

M.Sc. (Microbiology)

Faculty: Science Semester: I

Sr. No.	Paper No.	Course Title	Eligibility	Remarks
1	Ι	Cytology and Molecular Biology		
2	II	Biochemistry	B.Sc. Microbiology	
3	III	Analytical Techniques in Microbiology	D.SC. MICIODIOIOgy	
4	IV	Practicals		

Name of the Subject: M.Sc. (Microbiology)

Sr.	Paper	Course Title	Total Marks	Passing	Total	Exam	Credits
No.	No.		(Ext+Int=Total)	Standard	Teaching	Hours	
				(Ext+Int=Total)	Hours		
1	Ι	Cytology and					
		Molecular	70+30=100	28+12=40	15x4=60	2.30 H	04
		Biology					
2	II	Biochemistry	70+30=100	28+12=40	15x4=60	2.30 H	04
3	III	Analytical					
		Techniques in	70+30=100	28+12=40	15x4=60	2.30 H	04
		Microbiology					
4	IV	Practicals	100	40	15x15=225	06x2=12	15

	Internal	Marks
•	Internal Test	15
•	Assignments/Presentation	10
•	Seminars/Attendance	05
	Total	30

M.Sc. (Microbiology) SEMESTER – I

MIC-I: Cytology and Molecular Biology

Credits: 04

Marks:Semester end Exam70Continuous Internal Evaluation30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Cell Structure and Cellular Organization		
	Cell Concept		
	• Ultrastructure of plasma membrane, microbial and plant cell		
	wall, nucleus and nucleolus, pore complex of nuclear envelope		
	Ultrastructure of chromosomes, chromosomal models and special types of chromosomes		
	Mitochondria: Membrane Organization, Biogenesis and role in		
1	cellular energetics	16	18
	Chloroplasts: Ultrastructure, biogenesis, Photosynthetic units		
	and reaction centres		
	Ultrastructure and functions of Lysosome, Peroxisomes & Glyoxysomes		
	Vacuoles and their role in cell structure and function		
	• Cytoskeleton: Organization and functions of microtubules,		
	microfilaments and intermediate filaments, actin and myosin		
	Molecular Biology – I		
	Resume of DNA structure and DNA topology		
n	• Superhelical density, C value paradox, Cot curves	10	10
2	Central dogma of molecular biology	16	18
	DNA replication		
	DNA repair mechanisms		
	Molecular Biology – II		
	• Structural features of rRNAs, tRNAs and mRNA		
	Transcription		
	Bacterial promoters		
3	RNA processing in Bacteria and Eukaryotes	14	17
	Ribozymes and Reverse transcriptase		
	RNA foot printing		
	DNA sequencing: Sanger's method and Next Generation		
	Sequencing (NGS)		
	Molecular Biology – III		
	Basic feature of the genetic code and its deciphering		
	Translation (Initiation, elongation and termination in		
4	prokaryotes and eukaryotes)	14	17
I	Processing of proteome: Post translational modification	* 1	1/
	Antitermination		
	Regulation of transcription: Operon model, Positive and negative control		

- Genes IX by Benjamin Lewin, Jones and Bartlett Publishers, Inc; 9th Revised edition, 2007.
- Molecular Biology by David Friefelder, Narosa Publications, 2004.
- Molecular Cell Biology by Lodish, W. H. Freeman; 6th edition, 2007.
- Cell by Carl Swanson and Peter Webster, Prentice Hall College Div, 1985.

M.Sc. (Microbiology) SEMESTER – I

MIC-II: Biochemistry

Credits: 04

Marks:Semester end Exam70Continuous Internal Evaluation30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	 Proteins Structure, classification, properties and function Amino acids and peptides Titration curves and functions Methods of protein purification Sequencing of proteins Biosynthesis and degradation 	16	18
2	 Glycobiology and Lipids Structure, classification, properties and functions of carbohydrates Glycoconjugates: Glycolipids, Proteoglycans and Glycoproteins Glycolysis (EMP, ED & HMP), TCA cycle, Gluconeogenesis Structure, classification, properties and functions Biological membranes Biosynthesis and degradation Vitamins and Hormones Classification, biochemistry and functions of vitamins Biochemistry, mode of action and functions of plant, animal and microbial hormones 	16	18
4	 Enzymology Structure of enzymes Properties, classification, functions and mode of action of enzymes and coenzymes Protein folding and denaturation Mechanism of enzyme action Regulation and inhibition Isozymes, abzymes and ribozymes Kinetics of enzyme catalyzed reactions Clinical, analytical and industrial applications 	14	17

