B.Tech – FOOD TECHNOLOGY

CURRICULUM REGULATION 2018

KALASALINGAM ACADEMY OF RESEARCH AND EDUCATION Anand Nagar, Krishnankoil - 626 126

Institute Vision To be a Center of Excellence of International Repute in Education and Research	Institute Mission I To Produce Technically Competent, Socially Commi Technocrats and Administrators through Quality Educat and Research			
Department Vision To be a center of repute in research and education in the frontier areas of Food Technology	Department Mission To impart knowledge through research and education and to groom them as professional leaders with entrepreneurship skills in the field of food technology for ensuring sustainable growth in food processing and preservation to meet the ever increasing demand of the society.			

Program Educational Objectives (B.Tech – Food Technology)

PEO 1	Pursue higher studies or to be employed in food technology or related disciplines.
PEO 2	Be a successful entrepreneur in creating jobs related to applied science and technology
PEO 3	Promote ethics, sustainability and environmental responsibility in their practice.

Programme Specific Outcomes (B.Tech – Food Technology)

A graduate of the Food Technology program will demonstrate:

PSO1	Professional Skills: The ability to understand, evaluate and prepare ways to process, preserve, package, or store food, according to industrial requirements.
PSO2	Problem Solving Skills: The ability to apply standard practices and regulation in developing the food and allied products.
PSO3	Career and Entrepreneurship: The ability to employ modern technologies to produce new or value added products in the area of Food Technology.

<u>Program Outcome(s):</u> Graduates will be able to

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
-	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis
	of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader
	in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with
	the engineering community and with society at large, such as, being able to
	comprehend and write effective reports and design documentation, make effective
	presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.

S.No	Category		Credits
I Basic Sciences and Mathematics		25	
II	Humanities and Social Sciences		12
	Soft Skills	3	
	Humanities Elective	6	
III	Basic Engineering		24
IV	Program Core		
	a) Core Courses	48	
	b) Community Service Project	3	61
	c) Project work	10	
V	Elective Courses		
	a) Professional Elective	18	36
			_
	b) Open Elective	18	
VI	Internship/Industrial Training		2
VII	Mandatory courses		
	Total		160

Curriculum Structure

Basic Sciences and Mathematics

Course	Course Name	Course	L	Т	Р	Credit
Code		Туре				
PHY18R175	Optics, Electromagnetism and	IC	3	1	2	5
	Quantum Mechanics					
CHY18R171	Chemistry	IC	3	1	2	5
MAT18R101	Calculus and Linear Algebra	Т	3	1	0	4
MAT18R102	Multiple Integration, Ordinary	Т	3	1	0	4
	Differential Equations and Complex					
	variable					
MAT18R201	Bio Statistics	Т	3	1	0	4
BIT18R101	Biology for Engineers	Т	3	0	0	3
Total						25

Humanities and Social Science

Course	Course Name	Course	L	Т	Р	Credit
Code		Туре				
HSS18R151	English for technical communication	TP	2	0	2	3
HSS18RXX	Humanities Elective I	Т	3	0	0	3
HSS18RXX	Humanities Elective II	Т	3	0	0	3
Total						9

Soft Skill

Course	Course Name	Course	L	Т	Р	Credit
Code		Туре				
HSS18R101	Soft Skill-I	Т	3	0	0	1
HSS18R102	Soft Skill-II	Т	3	0	0	1
HSS18R201	Soft Skill-III	Т	3	0	0	1
Total					3	

I BASIC ENGINEERING

S.	Course Code	Course Name	Course Type	L	Т	Р	Credit
NO							
1	MEC18R211	Engineering Mechanics	Т	3	1	0	4
2	EEE18R171	Basic Electrical and Electronics Engineering	IC	3	1	2	5
3	MEC18R151	Engineering Graphics & Design	Т	3	0	2	3
4	CSE18R171	Programming for Problem solving	IC	3	1	2	5
5	MEC18R152	Engineering Practice	TP	3	0	2	3
6	FT18R101	Principles of Chemical Engineering	Т	3	1	0	4
Total						24	

II PROGRAM CORE

a) Core Courses Subject Name S. Code Course Pre-**Co-requisite** L Т Р Credit Type T No requisite Food Additives 1 FT18R201 3 0 0 3 2 3 TP 0 3.5 1 Principles of Food Processing FT18R251 and Preservation Food Microbiology IC 3 FT18R271 3 0 2 4 3 4 FT18R272 Food Biochemistry IC 0 2 4 5 3 Т 0 0 3 Instrumental Methods of FT18R202 Analysis of Foods Т 3 0 0 3 6 Technology of Dairy FT18R203 Products 7 L FT18R251 0 0 3 2 Bakery and Confectionary FT18R281 Laboratory Unit Operations in Food 3 IC 8 FT18R101 1 2 5 FT18R273 Processing Т 3 0 9 FT18R251 0 3 FT18R301 Food Packaging Technology

10	FT18R381	Food Engineering Laboratory	L		FT18R251	0	0	2	1
11	FT18R371	Food safety regulations and Quality Control	IC	FT18R201		3	0	2	4
12	FT18R351	Instrumentation and Process Control	TP			3	0	1	3.5
13	FT18R372	Heat and Mass Transfer	IC	FT18R101		3	1	2	5
14	FT18R382	Instrumental methods of analysis laboratory	L		FT18R202	0	0	2	1
15	FT18R401	Emerging Technologies in Food process Engineering	Т	FT18R251		3	0	0	3
			Total						48

b) COMMUNITY SERVICE PROJECT

Code	Subject Name	Credit
FT18R399	Community Service Project	3
	Total	3

c) **PROJECT WORK**

Code	Subject Name	Credit
FT18R499	Project Work	10
	Total	10

8V ELECTIVE COURSES a) Professional Elective

S.No	Code	Course Name	Course	Pre-requisite	L	Т	P	Credit
			Туре					
		PROCESS ENGINEERING &	FOOD SAI	FETY				
1.	FT18R302	Sugarcane and Beverage Technology	Т		3	0	0	3
2.	FT18R303	Technology of Animal Foods	Т		3	0	0	3
3.	FT18R304	Oils and Fats Processing Technology	Т		3	0	0	3
4.	FT18R305	Fruits and Vegetables Processing Technology	Т	FT18R251	3	0	0	3
5.	FT18R306	Technology of Flavors and Colorants	Т	FT18R201	3	0	0	3
6.	FT18R310	Food Plant Safety and Hazards in Food Industry	Т	FT18R271	3	0	0	3
7.	FT18R402	Spices and Plantation products	Т		3	0	0	3
8.	FT18R403	Milling Technology for Food Materials	Т	FT18R273	3	0	0	3
9.	FT18R404	Processing Commodities of Food	Т	FT18R251	3	0	0	3
10.	FT18R409	Food Industry Waste Management	Т	FT18R251	3	0	0	3
		DESIGN & DEVELO	PMENT					
11	FT18R204	Sensory Evaluation of Foods	Т		3	0	0	3
12	FT18R205	Engineering properties of food materials	Т		3	0	0	3
13	FT18R307	Food process Equipment Design	Т	MEC18R151	3	0	0	3
14	FT18R405	Food Product Development	Т	FT18R204	3	0	0	3
15	FT18R406	Food Plant Layout and Design	Т	FT18R310	3	0	0	3
16	FT18R308	Protein chemistry and Technology	Т	FT18R272	3	0	0	3
17	FT18R309	Nutritional Biochemistry	Т		3	0	0	3
18	FT18R407	Traditional and fermented foods	Т		3	0	0	3
19	FT18R408	Radiation Preservation and processing of	Т		3	0	0	3
		food products						
Total								18

