and to determine the level of his proficiency at the end of the course.

Title	COMPREHENSIVE	VIVA	Credits	01		
Code	CHE 409	Semester:-8 th			LTP	
Max. Marks	End term25	Mid te	erm	Practical-	Elective	Ν
Pre					Contact	
requisites					Hours	

The viva-voce examinations will be comprehensive and covering mainly chemical engineering and technology subjects covered during all the semester including the Eight Semester.

Title	Literature	Survey	, F	Report Writing	&	Credits	No Credit
	Seminar						
Code	CHE 410		S	emester:-8 th		LTP	3
Max.Marks	End	Mid		Practical:		Elective	Ν
	term	term		s or x			
Pre requisites	-					Contact	14 (Practical
						Hours	Sessions)
						•	
Practical							

Forms of technical reports: aims and forms according to type of readership and extent of circulation. Abstracts, extended abstracts, tables, graphs. Visual representation of data: slides, microfilms, others techniques including those of audio-visual representation. Correct use of audio equipment.

Research papers and their presentation and publication. Information retrieve direct and through abstracts.

Practical training in writing and presentation of technical reports through audio-visual means. Technique of effective public speaking organized and imprompt discussions.

Preparation of technical report on an assigned topic after survey of scientific, technical and commercial literature, using card indexes, microfilms and other information retrieval methods. Use of Computer softwares for report writing.

Books Recommended:

- 1. Mikdran, A.M. : U
 - : Use of Engineering Literature, Butter Worths.
- 2. Sottle, R.T.
- : The Use of Chemical Literature, Butter Worths.
- 3. Hoover, H.
- : Essentials For TheTechnical Writer, John Wiley.
- 4. Robertson, W.S. & : Siddle, W.D.
- Technical Writing and Presentation, Pergamon.

Paper Title: Open Elective (Theory)

Course Duration: 42 Lectures of one hour each.

FUEL CELL TECHNOLOGY (Theory)

THEORY		Time	3 Hours		
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8		
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.				
	The students will be required to attempt 5 qu	estions selecting at	t least 2 from each		
	section.				

Section-A

Overview of fuel cells: Low and high temperature fuel cells;

Fuel cell thermodynamics - heat, work potentials, prediction of reversible voltage, fuel cell efficiency. Fuel cell reaction kinetics - electrode kinetics, overvoltages, Tafel equation, charge transfer reaction, exchange currents,

Electrocatalyses - design, activation kinetics,

Fuel cell charge and mass transport - flow field, transport in electrode and electrolyte.

Section-B

Fuel cell characterization: - in-situ and ex-situ characterization techniques, i-V curve, frequency response analyses; Fuel cell modeling and system integration: - 1D model - analytical solution and CFD models. Balance of plant; Hydrogen production from renewable sources and storage; safety issues, cost expectation and life cycle analysis of fuel cells.

Books Recommended

Text books:	1.	O'Hayre, R.P.,S. Cha, W. Colella, F.B.Prinz, Fuel Cell Fundamentals, Wiley, NY
		(2006).
	2.	Basu,S.(Ed) Fuel Cell Science and Technology,Springer, N.Y.(2007).
	3.	Liu, H., Principles of fuel cells, Taylor & Francis, N.Y. (2006)
Reference	1.	Bard, A. J., L. R., Faulkner, Electrochemical Methods, Wiley, N.Y. (2004)
Books:		

NANO TECHNOLOGY (Theory)

THEORY		Time	3 Hours			
Note for the	The question paper should be divided into	Section A and Sec	tion B Total of 8			
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.					
	The students will be required to attempt 5 questions selecting at least 2 from each					
	section.					

Section-A

Introduction: Plenty of room at the bottom-Feynman's concept, evolution of ultra-fine materials, the missing link between conventional laws in physics and chemistry and new theories.

Building Blocks of Nanotechnology: covalent architecture, coordinated architecture and weakly bound aggregates, Interactions and topology

Chemical Properties: The effect of nanoscale metals on chemical reactivity, effect of nanostructure on mass transport, metal nanocrystallites support on oxides, supported nanoscale catalysts.