- Lehninger Principles of Biochemistry by Nelson and Cox, W. H. Freeman & Co (Sd); 6th edition, 2012.
- Principles and Techniques of Biochemistry and Molecular Biology by Keith Wilson and John Walker, Cambridge University Press; 7th edition, 2010.
- Siochemistry by Lubert Stryer, W. H. Freeman & Co Ltd; 5th Revised edition, 2002.
- Principles of Biochemistry by Voet and Voet, John Wiley & Sons Inc., 2012.
- An Introduction to Practical Biochemistry by David Plummer, Mcgraw Hill Education, 3rd edition, 2004.
- Siochemistry by N P Sharma, Kalpaz Publications, 2008.

M.Sc. (Microbiology)

SEMESTER – I

MIC-III: Analytical Techniques in Microbiology

Credits: 04

Marks:Semester end Exam70Continuous Internal Evaluation30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	 Microtechniques – I Measurement of pH, construction and working of pH meter Principles of centrifugation, its types and applications Microscopy – Bright field, Stereomicroscopy, Fluorescence microscopy, Phase contrast microscopy, Atomic Force microscopy, Confocal Microscopy, SEM and TEM 	16	18
2	 Microtechniques – II Principle, working and applications of: Colorimeter UV and Visible Spectrophotometer Flame photometer Atomic Adsorption Spectrophotometer IR and MALDI-TOF 	16	18
3	 Microtechniques - III Basic principles and types of chromatography PC, TLC, GC, GC-MS and LC-MS Ion exchange, Gel permeation, Affinity and Reverse phase chromatography Basic principles of Electrophoresis Agarose gel, Native and SDS-PAGE Isoelectric focusing Fractionation and Blotting techniques 	14	17
4	 Nano-Biotechnology Introduction Concept and principles of Nanotechnology Properties of nanomaterials, carbon nanotubes Techniques and methodology used to study nanoparticles Applications of nanoparticles in Molecular Biology, Industries, Agriculture and Environment 	14	17

Reference Books:

- Instrumental Methods of Chemical Analysis by BK Sharma, Krishna Prakashan Media Pvt Ltd; 1/e edition, (2011).
- Microscopy for Students by JD Casartelli, McGraw-Hill Inc., USA; 2nd Revised edition, 1969.
- Comprehensive Biotechnology (Vol 1 to 4) by Conney and Humphrey, 1st edition.
- Molecular Biotechnology by S B Primrose, Blackwell Scientific Publications, London, UK, 2nd edition, 1991.
- Principles of Instrumental analysis by DA Skoog and JJ Leary, 4th edition, 1992.
- Instrumentation by Chatwal and Anand.

M.Sc. (Microbiology) SEMESTER – I

M.Sc. Microbiology

Faculty: Science Semester: II

Sr. No.	Paper No.	Course Title	Eligibility	Remarks
1	V	Bioinformatics and		
1	v	Biostatistics		
2	VI	Microbial Biotechnology		
		Immunology, Drug	B.Sc. Microbiology	
3	VII	Development and		
		Biopharmaceuticals		
4	VIII	Practicals		

Name of the Subject: M.Sc. (Microbiology)

Sr.	Paper	Course Title	Total Marks	Passing	Total	Exam	Credits
No.	No.		(Ext+Int=	Standard	Teaching	Hours	
			Total)	(Ext+Int=	Hours		
				Total)			
1	V	Bioinformatics and	70+30=100	28+12=40	15x4=60	2.30 H	04
1	v	Biostatistics					
2	VI	Microbial	70+30=100	28+12=40	15x4=60	2.30 H	04
	VI	Biotechnology					
		Immunology, Drug	70+30=100	28+12=40	15x4=60	2.30 H	04
3	VII	Development and					
		Biopharmaceuticals					
4	VIII	Practicals	100	40	15x15=225	06x2=12	15