b) OPEN ELECTIVES

COURSES OFFERED TO OTHER DEPARTMENTS								
S.NO	Code	Course Name	Course	Pre-	L	Т	Р	Credit
			Туре	requisite				
1	FT18R206	Food Biotechnology	Т	-	3	0	0	3
2	FT18R207	Technology of Convenience Foods	Т	-	3	0	0	3
3	FT18R208	Foundation of Food and Nutrition	Т	-	3	0	0	3
4	FT18R209	Food Processing Technology	Т	-	3	0	0	3
5	FT18R210	Composition, Quality & Safety of	Т	-	3	0	0	3
		Foods						
6	FT18R211	Bakery and Confectionary	Т	-				
		Technology						
8	FT18R311	Beverage Technology	Т	FT18R 209	3	0	0	3
9	FT18R312	Fermented food products	Т	-	3	0	0	3
10	FT18R313	Food Laws and Standards	Т	FT18R210	3	0	0	3
11	FT18R314	Packaging Technology of Foods	Т	-	3	0	0	3
12	FT18R315	Nutraceuticals and Functional Foods	Т	FT18R208	3	0	0	3
13	FT18R410	Processing of Marine Products	Т	FT18R209	3	0	0	3
14	FT18R411	Nanotechnology in Food Processing	Т	FT18R 210	3	0	0	3
15	FT18R412	Environmental pollution control	Т	FT18R313	3	0	0	3
		Total					•	18

HUMANITIES	ELECTIVES
------------	------------------

Course Code	Course Name	Course Type	L	Т	Р	Credit	
HSS18R001	Management Concepts and Techniques	Т	3	0	0	3	
HSS18R002	Marketing Management	Т	3	0	0	3	
HSS18R003	Organizational Psychology	Т	3	0	0	3	
HSS18R004	Project Management	Т	3	0	0	3	
HSS18R005	Stress Management and Coping Strategies	Т	3	0	0	3	
HSS18R006	Economics for Engineers	Т	3	0	0	3	
HSS18R007	Human Resource Management and Labour Law	Т	3	0	0	3	
HSS18R008	Entrepreneurship Development	Т	3	0	0	3	
HSS18R009	Cost Analysis and Control	Т	3	0	0	3	
HSS18R010	Product Design and Development	Т	3	0	0	3	
HSS18R011	Business Process Reengineering	Т	3	0	0	3	
HSS18R012	Political Economy	Т	3	0	0	3	
HSS18R013	Professional Ethics	Т	3	0	0	3	
HSS18R014	Operations Research	Т	3	0	0	3	
HSS18R015	Total Quality Management	Т	3	0	0	3	
HSS18R016	Advanced soft Skills	Т	3	0	0	3	
	Total						

INTERNSHIP/INDUSTRIAL TRAINING

S.NO	Code	Name of the Training	Credit
1	FT18R397	Industrial Training	1
2	FT18R398	Internship Training	1
		Total	2

HONOURS COURSES

S.NO	Code	Subject Name	Course	Pre-	L	Τ	Р	Credit
			туре	requisite				
1	FT18R413	Technology of Food Emulsion, Foams and Gels	Т	FT18R272	3	0	0	3
2	FT18R414	Nanotechnology In Food Processing	Т	FT18R251	3	0	0	3
3	FT18R415	Drying Technology	Т	FT18R372	3	0	0	3
4	FT18R416	Food Toxicology	Т	FT18R371	3	0	0	3
5	FT18R417	Extrusion Technology	Т	FT18R381	3	0	0	3
6	FT18R418	Refrigeration & Cold storage	Т	FT18R372	3	0	0	3
7	FT18R419	Post-harvest Pest Management in food safety	Т	FT18R371	3	0	0	3
8	FT18R420	Food Material Science	Т	FT18R272	3	0	0	3

Total number of Credits = 160

Subject Code	Optics. Electromagnetism	and Quantum	L	Т	Р	С
PHY18R175	mechanics	····· (······	3	1	2	5
Pre-requisite:	Basic Knowledge in Physics	Course Catego	ry: Ba	isic Sc	iences	and
Mathematics			•			
Course Type: In	ntegrated Course					
Course Object	ives:					
 To under 	rstand the basic concepts of optics,	quantum physics an	d its a	pplica	tions.	
• To provi applicat	ide the students a firm understandin ions.	g of the basics of Ele	ectricit	y, Mag	gnetis	m and its
Course Outcon	nes:					
Upon successfu	l completion of this course, student	s will be able to				
CO1: Understa	nd the concepts of diffraction and p	olarization.				
CO2: Apply the	e concepts of optics in laser and fib	er optics.				
CO3: Explore t	he knowledge on electrostatistics.					
CO4: Understa	nd the fundamentals of magnetism.					
CO5: Apply the	e knowledge on solving the wave e	quations				
Unit I: Diffract	tion and Polarisation				9	Hours
Diffraction: Int	roduction to interference and exa	mple; concept of d	iffract	ion, F	raunh	ofer and
Fresnel diffract	ion, Fraunhofer diffraction at single	e slit, double slit, an	d mul	tiple sl	its; di	ffraction
grating, charact	eristics of diffraction grating and it	s applications.				
Polarisation: Int	troduction, polarisation by reflection	n, polarisation by do	uble 1	efracti	ion, sc	attering
of light, circular	r and elliptical polarisation, optical	activity				
Unit II: Laser	and Fiber Optics					9 Hours
Einstein's theor	y of matter radiation interaction and	d A and B coefficien	ts; am	plifica	tion o	f light by
population inve	rsion, different types of lasers: gas	lasers (He-Ne), solid	-state	lasers	(Neod	lymium),
applications of	lasers in science, engineering and	medicine. Numerica	al aper	ture a	nd Ac	ceptance
angle of fibre –	Types of optical fibre - Active and	passive fibre sensor	s- End	loscop	e.	
Unit III: Electi	romagnetism and dielectrics					9 Hours
Laws of electro	statics electric current and the con	tinuity equation law	vs of n	nagnet	ism A	mpere's
Faraday's laws	Maxwell's equations. Polarisation	bermeability and di	electr	ic cons	stant.	olar and
non-polar diele	ectrics, internal fields in a solid.	Clausius-Mossotti	equa	tion, a	pplica	ations of
dielectrics. Diel	ectric Breakdown – Types and Rer	nedies	.1	- ,	11	
Unit IV: Magn	etostatics and Magnetic materia	ls			9	Hours
Magnetostatics:	Biot-Savart's law & its application	s- straight conducto	r, circi	ılar co	il, sol	enoid
		field Magnetic west			A	

carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials.

Unit V: Quantum Mechanics

Introduction to quantum physics, black body radiation, explanation using the photon concept, photoelectric effect, Compton effect, de Broglie hypothesis, wave-particle duality, verification of matter waves, uncertainty principle, Schrodinger wave equation, particle in a box (1D).