General principles for synthesis of monodispersed nanoparticles, metals and intermetallics, Ceramics, composites, nanoparticles, colloids/Micelles/vesicles/Polymers/glasses, Crystalline, and zeolite hosts. **Review of fundamental behaviour** of 0-D(nanoclusters), 1-D(nanowires), 2-D(thin film multilayers), and 3-D(bulk nanostructures) materials. Introduction to size dependent phenomenon in nanostructure for various applications, specific production techniques like chemical vapor deposition, arc ignition etc. Formation of clusters and nanoparticles from supersaturated vapor and selected properties, sputtering and thermal evaporation and laser methods. Synthesis of nanoparticles by chemical routes.

Section-B

Approches to production: Top down and bottom up, Mechanical attrition, high energy ball milling, and mechanical attrition, nanocomposites by mechano-chemistry, mechanism of grain size reduction, property of microstructure relationships.

Characterization techniques : Tools in nanotechnology: Scanning electron microscopy(SEM), Transmission electron microscopy and high resolution(TEM), energy dispersive spectroscopy (EDX), Atomic force microscopy(AFM), Magnetic force microscopy(MFM), Chemical Force Microscopy(CFM), Focused ion beam, nanolithography, powder x-ray diffractometry, UV visible.

Nanomaterials: CNTs, Polymer Nanocomposites nanoceramics, nanometals, nanopolymers, structures-properties-applications, Quantum dots. Concepts Bio-Nanotechnology.

Applications: Nanotherapeutics, Molecular diagnostics, tissue engineering, nanopumps, nanorobtoics cells, molecular motors, nanomembranes, Organic molecular based computers, bionanodevices (sensors & actuators).

Books Recommended

- 1. Nanoscale Materials in Chemistry by Kenneth J. Khabhunde (ed.) Wiley Interscience.
- 2. Nanotechnology An introduction to nanostructure of technique by Michel Kohler and Wolfgang Frittsche 2004- Wiley VCH
- 3. Springer Handbook of Nanotechnology by Bharat Bhushan
- 4. Encyclopedia of Nanotechnology- Hari Singh Nalwa.
- 5. Nanostructures and Nanomaterials by G. Cao, Imperial College Press, 2004
- 6. Introduction to Nanotechnology by Owen and Poole, Wiley
- 7. Nano-materials by A. K. Bandopadhyay, New Age International

	TOETWER BEHENCE MID ENGINEERING (Theory)						
THEORY		Time	3 Hours				
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8				
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.						
	The students will be required to attempt 5 qu	estions selecting at	least 2 from each				
	section.						

POLYMER SCIENCE AND ENGINEERING (Theory)

Section-A

Chemistry of polymers:

Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, criteria for rubberiness,

Polymerization methods: addition and condensation; their kinetics, copolymerization, monomer reactivity ratios and its significance, kinetics, different copolymers, random, alternating, azeotropic

copolymerization, block and graft copolymers, techniques for copolymerization-bulk, solution, suspension, emulsion.

Polymer Characterization:

Solubility and swelling, concept of average molecular weight, determination of number average, weight average, viscosity average and Z-average molecular weights, polymer crystallinity, analysis of polymers using IR, XRD, thermal (DSC, DMTA, TGA), microscopic (optical and electronic) techniques.

Section-B

Polymer Technology:

Polymer compounding-need and significance, different compounding ingredients for rubber and plastics, crosslinking and vulcanization

Polymer processing:

Compression molding, transfer molding, injection molding, blow molding, reaction injection molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, rubber processing in two-roll mill, internal mixer.