	Internal	Marks
•	Internal Test	15
•	Assignments/Presentation	10
٠	Seminars/Attendance	05
	Total	30

M.Sc. (Microbiology) SEMESTER – II

MIC-V: Bioinformatics and Biostatistics

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Bioinformatics		
	Introduction to Bioinformatics		
	Basic terminologies		
	• Computer basics, Computer codes and programme languages		
1	Biological Databases	10	10
1	Applications of Bioinformatics	16	18
	Sequence comparison		
	Pair-wise and Multiple sequence alignment		
	Profiles, motifs and feature identification		
	Phylogenetic analysis		
	Biostatistics – II		
	Application of computers in statistics		
	MS Excel and statistical functions		
2	ANOVA, Correlation, Regression, Chi-square test	16	18
	Biostatistics in process optimization: Response Surface Methodology (RSM) and Overview of Artificial Neural		
	Network (ANN)		
	Biostatistics – II		
	Population and Samples: Sampling, sampling size, sampling		
	distribution, finite and infinite population, necessity of		
	sampling, methods of sampling		
	• Variables: Variable in Biology, Collection, Classification and		
3	tabulation of data	14	17
	Meaning of data and their representation: Diagrams and		
	Graphs – Need, usefulness, types of diagram		
	• Frequency distribution: Definition, relative and percent		
	relative frequencies, discrete and continuous frequency		
	distribution, cumulative frequency distribution, frequency		
	graphs		
	Biostatistics – III		
	Descriptive Statistics, Average: Definition, objectives, types of		
	averages		
Α	Deviation: Mean deviation, standard deviation and its intermetation standard error coefficient of unriation	14	17
4	interpretation, standard error, coefficient of variation	14	17
	Probability: Scale, definitions, types and rules of probability,		
	applications of probability, Venn Diagrams		
	Hypothesis Testing: Null Hypothesis, sampling distribution,		
	Level of significance		

- Bioinformatics Databases, Tools and Algorithms by Orpita Bosu and Simminder Kaur Thukral, Oxford University Press, USA, 2007.
- Siostatistics by A Lewis, Watkins Natural History Books, Reinhold Publishing Corp., USA, 1966.
- Introduction to Biostatistics: A Guide to Design, Analysis and Discovery, RN Forthofer, Ronald N., Lee, Eun Sul, Academic Press, 1995.
- Statistical Methods in Biology by NTJ Bailey, The English Universities Press Ltd., 1999.
- ✤ Biostatistics by P K Sen,
- An introduction to Biostatistics by N Gurumani, MJP Publishers, 2011.
- Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins by AD Baxevanis and BF Francis Ouellette, Wiley-Blackwell; 3rd Revised edition, 2004.
- Sioinformatics: Concepts, Skills and Applications by SC Rastogi, CBS; 2nd edition, 2009.
- Sioinformatics: A Beginner's Guide by JM Clavarie and C Notredame, Wiley India Private Limited, 2003.
- Sioinformatics: Principles and Applications by Z Ghosh and B Mallick, OUP India, 2008.

M.Sc. (Microbiology) SEMESTER – II

MIC-VI: Biotechnology

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	 Biotechnology - I Concept and scope of recombinant DNA technology (RDT) General strategies and steps involved in gene cloning Extraction and purification of DNA from bacteria, plant and animal cells Restriction enzymes, DNA ligase and other enzymes involved in gene cloning cDNA synthesis 	16	18
2	 Biotechnology - II Cloning vectors: Plasmids, Cosmids, Phagemids, Bacteriophages, BAC, YAC, HAC/MAC Expression of cloned gene in heterologous host Production of Insulin, Human Growth Hormone Vaccines by RDT Site directed and oligonucleotide directed mutagenesis Recombinant selection Hybridization techniques: Southern, Northern and Western blotting Pulse Field Gel Electrophoresis (PFGE), Rotating Gel Electrophoresis (RGE), 2D Electrophoresis, Capillary Electrophoresis Mobility Gel Shift Assay, Protein Activity Assay Phage display, Subtractive hybridization and cloning, HRT/HART DNA microarray 	16	18
3	 Biotechnology – III Transgenic plants (insect resistance, viruses, herbicides, bacterial and fungal pathogens, increased photosynthesis, Nitrogen fixation, nutritional benefits, stress tolerance, etc.) Transgenic animals and their applications 	14	17
4	 Biotechnological applications of animal cell and tissue culture Biotechnology - IV Polymerase Chain Reaction Molecular markers Linkage mapping Biosafety guidelines in RDT 	14	17