List of Experiments

15 Hours

- 1. To determine the dispersive power of prism using spectrometer and mercury source
- 2. To determine the wavelength of sodium light by Newton's Ring
- 3. To determine the wavelength of sodium light using diffraction grating
- 4. To determine the numeral aperture (NA) of a Optical Fibre.
- 5. To find the wavelength of He-Ne Laser using transmission diffraction grating.
- 6. To determine the refractive index of a prism/ liquid using spectrometer.
- 7. Deflection magnetometer M and BH TAN C position
- 8. To determine the thickness of a material using air wedge method
- 9. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx).
- 10. Determination of dielectric constant of liquids / Solids
- 11. Determination of Magnetic Susceptibility

Text Book(s):

- 1. Ghatak, "Optics" Fith edition, Tata McGraw-Hill Inc, 2012.
- 2. N. Subrahmanyam and Brij Lal, "A Text Book of Optics", S. Chand Limited, 2015.
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 4. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011
- 5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011

Reference Books:

- 1. Kailash K. Sharma Optics: Principles and Applications Elsevier, 2006
- 2. William T. Silfvast, Laser Fundamentals, Cambridge University Press, New York, 2nd Edition, 2004
- 3. Gaur R. K, and Gupta S. L, Engineering Physics, Dhanpat Rai & Sons, New Delhi, 7th Edition, 1993
- 4. Halliday D, Resnick R and Waler J, Fundamentals of Physics, Wiley and Sons, New York, 6th Edition, 2001
- 5. Rajput B.S, Pragati Prakashan, Advanced Quantum Mechanics, Pragati publications, New Market, Begum Bridge, Meerut, 2009.
- 6. Practical Physics S.L. Gupta & V. Kumar (Pragati Prakashan).
- 7. Advanced Practical Physics B.L. Workshop and H.T. Flint (KPH)
- 8. Advanced Practical Physics Vol. I & II Chauhan & Singh (Pragati Prakashan)
- 9. Physics Laboratory Manual, prepared by Department of Physics, Kalasalingam University.

CUV19D171	Chamistry		L	Т	P	С		
CHY18K1/1	Chemistry	3	1	2	5			
Pre-requisite:	Pre-requisite: Nil Course Category: Basic Sciences and							
Mathematics								
Course Type: Integrated						Course		

Unit -I: Atomic and Molecular Structure

Schrodinger wave equation: Derivation of time independent Schrodinger wave equation, Representation of Schrodinger wave equation in polar coordinates - Radial distribution function graphs of s, p, d and f orbitals. Molecular Orbital Theory: MOT concept, MO diagrams of homonuclear diatomic molecules (hydrogen, nitrogen and oxygen) and hetero-nuclear diatomic molecules (carbon monoxide and nitric oxide). Crystal field theory: CFT concept, weak and strong ligands, energy level diagrams of transition metal ions (Fe²⁺& Fe³⁺) in octahedral and tetrahedral complexes and their magnetic properties. Intermolecular forces - Ionic, dipolar and van der Waals interactions.

Unit-II: Periodic Properties

Effective nuclear charge - Factors affecting effective nuclear charge: Penetration or shieldingof orbitals - Variation of s, p, d and f orbital energies of atoms in the periodic table - Aufbau principle (Building-up principle): Application of Aufbau principle in writing electronic configuration, Deviation from Aufbau principle - Periodicity of properties in a periodic table -Periodic properties: Atomic and ionic sizes, ionization energies, electron affinity and electronegativity - Variation of periodic properties in the periodic table - Hard soft acids and bases: Concept and examples.

Unit-III: Free Energy and Chemical Equilibria

Thermodynamic functions: Definition and mathematical expression for Work, Energy, Enthalpy, Entropy and Free energy - Nernst equation: Derivation, apply Nernst equation to determine of solubility product, pH (glass electrode). Potentiometric titrations: Acid-Base, Redox and precipitation reaction - Water analysis: Hardness by EDTA method and chloride ion by Argentomentric method - Corrosion: Definition, types (dry & wet) and mechanism. and control of Dry and Wet corrosion.

Unit-IV: Organic Reactions

Nucleophilic substitution reactions: Definition, types and examples of nucleophile, Compare nucleophilicity and basicity of a nuceophile - Types of nucleophilic substitution (case RX and ArX): Mechanism of S_N1, S_N2, S_Ni and Benzyne. Electrophilic substitution reactions: Definition, types and examples of electrophile - Electrophilic substitution reactions of hydrocarbons: Halogenation, sulphonation, nitration. Friedel crafts alkylation and acylation reaction. Nucleophilic addition reactions (case aldehydes and ketones): Polarity of C=O bond. General mechanism of nucleophilic addition reactions on aldehydes and ketones: HCN, HOH, ROH and NaHSO₃ addition. Electrophilic addition reactions (case alkenes): General mechanism of electrophilic addition reactions on alkene - Addition of HBr [Markownikoff & Anti-Markownikoff (peroxide effect)] - Addition of alkene (polymerization of ethylene). Elimination reactions: Types

9 Hours

9 Hours

9 Hours

of elimination reactions (case alkyl halides): Dehydrohalogenation of alkyl halides - E_1 and E_2 mechanism - Dehydration of alcohols to alkene and ethers. Greener synthesis of drug molecules (Aspirin and Ibuprofen)

Unit-V: Stereochemistry & Spectroscopic Technique

Stereochemistry - Definition with examples: Geometrical isomers (alkene) and stereoisomers, symmetry, chirality, enantiomers, diastereomers, meso and racemic mixture. Representation of 3D structures: Wedge formula, Fischer projections, Newmann and Sawhorse formula (upto 2 carbons) - Conformational analysis: Ethane, butane and cyclohexane - Configurational analysis: Rules of RS nomenclature and application of RS nomenclature to molecules containing one chiral centre. Electronic spectroscopy: Principle, instrumentation, selection rules and medicinal application of fluorescence spectroscopy. Nuclear magnetic resonance spectroscopy (¹H-NMR): Principle, instrumentation, chemical shift, coupling constant and application (structural identification of the compound C₃H₆O from ¹H-NMR data). X-ray diffraction: Principle, instrumentation and applications X-ray diffraction.

List of Experiments (Any 10):

- 1. Determination of Viscosity by Ostwald Viscometer.
- 2. Determination of surface tension by stalagmometer.
- 3. Adsorption of acetic acid by charcoal.
- 4. Determination of chloride content of water.
- 5. Estimation of hardness of water by EDTA method.
- 6. Determination of the rate constant of a reaction
- 7. Thin layer chromatography.
- 8. Determination of the partition coefficient of a substance between two immiscible liquids
- 9. Determination of Saponification /acid value of oil.
- 10. Preparation of Aspirin
- 11. Potentiometric titration of strong acid vs strong base.
- 12. Potentiometric titration of weak acid vs strong base.
- 13. Determination of cell constant and conductance of solutions.

Text Books/

- 1. Engineering Chemistry, 2nd Edition, Wiley India (P) Ltd., 2018.
- 2. Stereochemistry of Organic Compounds, Ernest L. Eliel, Samuel H. Wilen Student edition, Wiley India (P) Ltd., 2017.
- 3. University Chemistry, by B. M. Mahan and R.J.Mayers, Pearson Publishers, 11th Edition, Noida, 2017.
- 4. Chemistry Laboratory Manual, Department of Chemistry, Kalasalingam University, 2018.

Reference Books

- 1. Fundamentals of Molecular Spectroscopy, by C. N. Banwell and E.M. McCash, Tata McGraw-Hill Publishers, 4th Edition, New Delhi, 2008.
- 2. Physical Chemistry, by P. W. Atkins and J.D. Paula, W H Freeman & Co Publishers, 10th Edition. 2014.
- 3. Modern Inorganic Chemistry, R. D. Madan, 4th Edition S. Chand & Company Ltd., 2009.

4. Organic Chemistry, Paula Y. Bruice, 7th Edition, Pearson (Dorling Kindersley India (P) Ltd.) 2014.

15<u>Hours</u>

5. Principles of Physical Chemistry, B. R. Puri, L. R. Sharma, M. S. Pathania, 47th Edition, Vishal Publishing Co., 2017.

6. Spectrometric Identification of Organic Compounds, Robert M. Silverstein, Francis X. Webster, David J. Kiemle, David L. Bryce, 8th Edition, Wiley India (P) Ltd., 2010.