Books Recommended:

- 1. Williams, D.J. : Polymer Science and Engineering, Prentice Hall Inc.
- 2. Rodriguez, F. : Principles of Polymer Systems, Tata McGraw Hill Pub.
- 3. Odian, G. : Principles of Polymerization, McGraw Hill.
- 4. Collins, E.A., Bares, J. & Billmeryer, F.W., Experiments in Polymer Science, Wiley Inter Science.
- 5. Kumar, A. & Gupta, S.K. : Fundamental of Polymer Science and Engineering, Tata McGraw Hill Pub.
- 6. Middleman, S. : Fundamentals of Polymer Processing, McGraw Hill, New York.
- 7. Moore, G.R. and Kline, D.E., "Properties and Processing of Polymers for Engineers", Society of Plastics Engineers, Prentice–Hall, Englewood Cliffs, NJ, 1984
- 8. Tadmor, Z. and Gogos, C.G.: Principles of Polymer Processing, John Wiley & Sons, 1979.

OPERATIONS RESEARCH (Theory)

THEORY		Time	3 Hours
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8
Examiner	questions. 4 questions from section A and 4 c	questions from secti	on B are to be set.
	The students will be required to attempt 5 qu	estions selecting at	least 2 from each
	section.		

Section-A

Linear Programming: problem formulation, graphical method, simplex method, duality sensitivity analysis.

Transportation model, Transhipment problem, traveling salesman problem, Assignment models, Sequencing model, Replacement model.

Section-B

Theory of Games: Pure strategy games, principle of dominance; mixed strategy games (Algebraic, Graphical & Linear programming method), 2-person, non-zero- sum games.

Queuing Theory: Introduction, elementary queuing system; single channel queuing model, queuing cost behaviour, multiple channel queuing model, Poisson arrivals and Erlang service distribution; benefits and limitations of queuing theory.

Books Recommended:

1.	Vohra, N.D.	:	Quantitative Techniques in Management; 2 nd Edition, Tata
			McGraw Hill.
2.	Gupta, P.K. and Hira, D.S.	:	Operation Research, S. Chand, New Delhi.
3.	Swarup Kanti, Gupta, P.K. and Man Mohan	:	Operation Research, 12 th revised Edition, Sultan Chand & Sons, New Delhi;

SUITEI CHAIN & LOGISTIC MANAGEMENT (THEORY)				
THEORY		Time	3 Hours	
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8	
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.			
	The students will be required to attempt 5 qu	estions selecting at	least 2 from each	
	section.			

SUPPLY CHAIN & LOCISTIC MANAGEMENT (Theory)

Section-A

Introduction to Supply Chain Management: Definition; Scope & Importance of Supply Chain Management; Key drivers Of the SCM; Features of Supply Chain Management; Supply Chain Network – 1st Tier, 2nd Tier; Network decisions in SCM; Suppliers and Customers; Customer Service Dimension (Seven "R" Principles, Service after sale, Customer delight)

Role of Logistics in Supply Chains: Definition of Logistics Management; Scope and role of Transportation, Traffic & transportation; Relationship between transportation and other business functions, Transport Economics: Distance – volume-density, Freight Cost, Handling, Liability, market factors; Third party logistics (3 PL) & fourth party logistics service provider (4 PL), Logistics equipment; Reverse Logistics, Government rule & regulations related to Logistics; Purchase Cycle, Make or Buy, Price analysis, Negotiations.

Section-B

Inventory Management: Inventory Control, Planning & Managing Inventories; Warehouse Management (Receipt, issue, storage and preservation, stock verification, In bound and out bound distribution operations); Order Management; Competitive advantage through logistics and supply chain management; Responsive Supply Chain; Supply chain process integration, performance measurement; Value Chain, Value System and Supply Chain.

Planning demand and supply: Planning & Sourcing in Supply Chain, Demand forecasting, Type and Time horizon of forecast and category of forecasting, aggregate planning; Financial issues in Supply Chain - Macro and micro view, Asset management, Du Pont Model, Supply Chain Costing; Decision environment in SCM; Global supply chain perspectives - New business models, role of IT in SCM.