- Analysis of Genes and Genomes by R Reece, Wiley, 2004.
- Siotechnology by P K Gupta, Rastogi Publications, New Delhi, India, 2010.
- Principles of Gene Manipulation by SB Primrose AND RM Twyman, Wiley India; 7th edition, 2014.
- Recombinant DNA Techniques by Rodriguez and Tait, Addison-Wesley, 2010.
- Genomes 3 by TA Brown, Garland Science, 3rd edition, 2006.
- Molecular Biotechnology: Principles and Applications of Recombinant DNA by BJ Glick, JJ Pasternak and CL Patten, American Society for Microbiology, 4th edition, 2010.
- Textbook of Biotechnology by HK Das, Wiley, 2010.

M.Sc. (Microbiology)

SEMESTER – II

MIC-VII: Immunology, Drug Development and Biopharmaceuticals

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	 Immunology Antigens: Definition, types and properties 		
	Antibodies: Definition, classes, cellular mechanism of production, Antigen-Antibody reactions		
1	 Monoclonal antibodies: Definition, production and applications Immunity: Definition and types of immunity; Autoimmunity 	16	18
	 Hypersensitivity: Definition and classes Autoimmunity: Definition and autoimmune diseases Vaccines: Types, DNA vaccines, Malaria vaccines, Edible vaccines 		
	Interferons: Types, properties and mode of action		
2	 Biosafety and Bioethics Biosafety guidelines Risk and risk assessment Biosafety levels and laboratory biosecurity concepts Introduction to Drug Design Pre-clinical and clinical trials Basics of Bioethics principles, international codes and guidelines in India Ethics in post-genomic era 	16	18
3	 Bioprocess Economics and IPR IPR and patent process Benefits, problems and management of IPR International harmonization of patent law Patents of Biotechnological process and their protection Indian scenario 	14	17
4	 Regulatory Affairs Introduction to Pharmacopoeia, good Microbiological techniques and good laboratory practice (GLP) Basic principles of Quality Control (QC) and Quality Assurance (QA) Guidelines for QA and QC Validation study and toxicity testing Role of Public Health Laboratories and Regulatory Agencies 	14	17

Reference Books:

- Textbook of Microbiology by Ananthanarayan and CKJ Paniker, Universities Press, 2013.
- Immunology by Glynn and Steward, John Wiley and Sons, Chichester and London, 1977.
- Kuby Immunology: International Edition by J Owen, J Punt, S stranford, W. H. Freeman, 7th edition edition, 2013.
- Roitt's Essential Immunology by PJ Delves, SJ Martin, DR Burton, IM Roitt, Wiley-Blackwell Publications, 2016.
- Biotechnology, Biosafety and Biodiversity: Scientific and Ethical Issues for Sustainable Development by S Shantharam and JF Montgomery, Science Pub Inc., 1999.
- Microbiological Quality Assurance: A Guide towards Relevance and Reproducibility of Inocula by Michael RW Brown, P Gilbert, CRC Press, 1995.

M.Sc. (Microbiology) SEMESTER – II

MIC-VIII:Practicals

Credits: 15

Marks: 100

Practicals exercises based on Paper V to VII.