7. Inorganic Chemistry, Peter Atkins, Mark Weller, Fraser Armstrong, Jonathan Rourke, Tina Overton, Michael Hangerman 5th Edition, Oxford press, 2015.

8 Organic Chemistry, Volume 1, I. L. Finar, 6th Edition, Pearson (Thomson press India (P) Ltd.) 2014.

MAT18R101	Calculus and Linear Algebra	L	Τ	Р	С
	(Common to all Branches of B.Tech) (For those who have joined in June 2018 and later)	3	1	0	4
Pre-requisite: <i>Mathematics</i>	NilCourse Category: Basic Course Type: Theory	c Sci with	ienc h tut	es a oria	nd ıl

Course Objective:

To enable the students to acquire knowledge and skills in basic components of calculus, tohandle the situations involving multivariable calculus, and to diagonalize a symmetric matrix using eigenvalues and eigenvectors.

Course Outcomes:

Upon successful completion of this course, students will be able to

1. know the fundamental theorems such as Rolle's theorem, Mean value theorem, Taylor's theorem and its applications.

2. understand the basic concepts of limit, continuity, derivative, partial derivative and total derivative and its applications.

3. solve the real world problems using differentiation and integration.

4. understand the concepts of sequence, convergent of sequences, series and testing of convergent of series using different methods.

5. find the solution of simultaneous linear equations using matrices and to find the eigen values and eigen vectors of a matrix, Cayley-Hamilon theorem and orthogonaltransformations.

Unit 1: Calculus:

Rolle's Theorem- Mean value theorems - Taylor's and Maclaurin theorems with remainders -

indeterminate forms and L'Hospital's rule - Maxima and minima.

Unit 2: Multivariable Calculus (Differentiation):

Limit, continuity and partial derivatives - directional derivatives - total derivative - Maxima, minima and saddle points - Method of Lagrange multipliers.

12 Hours

Unit 3: Calculus (Applications):

Curvature (Cartesian coordinates) - Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

Unit 4: Sequences and series:

Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions;

Unit 5: Matrices:

12 Hours

12 Hours

System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Determinants; Eigenvalues and eigenvectors; Cayley-Hamilton Theorem - Diagonalization of matrices - Orthogonal transformation- Reduction of Quadratic form to Canonical form.

TEXT BOOKS:

1. Grewal, B.S., Grewal, J.S., *Higher Engineering Mathematics*, Khanna Publishers, New Delh 43rd Edition, 2015.

REFERENCE BOOKS:

- 1. Kreyszig, E, *Advanced Engineering Mathematics*, John Wiley and Sons (Asia) Limited, Singapore, 10th Edn., 2001.
- 2. Ramana B. V., *Engineering Mathematics*, Tata McGraw-Hill Publishing Company Limited, New Delhi, Edition 2005.
- 3. Veerarajan, T., *Engineering Mathematics (For First Year)*, Tata McGraw-Hill publishing company Limited, 2008.

	Multiple Integration, Ordinary Differential Equations	L	Т	Р	С
MAT18R102	and Complex Variable				
	(Common to all Branches of B.Tech except for CSE, EEE and E (For those who have joined in June 2018 and later)	3	1	0	4
Pre-requisite:	Nil Course Category: Basic	: Sci	ienc	es a	nd
Mathematics					
	Course Type: Theory	, wil	th ti	itori	ial

Course Objective:

To enable the students to understand the concepts of multiple integrations, their applications, and to handle analytic functions on complex plane and perform complex integration.

Course Outcomes:

Upon successful completion of this course, students will be able to

- 1. understand the concepts of double and triple integral and its applications.
- 2. know about the applications of double and triple integral in vector calculus.
- 3. know the methods of solving differential equations of first and secondorders.
- 4. understand the concepts of analytic functions, conformal mappings and bilinear transformations.
- 5. understand the concepts of singularity, residues and evaluation of certain improper integrals.

Unit 1: Multivariable Calculus (Integration):

Multiple Integration: Double integrals (Cartesian), change of order of integration in double

integrals, Change of variables (Cartesian to polar), Applications: areas and volume; Triple integrals (Cartesian), orthogonal curvilinear coordinates, Simple applications involving cubes, sphere and rectangular parallelepipeds;

Unit 2: Integral theorems:

Gradient, curl and divergence. Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

Unit 3: Ordinary differential equations:

Exact, linear and Bernoulli's equations, Euler's equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type. Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equations.

Unit 4: Complex Variable – Differentiation:

Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.

Unit 5: Complex Variable – Integration:

Contour integrals, Cauchy Integral formula (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof),

12 Hours

12 Hours

12 Hours

12 Hours

Evaluation of definite integral involving sine and cosine, Evaluation of certain improper integrals (Integration around small semicircles and rectangular contours).

TEXT BOOKS:

2. Grewal, B.S., Grewal, J.S., *Higher Engineering Mathematics*, Khanna Publishers, New Delhi, 43rd Edition, 2015.

REFERENCE BOOKS:

- 4. Kreyszig, E, *Advanced Engineering Mathematics*, John Wiley and Sons (Asia) Limited, Singapore, 10th Edn., 2001.
- 5. Ramana B. V., *Engineering Mathematics*, Tata McGraw-Hill Publishing Company Limited, New Delhi, Edition 2005.
- 6. Veerarajan, T., *Engineering Mathematics (For First Year)*, Tata McGraw-Hill publishing company Limited, 2008.

MAT18R201	Bio-Statistics	LTPC3104e Category: Basic Sciences and			
	(for BioTech, BioMedical and Foodtech) (For those who have joined in June 2018 and later)	3	1	0	4
Pre-requisite: <i>Mathematics</i>	NilCourse Category: Basic Course Type: Theory with	c Sci h tui	ienc toric	es a ıl	nd

Course Objective:

To enable the students to understand the concepts of probability and statistics and to solve real world problems using statistical tools.

Course Outcomes:

Upon successful completion of this course, students will be able to

- 1. know the methods of finding averages, deviations, moments and skewness andkurtosis.
- 2. understand the concepts of probability and to know about the discrete and continuous distributions.
- 3. understand the concepts of correlation and regression and its applications.
- 4. fit the curve of first and second degree equations by least square method and know the method of analys of variance.
- 5. study about the testing of hypothesis of small and largesamples.

Unit 1: Statistical Averages

12 Hours

Introduction – Diagrammatic representation of data – Graphic representation of data – Measures of central tendency: Arithmetic mean, Geometric mean, Harmonic mean, Median and Mode – Measures of dispersion: Range, Mean deviation and Standard deviation – Moments, Skewness and Kurtosis.

Unit 2: Probability

Introduction – Probability – Theorems on probability - Addition Rule – Multiplication rule – Probability distributions: Binomial, Poisson and Normal distributions.

Unit 3: Correlation and Regression

12 Hours

Introduction – Types of correlation – coefficient of correlation – Rank correlation – Regression –Difference between correlation and regression – Regression equations – Applications of regressionUnit 4: Fitting of Curves and Analysis of Variance12 Hours

Principles of least square techniques – Fitting a straight line – Fitting a second degree parabola – Fitting a curve of the types $y \Box bx^a$, $y \Box ae^{bx}$, $y \Box ka^{bx}$ - Analysis of variance (ANOVA) – one criterion and two criterion of classification

Unit 5: Testing of Hypotheses

12 Hours

Test for single mean- mean difference – proportion – difference of proportions- small sample tests: based on t and F distributions – chi-square test for population variance – Chi-square test to goodness of fit.

