CHAROTAR UNIVERSITY OF SCIENCE \& TECHNOLOGY

IV Semester of B.Sc. Physic Examination April - May 2018
PD253 ANALOG SYSTEMS AND APPLICATIONS
Date: 02-05-2018 Day: Wednesday Time: 01.30 PM To 02:00 PM Maximum Marks: 20

MCQ

Important Instructions:

- Tick the correct answer and it should be written in question paper itself.
- Use of non-programmable calculator is allowed.

Q-I Choose the correct answer for the following questions.

1. In a semiconductor, the energy gap between valence band and conduction band is about
\qquad .
(a) 1 eV
(b) 2 eV
(c) 3 eV
(d) 5 eV
2. A reversed biased pn junction has a resistance of the order of \qquad .
(a) Ω
(b) $\mathrm{m} \Omega$
(c) $\mathrm{K} \Omega$
(d) $M \Omega$
3. A semiconductor has usually \qquad valence electrons.
(a) two
(b) three
(c) four
(d) five
4. For silicon pn junction, the potential barrier is about \qquad .
(a) 0.1 eV
(b) 2.1 eV
(c) 0.7 eV
(d) 1.7 eV
5. The number of depletion layers in a transistor is \qquad .
(a) one
(b) two
(c) three
(d) four
6. It is desirable that a transistor amplifier should have \qquad input impedance and
\qquad output impedance.
(a) low, high
(b) high, high
(c) low, low
(d) high, low
7. The maximum efficiency of a full-wave rectifier is \qquad .
(a) 40.6%
(b) 81.2%
(c) 82.1%
(d) 63%
8. The end points of the d.c. load line give the \qquad values of I_{C} and V_{CE} under d.c. conditions.
(a) Zero
(b) maximum
(c) minimum
(d) maximum and minimum
9. For faithful amplification, the transistor must operate in the \qquad region of the output characteristics.
(a) active
(b) cut-off
(c) neutral
(d) saturation
10. For good stabilization of operating point in voltage divider bias, the current I_{1} flowing through potential divider R_{1} and R_{2} should be equal to or greater than \qquad -.
(a) $2 \mathrm{I}_{\mathrm{B}}$
(b) $10 \mathrm{I}_{\mathrm{B}}$
(c) $4 \mathrm{I}_{\mathrm{B}}$
(d) $5 \mathrm{I}_{\mathrm{B}}$
11. The input and output voltage of a common emitter transistor amplifier are \qquad -.
(a) in phase
(b) always equal
(c) out of phase
(d) always negative
12. The value of coupling capacitor in RC coupling is generally \qquad .
(a) $100 \mu \mathrm{~F}$
(b) $10 \mu \mathrm{~F}$
(c) $0.001 \mu \mathrm{~F}$
(d) $1 \mu \mathrm{~F}$
13. One of the effects of negative feedback in amplifiers is to \qquad .
(a) increase the noise
(b) increase the harmonic distortion
(c) decrease the bandwidth
(d) decrease the harmonic distortion
14. A feedback circuit generally employs \qquad network.
(a) inductive
(b) capacitive
(c) resistive
(d) neutral
15. An oscillator employs \qquad feedback.
(a) positive
(b) negative
(c) no
(d) both positive and negative
16. In a phase-shift oscillator, the frequency determining elements are \qquad -.
(a) L and C
(b) R and C
(c) L and R
(d) L, R and C
17. To generate a 1 MHz signal, the most suitable circuit is \qquad .
(a) Wein - Bridge oscillator
(b) phase-shift oscillator
(c) Colpitt's oscillator
(d) both (b) and (c)
18. An ideal OP-AMP has \qquad .
(a) infinite A_{v}
(b) zero output resistance
(c) infinite input resistance
(d) all the above
19. An ideal OP-AMP has bandwidth \qquad _.
(a) zero
(b) small
(c) large
(d) infinite
20. OP-AMPs have become very popular in industry mainly because \qquad .
(a) they are cheaper
(b) of their extremely small size
(c) available in different packages
(d) their external characteristics can be changed to suit any application

CHAROTAR UNIVERSITY OF SCIENCE \& TECHNOLOGY

IV Semester of B.Sc. Physic Examination April - May 2018
 PD253 ANALOG SYSTEMS AND APPLICATIONS

Date: 02-05-2018 Day: Wednesday Time: 02.00 PM To 04:30 PM Maximum Marks: 50

Instructions:

1. Section I and II must be attempted in TWO ANSWER SHEET.
2. Make suitable assumptions and draw neat figures wherever required.
3. Use of non-programmable calculator is allowed.
4. Show necessary calculations.

SECTION - I

Q - II Answer the following questions as directed

1. Define α and β. Show that $\beta=\alpha /(1-\alpha)$
2. Define four hybrid parameters $\mathrm{h}_{11}, \mathrm{~h}_{12}, \mathrm{~h}_{21}$ and h_{22}. 2
3. State the characteristics of an ideal op-amp. 2
4. What is an Op-Amp? Draw block diagram of a general purpose op-amp.