M.Sc. Microbiology

Faculty: Science Semester: III

Sr. No.	Paper No.	Course Title	Eligibility	Remarks
1	IX	Microbial Taxonomy		
2	Х	Environmental		
2	Microbiology	As per MKBU norms		
3	XI	Microbial Genetics		
4	XII	Practicals		

Name of the Subject: M.Sc. (Microbiology)

Sr.	Paper	Course Title	Total Marks	Passing	Total	Exam	Credits
No.	No.		(Ext+Int=	Standard	Teaching	Hours	
			Total)	(Ext+Int=	Hours		
				Total)			
1	IX	Microbial	70+30=100	28+12=40	15x4=60	2.30 H	04
1	IA	Taxonomy					
2	X	Environmental	70+30=100	28+12=40	15x4=60	2.30 H	04
2	Λ	Microbiology					
3	XI	Microbial	70+30=100	28+12=40	15x4=60	2.30 H	04
3	ЛІ	Genetics					
4	XII	Practicals	100	40	15x15=225	06x2=12	15

	Internal	Marks
٠	Internal Test	15
•	Assignments/Presentation	10
•	Seminars/Attendance	05
	Total	30

M.Sc. (Microbiology) SEMESTER – III

MIC-IX: Microbial Taxonomy

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	 Classification of Microorganisms Haeckel's 3 kingdom concept Four kingdom classification by Margulis and Copeland Whittaker's 5 kingdom classification Three domain concept by Carl Woese Differences between the three domains Classification and salient features of bacteria according to Bergey's Manual of Systematic Bacteriology, 2nd Edition Taxonomic Ranks Molecular taxonomy, biochemistry and serology in bacterial classification Numerical taxonomy, phylogeny, molecular chronometer, evolutionary distance 	16	18
2	 Bacterial Diversity Bacterial diversity: Mycoplasmas, Rickettsias, Chlamydias, anoxygenic and oxygenic photosynthetic microbes Unculturable and culturable bacterial diversity Metagenomics Conventional and molecular methods of studying bacterial diversity Diversity indices, Polyphasic approach for analysis of microbial diversity Multicellular behaviour of selected microbes 	16	18
3	 Mycology General features of fungi Classification, structure and reproduction of fungi Characteristics of genera important in industry, biodegradation and diseases of animals and humans 	14	17
4	 Virology Classification and ultrastructure of viruses Viral genome types and virus related agents (viroids, prions, satellite viruses etc.) Description of some bacterial, plant and animal viruses 	14	17

- Strock, T.D., Madigan, M.T. Biology of microorganisms Prentice Hall Int.Inc.
- * The Prokaryotes (1991). A. Balows, A. G. Thuper, M. Dworkin, W. Harder, K. Schleifer. Springer verlag.
- Sridge, E. A. (1992). Modern Microbiology. W. M. C. Brown, publishers, Oxford, England.
- Stainer R. Y., Ingraham. J. L., Wheelis M. J., Painter P. R. (1999). General microbiology. MacMillan Educational Ltd. London.
- Bergey's manual of systematic bacteriology.
- Colwd , D. (1999). Microbial Diversity . Academic Press.
- Dube, H. C. Introduction to fungi. Vikas Publishers.
- Fundamentals of Mycology. J. H. Burnett. Edward, Arnold crane Russak Publishers.
- Dimmock, N. J., Primrose S. B. (1994). Introduction to Modern virology IV Ed, Blackwell Scientific Publications. Oxford.
- Topley and Wilson's (1995). Text book on principles of Bacteriology, Virology and Immunology. Edward Arnold, London.

M.Sc. (Microbiology) SEMESTER – III

MIC-X: Environmental Microbiology

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Concept and Dynamics of Ecosystem		
	• Environment: Basic concept, global environmental problems,		
	components, food chain and energy flow		
1	Types and complexity of ecosystem	16	18
	Biogeochemical cycles		
	Microbial leaching of metal ores		
	 Environmental pollution, Eutrophication and its control, Sidependence 		
	Siderophores Waste Treatment		
	 Types and characteristic of waste, waste water characterization 		
2		16	18
	 Principles and aims of biological waste treatment Waste treatment processes 		
	Waste treatment processesAnaerobic waste water treatment		
	 Biodegradation and Bioremediation Principles and mechanism 		
	 Factors influencing biodegradation, Biodegradation of hydrocarbons, lignin, dyes, pesticides, recalcitrant 		
	compounds		
	 Biopulping and biobleaching 		
	 PHB biosynthesis and its degradation 		
3	 Biosurfactants and their applications 	14	17
	 Principles of bioremediation 		
	 Biosorption and bio accumulation 		
	 Bioremediation of oil spills and MEOR 		
	 Co-metabolism, Recalcitrance 		
	 In situ and ex situ techniques of bioremediation 		
	 Use of GMOs in bioremediation 		
	Extreme Environment		
	• Temperature, pH, high solute concentration, low nutrients,		
	hydrostatic pressure		
4	 Microorganisms and their molecular adaptations to extreme 	14	17
-	environments		
	Polyextremophiles		
	 Biotechnological applications of extremophiles 		