Books Recommended:

1. Harald Dyckhoff et al, Ed.: Supply Chain Management and Reverse Logistics, Springer (India).

- 2. Jayashree Dubey and M.L. Saikumar Ed.: Supply Chain Management, IIPE Hyderabad and New Century Publication.
- 3. Sarika Kulkarni, Ashok Sharma: Supply Chain Management-Creating Linkages for Faster Business Turnaround, McGraw Hill.
- 4. RP Mohanty: Supply Chain Management-Theories and Practice, Biztantra.
- 5. Robert B. Handfield, Ernest L. Nicholas, Jr.: Introduction to Supply Chain Management, Pearson Education.
- 6. Ronald H. Ballou, Samir K. Srivastava: Business Logistics/Supply Chain Management, Pearson Education.
- 7. John Mentzer: Supply Chain Management, Response Books.
- 8. Janat Shah: Supply Chain Management, Pearson Publications.
- 9. N. Chandrasekaran: Supply Chain Management Process, System and Practice, Oxford Press.

PROJECT MANAGEMENT AND ENTREPRENEURSHIP (Theory)

THEORY		Time	3 Hours			
Note for the	The question paper should be divided into	Section A and Sec	tion B Total of 8			
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.					
	The students will be required to attempt 5 qu	uestions selecting at	least 2 from each			
	section.					

Section-A

Introduction to Projects: Meaning & Definition of Project, Attributes of a Project, Difference among Projects, Routine Activities and Programs; Project Life Cycle

Project Planning: Work Breakdown Structure, Types of Work Breakdown Structure, Planning Framework and Its Importance

Project Feasibility: Marketing, Technical & Financial Feasibility

Social Cost Benefit Analysis: Rationale, UNIDO and Little Mirrlees Approaches

Project Schedule Planning; Network Analysis Techniques; Project Implementation; Project Monitoring & Control

Section-B

Entrepreneur- Meaning & Definition of Entrepreneur, Characteristics of Entrepreneur, Nature and importance of Entrepreneur, Functions, Entrepreneur V/s Manager, Women Entrepreneurs.

Entrepreneurship: Concept, Policies Governing Entrepreneurs, Entrepreneurial Development Programmes, Contribution of Entrepreneurship to Economic Development

Institutions for Entrepreneurial Development; Role of Various Commercial Banks and Development financial Institutions.

Books Recommended:

1. UNIDO: Guidelines for Project Evaluation, United Nations, reprinted, 1993.

2. Mannual for the preparation of Industrial Feasibility Studies, United Nations 1995.

3. Manual for Evaluation of Industrial Projects, United Nations, reprinted on 1993.

4. IMD little and J.A. Mirrlees: Project Apraisal and Planning in Developing Countries, 1975.

5. Prasanna Chandra: Projects: Preparation, Appraisal Budgeting and Control, 7th edition, TMH.

6. Vasanta Desai: Dynamics of entrepreneurial development and management, 11th edition, Himalaya pub.

- 7. Vasanta Desai: Entrepreneurial development, and Management, 13th edition, Himalaya pub., Harper Collins, edition- Paperback.
- 8. Peter F. Drucker: Innovation and development.

Paper Title: Departmental Elective (Theory)

Course Duration: 45 Lectures of one hour each.

PETROLEUM PROCESSING ENGINEERING (Theory)					
THEORY		Time	3 Hours		
Note for the	he The question paper should be divided into Section A and Section B Total of 8				
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.				
	The students will be required to attempt 5 questions selecting at least 2 from each				
	section.				