OR
Explain the working of any one block of a general purpose op-amp.
5. Draw the circuit diagram of Half wave rectifier. Explain its working.

OR

Prove that the ripple factor of a full wave rectifier is 0.482
6. Discuss the cut-off, saturation and active regions of the output characteristics of CE transistor circuit.

OR
With a neat diagram explain the operation of two-stage common emitter R-C coupled amplifier.
7. Discuss the advantages of negative feedback. Derive an expression for the gain of negative feedback amplifier.

OR

What is sinusoidal oscillator? What are its advantages? What is the Barkhausen criterion for oscillation?
8. Describe inverting and non inverting op-amp.

SECTION - II

Q-III Answer the following questions

1. Calculate the conductivity of pure silicon at room temperature when the concentration of carriers is 1.6×10^{10} per cm^{3}. Take mobility of electron $\left(\mu_{\mathrm{e}}\right)=1500 \mathrm{~cm}^{2} /$ volt-sec and mobility of hole $\left(\mu_{\mathrm{h}}\right)=500 \mathrm{~cm}^{2} /$ volt-sec at room temperature.
2. Calculate the built-in potential barrier of a pn junction. Consider a silicon pn junction at $T=300$ K , doped $N_{a}=10^{16} \mathrm{~cm}^{-3}$ in the p-region, $N_{d}=10^{17} \mathrm{~cm}^{-3}$ in the n -region and $n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$.
3. Figure shows the common emitter transistor amplifier circuit. Draw the dc load line for the circuit. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.

OR
For the circuit shown in Fig., draw the dc load line and locate the quiescent point. Assume $\beta=$ 50 and neglect V_{BE}.

4. For a common base connection
i. $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.95 \mathrm{~mA}$. Calculate the value of I_{B}.
ii. $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$, current amplification factor $=0.9$, determine the value of base current.
5. i. Find the value of β if (a) $\alpha=0.9$, (b) $\alpha=0.98$, (c) $\alpha=0.99$.
ii. Calculate I_{E} in a transistor for which $\beta=50$ and $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$.
6. An amplifier having a gain of 500 without feedback. If negative feedback is applied, the gain is reduced to 100 . Calculate the fraction of the output fed back. If, due to ageing of components, the gain without feedback falls by 20% calculate the percentage fall in gain with feedback.
7. Find the operating frequency of a transistor Collpit's oscillator if $\mathrm{C}_{1}=0.001 \mu \mathrm{~F}, \mathrm{C}_{2}=0.01 \mu \mathrm{~F}, \mathrm{~L}$ $=15 \mu \mathrm{H}$.
8. Calculate the output voltage of an integrator after (a) 1 sec , (b) 1.5 sec and (c) 2 sec for the input voltage of 1 V dc. Given that the input resistance $=1 \mathrm{M} \Omega$, feedback capacitance $=0.1 \mu \mathrm{~F}$, and the power supplier $= \pm 15 \mathrm{~V}$.
9. The overall gain of a multistage amplifier is 140 . When negative feedback is applied, the gain is reduced to 17.5 . Find the fraction of the output that is fed back to the input.
10. A transistor uses potential divider method of biasing. $R_{1}=50 \mathrm{~K} \Omega, \mathrm{R}_{2}=10 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{E}}=1 \mathrm{~K} \Omega$.

If $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$, find:
i. the value of I_{C} (given $\mathrm{V}_{\mathrm{BE}}=0.1 \mathrm{~V}$)
ii. the value of I_{C} (given $\mathrm{V}_{\mathrm{BE}}=0.3 \mathrm{~V}$).

Comment on the result.
11. Calculate the junction capacitance of a silicon pn junction diode. Consider that the diode is at room temperature $\left(T=300^{\circ} \mathrm{K}\right)$, with doping concentrations of $N_{a}=1.5 \times 10^{16} \mathrm{~cm}^{-3}, N_{d}=1.0 \mathrm{x}$ $10^{15} \mathrm{~cm}^{-3}$ and let $C_{j 0}=1.5 \mathrm{pF}$. Calculate the junction capacitance at reverse bias 3.5 V .
12. Figure shows two-stage $R C$ coupled amplifier. If the input resistance $R_{\text {in }}$ of each stage is $1 \mathrm{~K} \Omega$, find:
i. Voltage gain of first stage
ii. Voltage gain of second stage
iii. Total voltage gain

OR

Obtain the operating point for the circuit shown in Fig. Assume $\beta=45$ and $V_{B E}=0.7 \mathrm{~V}$.

13. Find the closed-loop voltage gain of a differentiator for input voltage of frequency 100 kHz , if
$\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$ and $\mathrm{C}=1 \mu \mathrm{~F}$. What will be the g ain if a resistor $R=0.01 R_{f}$ is connected in series with C ?