- Alexander, M. (1971). Microbial ecology. John Wiley & Sons, Inc, New York.
- Alexander, M. (1971). Introduction to soil microbiology. John Wiley & Sons, Inc, New York
- Ec Eldowney, S. Hardman, D. J. and waite, S. (1993). Pollution: Ecology and biotreatment. Longman Scientific Technical.
- Saker, K. H. and Herson, D. S. (1994). Bioremediation. McGrew Hill Inc., New York.
- ✤ K. C. Marshall (1985). Advances in microbial ecology Vol 8. Plenum Press.
- Burns R. G. and Slater H. (1982). Experimental Microbial ecology. Blackwell Scientific Publications, Oxford, London.
- Vanghan, D. and Malcolm, R. E. C. (1985). Soil organic matter and biological activity. Martinus Nighoff W. Junk Publishers.
- Srock, T. D., Madigan, M. T. Biology of Microorganisms. Prentice Hall Int. Inc.
- R. M. Maier, I. L. Pepper and G. P. Gerba. Environmental Microbiology.
- Waste water treatment for pollution control, 2nd Edition by Arceivala.
- Sidegradation and Bioremediation by M Alexander, Academic Press, 1999.

M.Sc. (Microbiology) SEMESTER – III

MIC-XI: Microbial Genetics

Credits: 04

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Gullehue	Teaching	Marks/
Unit	Detailed Syllabus	Hours	Weight
1	Mutation	16	18
	Gene as unit of mutation and recombination		
	Types, mechanisms, molecular nature of mutations		
	 Mutagens, genetic analysis and its uses 		
2	Genetic Exchange in Bacteria and Regulation of Genes	16	18
	Transformation, transduction, conjugation, lysogeny		
	Recombination: molecular basis of recombination		
	Process and control of transcription and translation		
	• Operon concept: <i>lac, ara, trp ,his</i> operons		
	Genetic basis of cancer: Oncogenes		
	Tumor viruses and cancer		
	Control of cell proliferation and programmed cell death		
3	Transposable Elements	14	17
	• Insertion sequences, transposons, retrotransposons, integrons		
	Plasmid: Properties, types, detection, transfer, replication,		
	compatibility, control of copy number etc.		
4	Genetics of Eukaryotes and Virus	14	17
	Yeast-one hybrid, Yeast-two hybrid and Yeast-three hybrid		
	system		
	• Fungal Genetics: Tetrad analysis and mitotic recombination of		
	Neurospora		
	 Bacteriophage genetics: T4, T7, ΦX174 and MS2 		

Reference Books:

- Short Course in bacterial genetics. J. H. Miller. (1992). CSH. Laboratory
- Microbial genetics. Maloy et al. (1994). Jones and Bartlett Publishers.
- Molecular genetics of bacteria: J. W. Dale. (1994). John Wiley and Sons.
- Modern Microbial genetics. Streips and Yasbin (1991). Niley Ltd.
- Microbial genetics. D. Freifelder. (2002). Jones and Bartlett Publishers, Inc.
- ✤ Genes III. (2004). Benjamin Lewin.

M.Sc. (Microbiology) SEMESTER – III

MIC-XII: Practicals

Credits: 15

Marks:100Practicals exercises based on Paper IX to XI.

