CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

IV Semester of B.Sc. Physic Examination April – May 2018 PD253 ANALOG SYSTEMS AND APPLICATIONS

Date: 02-05-2018 Day: Wednesday Time: 01.30 PM To 02:00 PM Maximum Marks: 20

			MCQ				
• '	ortant Instructions: Tick the correct answ Use of non-program		e written in questi	on paper itself.			
Q - I	Choose the correc	et answer for the	following question	ns.	20		
1.	In a semiconductor, the energy gap between valence band and conduction band is about						
	(a) 1 eV	(b) 2 eV	(c) 3 eV	(d) 5eV			
2.	A reversed biased	pn junction has a r	esistance of the or	der of			
	(a) Ω	(b) $m\Omega$	(c) K Ω	(d) M Ω			
3.	A semiconductor has usually valence electrons.						
	(a) two	(b) three	(c) four	(d) five			
4.	For silicon pn junc	tion, the potential	barrier is about	·			
	(a) 0.1 eV	(b) 2.1 eV	(c) 0.7 eV	(d) 1.7eV			
5.	The number of dep	oletion layers in a t	ransistor is				
	(a) one	(b) two	(c) three	(d) four			
6.	It is desirable the output in		nplifier should ha	input impedance and			
	(a) low, high	(b) high, high	(c) low, low	(d) high, low			

7.	The maximum efficiency of a full-wave rectifier is						
	(a) 40.6% (b) 81.2%	(c) 82.1%	(d) 63%				
8.	• The end points of the d.c. load line g	give the	$_$ values of I_{C} and V_{CE} under d.c.				
	conditions.						
	(a) Zero (b) maximum	(c) minimum	(d) maximum and minimum				
9.	• For faithful amplification, the transis	stor must operate	in the region of the				
	output characteristics.						
	(a) active (b) cut-off	(c) neutral	(d) saturation				
10.	For good stabilization of operating point in voltage divider bias, the current I ₁ flowing						
	through potential divider R_1 and R_2 sh	ould be equal to o	r greater than				
	(a) $2I_B$ (b) $10I_B$	(c) $4I_B$	(d) $5I_B$				
11.	. The input and output voltage of a com	mon emitter transi	stor amplifier are				
	(a) in phase (b) always equa	l (c) out of phas	e (d) always negative				
12.	• The value of coupling capacitor in RC	coupling is gener	ally				
	(a) $100 \mu F$ (b) $10 \mu F$	(c) $0.001 \mu F$	(d) 1µF				
13.	One of the effects of negative feedback in amplifiers is to						
	(a) increase the noise (b) increase the harmonic distortion						
	(c) decrease the bandwidth	(c) decrease the bandwidth (d) decrease the harmonic distortion					
14.	. A feedback circuit generally employs	A feedback circuit generally employs network.					
	(a) inductive (b) capacitive	(c) resistive	(d) neutral				
15.	An oscillator employs feedback.						
	(a) positive (b) negative	(c) no	(d) both positive and negative				
16.	. In a phase-shift oscillator, the frequen	cy determining ele	ements are				
	(a) L and C (b) R and C	(c) L and R	(d) L, R and C				
17.	• To generate a 1MHz signal, the most	suitable circuit is _	·				
	(a) Wein – Bridge oscillator	(b) phase-shift	oscillator				
	(c) Colpitt's oscillator	(d) both (b) and (c)					
18.	. An ideal OP-AMP has						
	(a) infinite A _v	(b) zero output resistance					
	(c) infinite input resistance	(d) all the above					
19.	An ideal OP-AMP has bandwidth						
	(a) zero (b) small	(c) large	(d) infinite				
20.	OP-AMPs have become very popular in industry mainly because						
	(a) they are cheaper	(a) they are cheaper					
	(b) of their extremely small size	(b) of their extremely small size					
	(c) available in different packages						
	(d) their external characteristics can	he changed to sui	it any application				

CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

IV Semester of B.Sc. Physic Examination April – May 2018 PD253 ANALOG SYSTEMS AND APPLICATIONS

Date: 02-05-2018 Day: Wednesday Time: 02.00 PM To 04:30 PM Maximum Marks: 50

Instructions:

- 1. Section I and II must be attempted in TWO ANSWER SHEET.
- 2. Make suitable assumptions and draw neat figures wherever required.
- 3. Use of non-programmable calculator is allowed.
- 4. Show necessary calculations.

