19969

No. of Printed Pages : 7
MSTLM01/S2

POST GRADUATE DIPLOMA IN

APPLIED STATISTICS (PGDAST)

Term-End Examination
 December, 2018

BASIC STATISTICS LAB

Time: 3 Hours
Maximum Marks : 50

Note: (i) Attempt any two questions.
(ii) Solve the questions in Microsoft Excel.
(iii) Use of Formulae and Statistical Tables Boollet for PGDAST is allowed.
(iv) Mention hypotheses, interpretation, etc.

18	85	80
19	84	79
20	54	86
21	86	85
22	42	71
23	83	72
24	63	86
25	41	78
26	82	82
27	62	75
28	68	83
29	55	76
30	49	77
31	84	73
32	74	85
33	82	76
34	69	75
	85	82

(i) Determine which test score-is more slewed and which one hies more kurtosis.
(ii) Construct the continuous frequency distribution for both test scores using suitable class width.
(iii) Test whether averages of two teat scores are equal at 5% level of significance.

$$
(6+9+10)
$$

2. The data on 20 employees of a company were collected to assess their efficiency. The length of their service and the efficiency score given by personnel department based on different parameters are recorded in the following table :

S. No.	Length of Service	Efficiency Score
1	5	67
2	12	85
3	8	69
4	12	83
5	7	65
6	8	72
7	9	72
8	8	73
9	10	82
10	9	75
11	7	67
12	11	78
13	11	79
14	10	79
15	11	80
16	10	84
17	6	84
18	8	74
19	10	85

(i) Compute the rank correlation coefficient between the length of service and efficiency score.
(ii) Draw Box-plots for both the variables. $(15+10)$
33. Following are the yields of carrots (in quintals) recorded in a field experiment having 10 strains :

Block 1

10		27.7
9		36.7
7		32.6
6		30.6
2		33.4
4		32.2
5		30.2
1		30.0
3		32.9

Block 2

9	35.5
5	33.0
4	25.2
1	28.0
10	34.3
6	30.0
2	29.5
3	29.0
7	31.7
8	29.7

Block 3

7	30.2	
3		31.2
2	31.9	
5	30.1	
9	35.7	
4	24.8	
1	28.3	
10	27.6	
6	31.7	
		28.5

Block 4

1	31.8
6	31.8
4	22.3
9	32.4
2	29.8
8	29.5
3	25.8
7	27.8

Carry out the analysis at 5% level of significance. Also do pairwise testing, if needed.25