M.Sc. Microbiology

Faculty: Science Semester: IV

Sr. No.	Paper No.	Course Title	Eligibility	Remarks
1	XIII	Microbial Physiology		
2	XIV	Industrial Microbiology	As per MKBU norms	
3	XV	Marine Microbiology	As per MKD0 norms	
4	XVI	Practicals		

Name of the Subject: M.Sc. (Microbiology)

Sr.	Paper	Course Title	Total	Passing	Total	Exam	Credits
No.	No.		Marks	Standard	Teaching	Hours	
			(Ext+Int=	(Ext+Int=	Hours		
			Total)	Total)			
1	XIII	Microbial	70+30=100	28+12=40	15x4=60	2.30 H	04
1	ЛШ	Physiology					
2	XIV	Industrial	70+30=100	28+12=40	15x4=60	2.30 H	04
		Microbiology					
3	XV	Marine	70+30=100	28+12=40	15x4=60	2.30 H	04
		Microbiology					
4	XVI	Practicals	100	40	15x15=225	06x2=12	15

	Internal	Marks
•	Internal Test	15
•	Assignments/Presentation	10
•	Seminars/Attendance	05
	Total	30

M.Sc. (Microbiology) SEMESTER – IV

MIC-XIII: Microbial Physiology

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Growth of Bacteria		
	• Growth curve, growth kinetics, measurement of growth		
	• Synchronous and asynchronous growth, batch and continuous		
	culture of bacteria		
1	• Cell division cycle: Cell division cycle in yeasts, cdks and cyclins	16	18
	as regulators		
	Bacterial sporulation and its genetics, dormancy		
	Specific transport mechanisms		
	• Chemotaxis		
	Bioenergetics		
	• Entropy, enthalpy, laws of thermodynamics, free energy change,		
	standard free energy change, equilibrium constant		
2	• Relationship between free energy change, equilibrium constant	16	18
Z	and spontaneity of a reaction	10	10
	Microbial photosynthesis : Oxygenic and anoxygenic		
	photosynthesis		
	• Microbial oxidation of sulphur, iron, hydrogen and nitrogen		
	Respiratory Metabolism and its control		
	Aerobic and anaerobic		
	Fermentation of carbohydrates and proteins		
	• Electron transport system in bacteria and eukaryotes; ATP		
	synthesis and release		
	Cell signaling mechanisms		
	Control of enzyme synthesis and activity		
3	• <i>lac</i> operon, <i>ara</i> operon, Transcription attenuation (<i>trp</i> operon)	14	17
	• Binding efficiency of RNA polymerase, antitermination, sigma		
	factors. RNAi (RNA interference)		
	• Global regulation: Two component signal transduction system		
	• Stringent response, <i>ntr</i> and <i>pho</i> system in response to N and P		
	starvation		
	• ArcAB and fnr system		
	Bioluminscense and its control		
	Secondary Metabolism		
	• Secondary metabolites and secondary metabolism: Antibiotics		
	• Multiple drug resistance, biochemical mechanisms of drug		
4	resistance	14	17
	Plasmids and transposons mediated drug resistance		
	Bacteriocins		
	Microbial toxins		

- Principles of Biochemistry, Lehninger. (2000). 3rd ed. Nelson and Cox (worth) publisher.
- Siochemistry, Stryer. (2001). 5th ed. W. H. Freeman.
- Caldwell, D. R. 1995. Microbial Physiology and Metabolism Brown Publishers.
- Moat and Foster, J. W. (1999). Microbial physiology. Wiley.
- Srun, Y. N. and Shimkets, L. J. (2000). Prokaryotic development. ASM press.
- Stainer, R. Y., Ingraham, J. L., Wheelis, M. L., Painter, P. R. (1986). General Microbiology, MacMillan Education Ltd. London.