Section A	
Section-A Introduction to petroleum industry, world petroleum resources, petroleum industry in India. Ori	ain
exploration & drilling of petroleum crude. Transportation of crude and products.	sin,
Crude pretreatment: Refining and distillation of petroleum crude, composition and classification	
petroleum crude, methods of evaluation: ASTM, TBP and EFV distillation. Properties and specificati	ons
of petroleum products such as LPG, gasoline, naphtha, kerosene, diesel, lubricating oils and waxes.	
Section-B	-+:11
Separation Processes: Design and operation of topping and vacuum distillation units and tube	
furnaces. Solvent extraction processes for lube oil base stock and for aromatics from naphtha a	and
kerosene steams, solvent dewaxing.	
Conversion Processes: Thermal cracking: visbreaking and coking processes, catalytic cracking, ther	mai
reforming and catalytic reforming, alkylation, polymerization, isomerisation and hydroprocessing.	
Safety and pollution considerations in refineries.	
Practicals	
1. To plot ASTM distillation curve for gasoline, diesel oil.	
2. To determine Flash point (Closed – cup) and smoke point for kerosene.	
3. To determine Aniline point, Diesel Index and cetane number for diesel oil.	
4. To determine pour point and cloud point for furnace oil and diesel oil.	
5. To determine viscosity at different temperatures using Ostwald viscometer for hydrocarl	on
solvents.	
6. To determine softening point and penetration number for asphalt and grease samples.	
7. To determine viscosity index of lubricating oil by Redwood viscometer.	
8. To determine water content in petroleum products by Dean and Starks method.	
Books Recommended:	
1. Nelson, W.L. : Petroleum Refinery Engineering, 5 th Edition, McGraw Hill, 1985.	
2. Rao, B.K. : Modern Petroleum Refining Processes, 5 th Edition, Oxford	& I
Publishing Co., 2009.	
3. Guthrie, V.B. : Petroleum Products Handbook, McGraw Hill, 1960.	
4. Hobson, G.D., Pohl. : Modern Petroleum Technology, 5 th Edition, John Wiley, 1984.	
W.	

INDUSTRIAL SAFETY & HAZARDS (Theory)

THEORY		Time	3 Hours		
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8		
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.				
	The students will be required to attempt 5 qu	uestions selecting at	t least 2 from each		
	section.				

Section-A

Definition, Hazards identification, Hazards and operability studies (HAZOP), Failure mode and effect analysis (FMEA), classification and assessment of various types of hazards in work-place environment and Industrial Hygiene, protective and preventive measures in hazard control.

Toxic Chemicals: maximum allowable concentrations and other standards. Biological threshold limit values.

Mechanical and electrical hazards. Personal protective equipments. Explosives and inflammable substances. Radioactive hazards. Good housekeeping in industrial environment.

Section-B

Fire prevention, design to prevent fire and explosion (inverting static electricity, sprinkler system), boiling liquid expending vapour explosion (BLEVE). Fire triangle, Dow's Fire and explosion index, dilution and ventilation.

Standard safety procedures and disaster control; OSHAS, OHSMS and OSHA. Current amendments in Indian Legislation on safety and prevention of hazards and safety code: ISO 14000, ISO 9000. Environmental impact assessment. Control strategies for hazardous wastes.

Case Studies of typical hazardous industries. **Books Recommended**:

000	ks helommended.		
1.	Wills, G.L.	:	Safety in Process Plant Design.
2.	Less, F.P.	:	Loss Prevention in Process Industries.
3.	Chanleft, E.T.	:	Environmental Protection.
4.	Berhowex, P.M. & Rudd,	:	Strategy of Pollution Control.
	D.F		
5.	Safety for Chemical	:	A.I.Ch.E. Publications, 1976-77.
	Engineers		

PLANT UTILITIES (Theory)

THEORY		Time	3 Hours		
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8		
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.				
	The students will be required to attempt 5 qu	uestions selecting at	least 2 from each		
	section.				

Section-A

Importance of Process utilities in Chemical Plant.

Compressed air and Vacuum: Reciprocating air compressors, vacuum pumps, air receivers, piping systems.

Steam: Boiler, steam handling and distribution steam nozzles.

Section-B

Refrigeration: Air refrigeration cycle, vapour compression cycle, liquification processes. Power Generation: Internal Combustion engines. Gas turbines, steam power plants. Water: Water Resources, storage & distribution of water reuse & conservation of water.

Books Recommended:

1.	Jouganson, R.	:	Fan Engineering, Buffalo Rorge Co., 1970.
2.	Wangham, D.A.	:	Theory and Practice of Heat Engines, ELBS Cambridge University
			Press, 1960.
3.	Lyle, O.	:	Efficient Use of Steam, HMSO, 1963.
4.	Stoccker, W.F.	:	Refrigeration and Air Conditioning, Mc-Graw Hill, 1950.
5.	Kurl, W.F. J.H.M.	:	Reuse of Water in Industry, Butterworth, London.