TEXT BOOKS:

- 1. Khan and Khanum, Fundamentals of Biostatistics, Ukaaz Publications, Reprint 2004.
- 2. Arumugam and Issac, *Statistics*, New Gamma Publishers, July 2013.

REFERENCE BOOKS:

- **1.** Eason, G., Coles, C.W., Gittinby, G., Mathematics and Statistics for the Biosciences, Pearson Higher education, New York, 3rd Edition, 1992
- Kreyszig, E., Advanced Engineering Mathematics, John Wiley, Brisbane, 9th Edition, 2006

DIT10D101	DIOLOCY FOD ENCINEEDS	L	Т	Р	С			
DITIONIUI	BIOLOGY FOR ENGINEERS	3	0	0	3			
Pre-requisite: N	il Course Category: Ba	Course Category: Basic Sciences and Mathematic						
			Cours	e Type.	theory			

Course outcomes

CO1: Describe the fundamentals of cell structure and cell cycle

CO2: Understand the classification and functions of biomolecules

CO3: Elaborate the basic cellular mechanisms such as replication, transcription and translation

CO4: Describe the underlying concepts of infection and immunity.

CO5:Explain various applications of biology

Unit I: INTRODUCTION

Fundamental difference between science and engineering- comparison between eye and camera, Bird flying and aircraft; major discoveries in biology-; Classification based on: Cellularity- Unicellular and Multicellular; Ultra structure - prokaryotes and eukaryotes; three major kingdoms of life; Cell structure, intracellular organelles and their functions, comparison of plant and animal cells- Overview of Cell cycle and cell division

Unit II: BIOMOLECULES

Chemistry of biomolecules: Carbohydrates, Lipids, Proteins; classification of amino acids; classification of proteins based on structure and functions; Nucleic acids -types, structure and function of DNA and RNA

Unit III: GENES TO PROTEINS

9 hours

9 hours

Gene, Genome and chromosome; Central dogma of molecular biology; Classical experiments of DNA: Griffith and, Avery, McCarty and MacLeod, Meselson and Stahl - DNA replication, Transcription and Translation

Unit IV: MICROBIOLOGY

Microscopy; Microbes as infectious agents - malaria, tuberculosis, typhoid, polio, dengue, AIDS;; cultivation of bacteria. Immunity - innate and acquired immunity - organs and cells of the immune system - classification of antibodies - types of T cells - transplantation, autoimmunity overview

Unit V: APPLICATIONS OF BIOLOGY

9 hours

9 hours

Healthcare-antibiotics, vaccines, monoclonal antibodies, insulin and interferons; Beneficial bacteria - probiotic bacteria, nitrogen fixing bacteria, fermentation and fermented foods and products Environmental - waste water treatment, bioremediation; Biomaterials and biopolymers for medical and environmental applications; Biosensors;

TEXT BOOKS:

- De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology- Lippincott Williams & Wilkins- Philadelphia- USA- 8th Edition- 2010.
- 2. Voet, D., Voet, G., Biochemistry John Wiley and Sons, Singapore 3rd Edition-2001.
- 3. Pelczar MJ, Chan ECS and Krieg NR Microbiology Tata McGraw Hill, India- 7th Edition-2010

REFERENCES:

Friefelder. D. -Molecular Biology- McGraw-Hill Companies- New York, USA- 5th Edition- 2013.

BASIC ENGINEERING

MEC18R211	ENGINEERING MECHANICS	L	Т	Р	Cred	it
		3	1	0	4	
		Cou	irse	Cate	gory:	Basic
Pre-requisite	e: Nil	Eng	ineeri	ng		
		Cou	rse T	ype: 7	Theory	

Course Outcome(s):

After completing this course, the student will be able to:

CO1: Explain the vectorial and scalar representation of forces and moments of particles and rigid bodies both in two dimensions and in three dimensions.

CO2: Apply the knowledge of trusses in frames, beams and machine components.

CO3: Contrast the effect of friction on equilibrium.

CO4: Illustrate the importance of properties of surfaces and solids.

CO5: Demonstrate the dynamic equilibrium equation.

Mapping ofCourseOutcome(s):

CO /						I	0						PSO		
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	1											
CO2	3	2	2	1											
CO3	3	3	2	1											
CO4	3	2	2	1											
CO5	3	1	1	1											

3-StrongCorrelation-2-MediumCorrelation-1–LowCorrelation

Unit 1. Statics of Particles and Rigid bodies (9+3)

Six Fundamental principles and concepts - vector algebra - Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D - System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant - Equations of Equilibrium of Coplanar Systems and Spatial Systems.Rigid Body equilibrium in 2-D & 3-D - Moment of Forces and its Application - Couples and Resultant of Force System - Equilibrium of System of Forces, Free body diagrams - Equations of Equilibrium of Coplanar Systems and Spatial Systems.

Unit 2. Analysis of Trusses (9+3)

Basic Structural Analysis- Equilibrium in three dimensions - Method of Sections- Method of Joints- How to determine if a member is in tension or compression- Simple Trusses- Zero force members- Beams & types of beams- Frames & Machines.

Unit 3. Friction (9+3)

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction - Motion of Bodies, simple contact friction, sliding block, wedge friction, screw jack & differential screw jack, rolling resistance.

Unit 4. Properties of Surfaces and Solids (9+3)

Centroid of simple figures from first principle, centroid of composite sections - Centre of Gravity and its implications - Area moment of inertia - Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections (T section and I section) - Mass moment inertia of circular plate, Cylinder, Cone, Sphere- Principal moment of inertia.

12 Hours

12 Hours

12 Hours

Unit 5. Dynamics (9+3)

12 Hours

Review of particle dynamics - Displacements, velocity and acceleration, their relationship - Equations of motions - Rectilinear motion- Plane curvilinear motion - Newton's 2nd law- Impulse, momentum, impact - D'Alembert's principle and its applications in plane motion and connected bodies - Work energy principle and its application in plane motion of connected bodies - Virtual Work and Energy Method - Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies.

Text Book(s):

1. Beer, F.P., and Johnson, E.R., Vector Mechanics for Engineers – Statics and Dynamics, McGraw Hill, Tenth Edition in SI units

Reference(s):

1. Merriam, J.L., Engineering Mechanics, Volume I – Statics, and Volume – II, Dynamics 2/e, Wiley International, Seventh Edition.

2. Irving, H., Shames, Engineering Mechanics, Statics and Dynamics, Prentice Hall of India Ltd., Fourth Edition

EEE18R171 Basic Electrical and Electronics Engineering		Crea	lits		
Comments EEE East Dismitial Distant & Chaminal		L	T	P	Credit
(Common to EEE, Food, Biomedical, Biotech & Chemical)		3	1	2	5
Pre requisite: NII	Course Category	: Bas	ic Eng	gineer	ing
	Course Type: Inte	egrate	ed Cou	ırse	

Course Objective(s):

To focus the fundamental ideas of the Electrical and Electronics Engineering by providing wide exposure to the basic concepts of Electrical and Electronics Engineering such as DC Circuits, AC Circuits, electrical machines, measuring instruments, electrical installation, Basic Electronic Devices and various electronic circuits such as rectifiers, amplifiers, oscillators, etc.