70

M.Sc. (Microbiology) **SEMESTER - IV**

MIC-XIV: Industrial Microbiology

Marks:	Semester end	Exam

	Continuous Internal Evaluation 30		
Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	 Microorganisms in fermentation Industries Methods for isolation: Sources, strategies and methods, enrichment methods Screening selection: types and screening artifacts Genetics improvement of strains: production variants by mutation, gene manipulation, cloning and over production of native protein Yeast strain improvement for ethanol production Preservation of industrial microorganisms 	16	18
2	 Bioreactors Concept, design, types factors affecting selection of bioreactor Immobilization of cells and enzymes: Physical and chemical methods, applications of various immobilized cells and enzymes Sterilization by various approaches Aeration and agitation, mass transfer of oxygen Determination and factors affecting KLa Fluid rheology 	16	18
3	 Upstream and Downstream Processing Product recovery (downstream processing): separation, disintegration, enrichment by various methods Purification: crystallization, chromatography methods. Drying Process control: Measuring and set up of various physical, chemical and biological parameters Antifoam agents: Sterilization, types, devices for the addition of antifoam agents, antifoam detection device Scale up of microbial processes 	14	17
4	 Fermentative Productions, Transformation and Biomass Production Fermentative production of solvent (ethyl alcohol), organic acids (citric acid), amino acids (glutamic acid), exopolysaccharides (xanthan, dextran), antibiotics (penicillin, streptomycin), enzymes (amylase, protease) and vitamins (cobamide) by microorganisms Microbial flavours: Diacetyl, Methyl Ketones, Terpenes, Vanillin Biochemical mechanisms, fermentative processes, recovery, bioprocess economics Steroid transformation: introduction, various applications, biotransformation of steroids and sterols, biotransformation pathways, biotransformation technology SCP: selection of microorganisms, substrates and processes, optimization of conditions and recovery Edible mushrooms 	14	17

- Industrial microbiology. G. Reed (Editor), CBS Publishers, (AVI publishing Company)
- Biology of industrial microorganisms. A. L. Demain.
- Genetics and biotechnology of industrial microorganisms. C. L. Hershnergev, S. W. Queeners, Q. Hegeman. American Society of Microbiology.
- Stanbory P. F. A. Whitakar Hall. (1995). Principles of fermentation Technology. Porgaman, Mc Neul and Harvey.
- ✤ Fermentation A practical approach, IRL.
- Material and methods in fermentation. G. L. Solomons. (1969). AP.
- Microbial technology. Vol. I and II. Pappler H. J. Jovanovich Publishers.
- Microbial technology. Casida. L. E. John Wiley and Sons.
- Progress in Industrial Microbiolgy Vol. 9. D. J. D. Hockenhull. Cambridge University Press.

M.Sc. (Microbiology) SEMESTER – IV

MIC-XV: Marine Microbiology

Marks:	Semester end Exam	70
	Continuous Internal Evaluation	30

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	 Marine Environment History of oceanography; oceans of the world 		
1	• Continental drift; sea as a biological environment, main division and zones of marine environment	16	18
	• Physical factors: temperature , light, pressure, sound velocity, sedimentation , dynamic factors, waves , tides, currents, their effects on marine flora , fauna, and microorganisms		
	Chemistry of Seawater		
2	 Chemical composition, chlorinity, salinity, pH, dissolved gases, minerals, nutrients and organic matter Pollution: major pollutants (sewage, agricultural discharges, industrial wastes, dredging, oils, radioactive elements) and their effects on marine biota 	16	18
3	 Marine Bacterial Diversity Types and characteristics of marine bacteria with emphasis on structural and behavioral adaptations to marine environment Biofilms - Various stages and significance in marine habitat Factors influencing cultivation and enumeration of marine microbes Unculturable marine bacterial diversity Marine extremophiles Marine fungi Marine viruses The microbial loop and its components Carbon cycling - solubility pump and biological pump Marine microbes: Applications of their enzymes, secondary metabolites and bioactive compounds 	14	17
4	 Pollution Microbial indicators of marine pollution Oil pollution and microbes used in biodegradation of oil Fate of oil and enhancement of degradation by the use of nutrients and emulsifiers Heavy metal removal by marine microbes Biofouling and Biodeterioration – Microbially induced corrosion Biodeterioration of marine wooden structures and timber 	14	17

Reference Books:

- Marine microbiology by B Austin, Cambridge University Press, 1988.
- Microbiology: Ecology and application by CB Munn, Garland Science, Taylor and Francis Group, 2nd edition, 2011.
- Sidegradation and Bioremediation by M Alexander, Academic Press, 1999.
- Principles of Microbiology by R Atlas, The University of Michigan, 2008.
- Marine Microbiology: Ecology and Applications by CB Munn, Garland Science/BIOS Publishers, 2004.

M.Sc. (Microbiology) SEMESTER – IV

MIC-XVI: Practicals

Credits: 15

Marks: 100

Practicals exercises based on Paper XIII to XV.