PETROCHEMICAL TECHNOLOGY (Theory)

THEORY		Time	3 Hours		
Note for the	The question paper should be divided into	Section A and Sec	tion B Total of 8		
Examiner	questions. 4 questions from section A and 4 questions from section B are to be set.				
	The students will be required to attempt 5 qu	uestions selecting at	least 2 from each		
	section.				

Section-A

General Introduction: Definition, history and economic perspective of petrochemical

industry, raw materials for petrochemical industry-petroleum, natural gas, coal, bio-mass, agro-residues, etc.

First Generation Petrochemicals: Petrochemicals based on aliphatic, olefinic, acetylene, aromatics, etc. Hydrocarbons-processing and applications.

Second Generation Petrochemicals: Products based on Synthesis Gas, Method, Ethanol, Ethylene Oxide, Vinyl Chloride, Propylene Oxide, Isopropyl Alcohol, Acetone, Allyl Alcohol, Glycerol, Phenol, Aniline.

Section-B

Nylon Monomers, Polyester Monomers, Styrene, Other Monomers - Bisphenol A, Epichlorophydrin, diisocyanates, Pentaerythritol, etc. - properties, process technologies and applications. . Third Generation Petrochemicals: Important Polymers such as Polyethylene, Polypropylene and their Copolymers and other Derivatives Rubbers, Diene Polymers, Styrene Polymers, Vinyl Polymers and Condensation Polymers - properties, process technologies and applications.

Books Recommended:

1. Steiner, H.: Introduction to Petroleum Chemicals, Pergamon Press.

- 2. Waddane, A.L. : Chemicals from Petroleum, John Murry.
- 3. Topchiev, A.V. : Synthetic Materials from Petroleum, Pergamon Press.
- 4. Astle, M.J. : The Chemistry of Petrochemicals, Reinhold.
- 5. Maiti, S.: Introduction to Petrochemicals, Oxford and IBH Pub. Co. Ltd., New Delhi, 1992.

6. Frank, H.G. & Stadelhofer, J.W.: Industrial Aromatic Chemistry, Springer Verlag Berlin, 1987.

BIOCHEMICAL ENGINEERING (Theory)

THEORY		Time	3 Hours
Note for the	The question paper should be divided into	Section A and Sec	ction B Total of 8
Examiner	questions. 4 questions from section A and 4 of	questions from secti	ion B are to be set.
	The students will be required to attempt 5 qu	uestions selecting at	t least 2 from each
	section.		

Section-A

Isolation and Utilization of Enzymes: Purification, immobilization, application of enzyme technology. Kinetics of Enzyme-Catalyzed Reactions: The substrate, enzyme kinetics, factors affecting enzymatic activity and enzymatic reactions in heterogeneous reactions.

Metabolic Pathways and Energetics of the Cell: The concept of energy coupling, aerobic and anaerobic metabolism, photosynthesis and biosynthesis, transport across cell membranes.

Cellular Genetics and Control: Growth and reproduction of a single cell, alteration of cellular DNA, commercial applications.

Section-B

Kinetics of Substrate Utilization. Product Yield and Biomass Production: Growth cycle for batch cultivation and its mathematical modeling, products synthesis kinetics, thermal death kinetics of cells and spores.

Transport Phenomena in Microbial Systems: Gas-liquid mass transfer, determination of oxygen transfer rates, mass transfer, surface-area correlations for mechanically agitated vessels, scaling of mass transfer equipment, particulate mass transfer, heat transfer.

Design and Analysis of Biological Reactors: The ideal continuous-flow stirred-tank reactor (CSTR), residence time distribution, different types of reactors, relationship between batch and continuous biological reactors. Fermentation technology, product manufacture by fermentation, reactors for biomass production.

Books Recommended:

- 1. Balley & Ollis
- : Biochemical Engineering Fundamentals, McGraw Hill Book Co., 1986.
- 2. Aiba Humphrey & Millis
- 3. Whitaker Stanbury Whitaker, Hall
- : Biochemical Engineering, Academic Press, 1973.
- & : Principles of Fermentation Technology, Adita Books, New Delhi, 1997.