Course Outcome(s):

After completing this course, the student will be able to:

CO1: Apply the basic laws of electricity in DC and AC circuits

CO2: Describe the construction and operation of static and rotating electrical machines

CO3: Explain the functioning of measuring instruments and Low Voltage Electrical Installations

CO4: Describe the constructional features and operation of fundamental electronic devices

CO5: Explain the characteristics of electronic circuits

Mapping of Course Outcome(s):

CO /	PO														
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	Μ		M	M	L		L	М	L			М		
CO2	M	M		M	M	L		M	L	М			Μ		
CO3	M			M	M	L		L	M	L			S		
CO4	S	M											Μ		
CO5	S	S	L	M	M	L	M	M	L	M			Μ		

Course Topics: Unit 1: DC Circuits and AC Circuits

Electrical quantities - resistors - inductors - capacitors - Ohm's Law - Kirchhoff's Laws - series and parallel circuits - analysis of DC circuits - mesh, nodal - simple problems- Sinusoidal functions - phasor representation - RMS and Average values - form and peak factors - RLC series circuits - power and power factor-concept of three phase system.

Unit 2: Electrical Machines

Construction and principle of operation of DC machines - DC generator - EMF equation - Types - DC motor – Types - single phase transformer – Construction and operation – EMF equation - Alternator - three phase induction motor - Construction - Types - single phase induction motor - Construction - Working types.

Unit 3: Measuring Instruments and Electrical Installation

Measuring Instruments: Moving coil and moving iron instruments - dynamometer type wattmeter -Induction type energy meter

Electrical Installation: Components of LT Switchgear - Switch Fuse Unit (SFU) - MCB - ELCB - MCCB - Domestic wiring - accessories - types - staircase wiring - fluorescent tube circuits - Earthing

Unit 4: Electronic Devices

Basic concepts of PN junction diodes - Zener diode - bipolar junction transistor - Unipolar devices - FET,

MOSFET, UJT - Thyristor-SCR and Triac, Photoelectric Devices-Photo diode and Photo transistor

Unit 5: Electronic Circuits

Half wave and full wave rectifier –Transistor as an amplifier –RC- phase shift oscillator - RC integrator

and differentiator circuits - diode clampers and clippers - multivibrators - Schmitt trigger

Text Book(s):

- 1. V.K. Mehta, "Principles of Electrical Engineering and Electronics", S. Chand & Company Ltd, 2012
- 2. Kothari D P and Nagrath I J, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. Mithal G K, Electronic Devices & Circuits, Khanna Publications, 1997

Reference(s):

- 1.T. Thyagarajan, "Fundamentals of Electrical and Electronics Engineering", SciTech publications (Ind.) Pvt. Ltd., 3rd Edition, 2015.
- 2. Muraleedharan K.A, Muthususbramanian R and Salivahanan S, "Basic Electrical, Electronics and Computer Engineering" Tata McGraw Hill,2006.
- 3. Shantha kumar S.R.J, Basic Mechanical Engineering, Third Revised Edition (Reprint 2009), Anuradha Publications, Kumbakonam, 1999.
- 4. Rajput R. K., Basic Mechanical Engineering, Fourth edition, Tata McGraw Hill Publishing Co., New Delhi, 2007.

LIST OF EXPERIEMENTS:

- 1. Verification of Kirchoff's Laws.
- 2. Verification of Mesh and Nodal analysis
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit
- 4. Open circuit characteristics of Separately excited DC Generator
- 5. Draw the characteristic between output power versus efficiency of DC shunt motor
- 6. Verification of turns ratio on single phase transformer
- 7. Study of basic electrical installation components for LT switchgear
- 8. Residential house wiring using fuse, two way switches and lamp
- 9. Wiring layout for Fluorescent lamp
- 10. VI characteristics of PN junction diode
- 11. VI Characteristics of Zener diode
- 12. Construct and demonstrate the Light sensor using Photo Transistor
- 13. Design a diode based Half wave and Full wave rectifier
- 14. Study of Zener diode as voltage regulator

15 Hours

9Hours

9Hours

9Hours

		Credits			
MEC18R151 ENGINEERING GRAPHICS & DESIGN		L	Т	Р	Credit
		3	0	2	3
Pro-roquisite. Nil	Cours	e Catego	ry: Basio	c Enginee	ering
	Cours	e Type: T	Гheory w	ith Pract	ical

15. Study of Clipping & Clamping circuit

Course Objective(s):

This course aims to introduce the concept of graphic communication, develop the drawing skills for communicating concepts, ideas and designs of engineering products, Demonstrate skills in interpreting, and producing engineering drawings accurately and to give exposure to national standards relating to engineering drawing

Course Outcome(s):

After completing this course, the student will be able to:

CO1: Create the projection of points in all quadrants and straight lines

CO2: Construct the projections of planes and solid objects with refer to reference planes

CO3: Illustrate the true shape of truncated solids in both the manual and computerized manner

CO4: Develop surfaces of truncated solids in both the manual and computerized man

CO5: Apply orthographic and isometric projections in both the manual and computerized man

Mapping of Course Outcome(s):

CO/	PO												PSC)	
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2		2												
CO2		3										1			
CO3	2		3		3		3					2			
CO4	1	2			3		3					3			
CO5	3		3		3		3					3			

3- Strong Correlation; 2- Medium Correlation; 1- Low Correlation

Course Topics:

Unit 1: Projection of Points and Straight Lines

Importance of graphics – use of drafting instruments – BIS conventions and specifications – size, layout and folding of drawing sheets - lettering dimensioning and scales - Projection of points, located in all quadrants - projection of straight lines located in the first quadrant, determination of true lengths and true inclinations

Unit 2: Projection of Planes and Solids

Projection of polygonal surface and circular lamina located in first quadrant inclined to one or both reference planes-Projection of solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method

Unit 3: Section of Solids

Section of simple solids like prisms, pyramids, cylinder and cone in vertical position by cutting planes inclined to any one of the reference planes, obtaining true shape of section

Unit 4: Development of Surfaces

Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cones

9 Hours

9 Hours

9 Hours

Unit 5: Orthographic and Isometric Projection

9 Hours

Orthographic principles – missing view - free hand sketching in first angle projection from pictorial views. Principles of isometric projection – isometric view and projections of simple solids, truncated prisms, pyramids, cylinders and cones. Introduction to CAD software – menus and tools – drafting platform demonstration

Practical Modules

- 1. Construction of conic sections using CAD software
- 2. Construction of simple planes using exclusive commands like extend, trim etc.,
- 3. Construction of 3D model solids and sectional views
- 4. Generating 2D orthographic blue prints from 3D part models
- 5. Vectorization of simple building plan and elevation

Text Book(s):

- 1. Basant Aggarwal and C. Aggarwal, Engineering Drawing, McGraw-Hill, 2013.
- 2. N.S. Parthasarathy, Vela Murali, Engineering Drawing, Oxford University Press, 2015.
- 3. K. Venugopal, Engineering Drawing + AutoCAD, New Age; Fifth edition, 2011.

Reference(s):

- 1. Shah, M.B., and Rana, B.C., Engineering Drawing, Pearson 2009
- 2.Natarajan, K.V., A Text Book of Engineering Graphics, 21st Edition, Dhanalakshmi Publishers, Chennai, 2012.
- 3. Paul Richard, Jim Fitzgerald., Introduction to AutoCAD 2017: A Modern Perspective, Pearson, 2016.
- 4. Bhatt, N.D., Engineering Drawing, Charotar publishing House, New Delhi, 53trd Edition, 2014.
- 5. Luzadder and Duff, "Fundamentals of Engineering Drawing", Prentice Hall of India Pvt. Ltd., 2009.
- 6. Venugopal, K., Engineering Graphics, New Age International (P) Limited, 2009.