$\underline{SECTION - I}$

Q – II Answer the following questions as directed							
1.	1. Define α and β . Show that $\beta = \alpha / (1-\alpha)$						
2.	Define four hybrid parameters h_{11} , h_{12} , h_{21} and h_{22} .						
3.	State the characteristics of an ideal op-amp.						
4.	What is an Op-Amp? Draw block diagram of a general purpose op-amp. OR						
Explain the working of any one block of a general purpose op-amp.							
5.	Draw the circuit diagram of Half wave rectifier. Explain its working. OR	3					
	Prove that the ripple factor of a full wave rectifier is 0.482						
6.	Discuss the cut-off, saturation and active regions of the output characteristics of CE transistor circuit. OR	3					
	With a neat diagram explain the operation of two-stage common emitter R-C coupled amplifier.						
7.	Discuss the advantages of negative feedback. Derive an expression for the gain of negative feedback amplifier.	3					
OR							
	What is sinusoidal oscillator? What are its advantages? What is the Barkhausen criterion for oscillation?						
8.	Describe inverting and non inverting op-amp.	3					
<u>SECTION – II</u>							
_	Answer the following questions	30 2					
1.	1. Calculate the conductivity of pure silicon at room temperature when the concentration carriers is $1.6 \times 10^{10} \text{ per cm}^3$. Take mobility of electron (μ_e) = $1500 \text{ cm}^2/\text{volt-sec}$ and mobility						
	hole $(\mu_h) = 500 \text{ cm}^2/\text{volt-sec}$ at room temperature.						
2.	Calculate the built-in potential barrier of a pn junction. Consider a silicon pn junction at $T = 300$ K, doped $N_a = 10^{16}$ cm ⁻³ in the p-region, $N_d = 10^{17}$ cm ⁻³ in the n-region and $n_i = 1.5 \times 10^{10}$ cm ⁻³ .	2					

3. Figure shows the common emitter transistor amplifier circuit. Draw the dc load line for the circuit. Assume $V_{BE} = 0.7 \text{ V}$.

2

OR

For the circuit shown in Fig., draw the dc load line and locate the quiescent point. Assume β = 50 and neglect V_{BE} .

- **4.** For a common base connection
 - i. $I_E = 1$ mA, $I_C = 0.95$ mA. Calculate the value of I_B .
 - ii. $I_E = 1$ mA, current amplification factor = 0.9, determine the value of base current.
- 5. i. Find the value of β if (a) $\alpha = 0.9$, (b) $\alpha = 0.98$, (c) $\alpha = 0.99$.
 - ii. Calculate I_E in a transistor for which $\beta = 50$ and $I_B = 20 \mu A$.
- 6. An amplifier having a gain of 500 without feedback. If negative feedback is applied, the gain is 2 reduced to 100. Calculate the fraction of the output fed back. If, due to ageing of components, the gain without feedback falls by 20% calculate the percentage fall in gain with feedback.
- 7. Find the operating frequency of a transistor Collpit's oscillator if $C_1 = 0.001~\mu F$, $C_2 = 0.01~\mu F$, $L=2=15~\mu H$.
- 8. Calculate the output voltage of an integrator after (a) 1 sec, (b) 1.5 sec and (c) 2 sec for the input voltage of 1 V dc. Given that the input resistance = 1 M Ω , feedback capacitance = 0.1 μ F, and the power supplier = \pm 15 V.
- **9.** The overall gain of a multistage amplifier is 140. When negative feedback is applied, the gain is 2 reduced to 17.5. Find the fraction of the output that is fed back to the input.
- **10.** A transistor uses potential divider method of biasing. $R_1 = 50 \text{ K}\Omega$, $R_2 = 10 \text{ K}\Omega$ and $R_E = 1 \text{ K}\Omega$.

3

2

2

If $V_{CC} = 12 \text{ V}$, find:

- i. the value of I_C (given $V_{BE} = 0.1 \text{ V}$)
- ii. the value of I_C (given $V_{BE} = 0.3 \text{ V}$).

Comment on the result.

- 11. Calculate the junction capacitance of a silicon pn junction diode. Consider that the diode is at 3 room temperature ($T = 300^{\circ}$ K), with doping concentrations of $N_a = 1.5 \times 10^{16} \text{ cm}^{-3}$, $N_d = 1.0 \times 10^{16} \text{ cm}^{-3}$ 10^{15} cm⁻³ and let $C_{j0} = 1.5$ pF. Calculate the junction capacitance at reverse bias 3.5 V.
- Figure shows two-stage RC coupled amplifier. If the input resistance R_{in} of each stage is 1 K Ω , **12.** 3 find:
 - i. Voltage gain of first stage
 - ii. Voltage gain of second stage
 - iii. Total voltage gain

OR

Obtain the operating point for the circuit shown in Fig. Assume $\beta = 45$ and $V_{BE} = 0.7$ V.

Find the closed-loop voltage gain of a differentiator for input voltage of frequency 100 kHz, if 3 **13.** $R_f = 1 \text{ M}\Omega$ and $C = 1 \mu\text{F}$. What will be the g ain if a resistor $R = 0.01R_f$ is connected in series with C?