CCE10	CSE18R171	DD		MAIN						,	Т	Р	Credit
CSEIG	JKI/I	I N	UGNA		GTUP	FROI		SOLVIN	3		1	2	5
Prereq	uisite: 1	VIL					0	Course C	atego	ries: Ba	asic Engi	neerin	g
								Course 7	Гуре: 1	Integra	ted Cours	se	
Course	e Object	ives:											
	To mak	the st	udents t	o under	stand th	le basic	concept	ts of prog	gramm	ing usi	ng C lang	uage, s	syntax and
rules to	be follo	owed w	hile wri	ting a C	c progra	m and l	now to c	compile a	and ex	ecute C	Cprogram	s.	
Course Outcome(s)													
CO1		Understand the basic programming concepts and syntax of C language											
CO2		Solve	e simple	problem	ns usin	g C usii	ng array	s and str	ings.				
CO3		Appl	y modul	lar prog	rammin	ig conce	ept of C	to solve	given	proble	m.		
CO4		Deve	lop effi	cient co	de usin	g memo	ory alloc	cation tec	chniqu	es.			
CO5		Creat	e user d	lefined	data typ	es and	files to a	solve rea	l worl	d probl	ems		
Mappi	ing of Co	ourse C	Outcom	e(s):									
СО	PO1	PO2	D2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1		М											
CO2	М												
CO3	М												

CC	4								М			
CC	5											
Co	urse Topic(s)		•	•	•						
Un	it 1: BASIC	CS OF C	С								9	Hours
Str	ucture of C j	program	n - conce	ept of a	variabl	e-Data	type in (C - Prog	gram St	atement –	Declaration	– Tokens -
Op	erators and e	expressi	ions - T	ype Cor	nversion	n - Inpu	t and ou	tput - C	ontrol	statements	s : Selection	- Iteration
- G	oto statemer	nt - Spe	cial con	trol stat	ement-	-Nester	l loops					
Un	it 2: ARRA	YS AN	D STR	INGS							9	Hours
Int	Introduction - One dimensional and two dimensional arrays – Declaration of arrays - Initializing and											
Ac	Accessing array elements – Strings: One dimensional character arrays - Declaration and String Initialization											
- S	- String Manipulation - Multidimensional Arrays - Arrays of Strings											
Un	Unit 3: FUNCTIONS 9 Hours											
Int	oduction - O	Concept	of func	tion - U	Jsing Fu	unctions	- Call I	oy Valu	e Mech	anisms -V	Vorking with	n Functions
- P	assing Array	ys to Fu	nctions	- Scope	and Ex	ktend - S	Storage	Classes	- Inline	e Functior	ns – Sorting	Using
Fu	nctions : Bul	oble sor	t - Sear	ching : 1	Linear a	and Bin	ary Seai	ch – Re	cursive	Function	s.	
Un	it 4: POINT	TERS									9	Hours
Int	oduction - A	Address	of oper	ands –	Pointer	: Declar	ation ar	nd Initia	lizatior	n - Arrays	and Pointer	s - Pointers
and	l Strings - F	ointer .	Arithme	etic - Po	ointers	to Poin	ters - A	rray of	Pointe	rs - Point	er to Array	- Dynamic
Me	mory Alloca	ation (D	DMA)									
Un	it 5: USER	DEFIN	IED DA	ТА ТҮ	PES A	ND FII	LES				9	Hours
Int	oduction -	Structur	res - De	claratio	n and I	nitializa	tion of	Structur	res - Ai	rrays with	in Structure	- Structure
and	l Pointers - S	Structur	es and F	Functior	ns – Uni	ion - En	umerati	on type	s - Usir	ng Files in	C - Working	g with Text
Fil	es - Working	g with b	inary fil	les								
LI	ST OF EXP	ERIM	ENTS								15 He	ours
1.	Programs u	ising co	ntrol an	d loopii	ng state	ments.						
2.	Programs u	sing 1-	D and 2	-D array	ys.							
3.	Programs u	ising str	ing han	dling fu	nctions				•			
4. 5	Programs u	ising iu	nctions	with va	rious pa	aramete	r passin	g mecna	unisins.			
<i>6</i> .	Programs u	ising roo	ointers a	nd dyna	mic me	emorv a	llocatio	n functio	ons for	1-D and 2	2-Darrays.	
7.	Programs to	o create	user de	fined d	ata like	structu	res and	unions t	o repre	sent real v	world problem	ms
Pro	grams for ci	reating	text file	s to stor	e and n	nanipula	ate data.		Ĩ		•	
Te	xt Book(s):											
1.	1. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", Oxford University Press, 2nd Edition, 2013.											
2.	Byron S. G	ottfried	l, "Progi	rammin	g with (C", Seco	ond Edit	tion, Ta	ta McG	raw Hill,	2006	
Re	ference(s):											
1. 2.	Brian W. K Johnsonba	Lerninglugh R.	han and and Kal	Dennis in M, "	M.Ricl Applica	nie, "Th tions Pi	e C Pro rogramr	grammi ning in	ng lang ANSI (guage", Pe C", Third	earson Educa Edition, Pear	tion,2005. son
3.	E. Balagur	usamy,	"Progra	amming	in AN	SI C", F	ourth E	dition,	Tata M	cGraw Hi	112008.	
	-		-									

			Cred	its		
MEC18R152	ENGINEERING PRACTICE		L	Т	Р	Credit
			3	0	2	3
Pro-roquisito: Nil		Course	Categ	gory: Bas	sic Engin	leering
r re-requisite. Mi		Course	Туре	: Theory	with Pra	ctical

Lectures & videos:

Detailed contents

1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods (**3 lectures**)

2. CNC machining, Additive manufacturing (1 lecture)

- **3.** Fitting operations & power tools (**1 lecture**)
- 4. Carpentry (1 lecture)
- **5.** Plastic moulding, glass cutting (**1 lecture**)
- **6.** Metal casting (**1 lecture**)

7. Welding (arc welding & gas welding), brazing (1 lecture)

Suggested Text/Reference Books:

(i) Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and

publishers private limited, Mumbai.

(ii) Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology",

4th edition, Pearson Education India Edition, 2002.

(iii)Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology – I" Pearson Education, 2008.

(iv) Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998.

(v) Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGrawHill House, 2017.

Course Outcomes

Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.

(ii) Workshop Practice:

- 1. Machine shop (10 hours)
- **2.** Fitting shop (**8 hours**)
- **3.** Carpentry (**6 hours**)
- 4. Welding shop (8 hours (Arc welding 4 hrs + gas welding 4 hrs)
- 5. Casting (8 hours)
- 6. Smithy (6 hours)
- 7. Plastic moulding & Glass Cutting (6 hours)

Examinations could involve the actual fabrication of simple components, utilizing one or more of the

techniques covered above.

Laboratory Outcomes

- Upon completion of this laboratory course, students will be able to fabricate components with their own hands.
- They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.

• By assembling different components, they will be able to produce small devices of their interest.

Б ТТ10Т	FT18R101	DDIN	CIDI F	S OF C	TIENT	CALE	NCINI	FDING		4	Т	Р	Credit		
L I IOL	(101	PKIN	CIPLE	SOFC		CALE	INGIINE	LEKIN	3		1	0	4		
Prerec	quisite:	NIL						Cou	rse Ca	tegories	: Progra	m Core	;		
								Cou	rse Ty	pe: The	ory with	tutorial	t		
Object	tive(s)	To acc	quaint th	nem wit	h the fu	ındamer	ntals of	the appl	ication	of mate	erial and	energy	balances		
		in cher	mical er	ngineeri	ing										
Course	e Outco	tcome(s)													
CO1		To atta	attain basic knowledge about Process calculation												
CO2		To une	b understand material balance calculation for process												
CO3		To une	o understand Energy balance calculation for process												
CO4		To une	derstand	l the flu	id flow	behavi	or and t	ransport	ation.						
CO5		unders	stand th	ermal p	rocessii	ng of fo	ods and	its equi	pment						
Mappi	ing of C	Course C	Outcom	e(s):											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12		
CO1	Μ	М													
CO2															
CO3															
CO4			H												
CO5													M		
Course	e Topic	(s)													

UNIT - I UNITS AND DIMENSIONS, FUNDAMENTAL CALCULATIONS

12 hours

Units and dimensions, Concept of mole and Molecule, Composition of mixtures of Solids, liquids and gases - Composition of mixtures and solutions- Percentage by weight, mole and Volume; normality, molarity, molality, ppm, pH and pKa Buffer Calculations

UNIT - II MATERIAL BALANCE WITH AND WITHOUT CHEMICAL REACTIONS:

12 hours

Material balances in distillation, absorption, extraction, crystallization, drying, mixing and evaporation operations, Material balances involving bypass, recycle and purge.

Principles of stoichiometry, definitions of limiting and excess reactants, fractions and percentage conversion, yield and percentage yield, Selectivity and related problems.

UNIT III ENERGY BALANCE

General energy balance equation for steady and unsteady state processes, Without Chemical Reaction, With Chemical Reaction, Enthalpy calculation procedures, Heat of combustion.

UNIT IV FLUID FLOW THEORY

Properties of fluids: Fluid statics& Dynamics, Newtonian and non-Newtonian liquids, Reynolds number: Laminar flow and turbulent flow, stress in fluid flow, Pressure drop calculation and friction factor –Fluid flow measurements: variable head meter, variable area meter, Paddle flow meter, pitot tube. Forces on submerged bodies -Equation of continuity and motion - Bernoulli•s equation and its applications, influence of temperature on viscosity. Pumps & Its classification, Pipe fittings & valves.

UNIT V THERMAL PROCESSING

12 hours

12 hours

12 hours

Decimal Reduction time (D), Thermal resistance constant, thermal death time (F), Relationship between chemical Kinetics and Thermal processing Parameters: Decimal reduction time, rate constants k and Q10 Thermal resistance constant z, Activation energy Ea and their inter-relationship. Plate heat exchanger, Tubular heat exchanger,

TEXT BOOKS

1. McCabe, W.L., Smith, J.C., Harriott, P., Unit Operations of Chemical Engineering, McGraw-Hill, New York, 7th ed, 2005.

2. Brennan, J. G., Butters, J. R., Cowell, N. D. and Lilly, A. E. Food Engineering Operations, Applied Science, London, 3rd Edition, 1990.

REFERENCE BOOKS

1. S K Ghosal, S K Sanyal, S Datta. "Introduction to Chemical Engineering". Tata Mc Graw-Hill Publishing Company Limited. 2011.

2. Narayanan, K.V. and Lakshmi Kutty. "Stoichiometry and Process Calculations", PHI, 2006.

3. "Chemical Engineering" by Coulson & Richardson. Vol.1 & 2

TT10	2D 201			FOO	וחאחו		FS			L		Т	P	(С
ГПС	0K201			гU	JDADI	DIIIV	E9			3		0	0		3
Preree	quisite:	NIL						Co	urse C	ateg	ories	s: Prog	gram	Core	3
									C	ours	e Ty	pe: Tł	neory		
Objec	tive(s)	To en	nable tl	ne stud	ents to	unders	tand ty	pes and	l chem	ical p	orope	erties o	of		
		prese	ervative	e, emul	sifiers	and ant	tioxida	nts							
Cours	e Outco	ome(s)													
CO1		Appl	ication	s of fo	od addi	tives in	n Food	Industr	У						
CO2		Ident	ify adu	lterant	s in foo	od addi	tives								
CO3		Prese	ervative	e class	and its	limitat	ion in 1	food pro	ocessin	ig inc	lustr	ies			
CO4		Study on colorant and flavor of food additives													
CO5		Laws	s and q	uality s	tandar	ds relat	ed to f	ood add	litives						
Mapp	ing of C	COs an	d POs												
CO															
									-	0	1	5	01	2	33
	POI	PO2	P03	P04	PO5	PO6	PO7	P08	50d	PO1	PO1	PO1	PSC	PSC	PSC
CO1	М														
CO2			М												
CO3										Μ					
CO4			М							Μ					
CO5			М							Μ				Μ	
Cours	e Topic	(s)	•				•								

Unit 1: FOOD ADDITIVES

Food additives definition – Determination of the limit for addition, functions of Acid, Base, Buffer systems, Salts and chelating /sequestering a g e n t s, Low calorie and non-n utritive sweeteners, Polyols.

Unit 2: TYPES OF FOOD ADDITIVES

Types, chemical properties, levels of additions in individual products, toxicity data of Acidulates – Preservatives – Emulsifiers and gums – Antioxidants- Anti-caking agents, thickeners,

Unit 3: PROPERTIESE AND ENZYMES

Types, chemical properties, levels of additions in individual products, toxicity data of Dough conditioners - flour improvers – Humectants –Enzymes, Starches-

Unit 4: COLOURANTS AND FLAVORANTS

Types, chemical properties, levels of additions in individual products, toxicity data of Colourants – Natural and artificial, Flavourants, Flavour enhancers, Fat substitutes and Replacers

Unit 5: NATURAL, SYNTHETIC AGENTS AND LAW

Types, chemical properties, levels of additions in individual products, toxicity data Sweeteners – Natural and synthetic, Chelating agents, anti-browning agents, SWMA, MPO(1977), VCO(1978), AGMARK, BIS, US, Canadian, EU, ISO and Codex Food Standards, Export Quality Control and Inspection act (1963),

Text Book(s):

1. Food additives by Brannen A.L., Davidson P.M., Salminen S. and Thorngate J.H. Second Edition, Revised and Expanded. Marcel dekker Inc. USA, 2002.

Reference Book(s):

 Jim Smith, Lily Hong – Shum. "Food Additives Data Book". John Wiley & Sons. 2nd Edition.2011.

9 Hours

9 Hours

9 Hours

9 Hours

1

 Richard J. Lewis, Sr. "Food Additives Handbook". International Thomson Publication. 1989.

FT18	R251	PR	INCIE	PLES	OF FC)OD I	PROC	ESSIN	G &	I	Ĺ	Т	P	C	Credit
				PF	RESEI	RVAT	ION				3	0	1		3.5
Prereq	uisite:	NIL							Cours	e Ca	tegori	es: Pi	ogran	n Cor	e
									Cours	se Ty	pe: Tl	neory	with F	Practi	cal
Object	ive(s)	To l	Introdu	ice stu	dents a	about	the me	thods o	of proc	essin	g and	preser	rving f	food	to
		prev	vent wa	astage	and lo	sses									
Course	Outco	me(s)													
CO1		Und	lerstan	d the r	needs f	for pre	servati	ion and	mech	anisn	ns of p	reserv	vation		
CO2		Und orga	lerstan anisms	d the i	mporta	ance o	f the p	rocessi	ng and	l forn	nulatio	on bot	tlenec	k	
CO3		App	ly pre	servati	on pri	nciple	s in pro	oduct d	lesign						
CO4		Calculate the efficacy of a heat process and interpret its key parameters (i.e. D-, z-, and F0 - values)													D-, z-
CO5		Enhance the effectiveness of preservation methods and the efficiency of production													
Mappi	ng of C	ourse	Outc	ome(s)):										
CO															
	POI	P02	P03	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	Н		М			L							Н		Н
CO2			Н			Μ	М						L		
CO3	М	М			М	М	Μ						L		М
CO4		L	M L M L M H												
CO5		Н	L		1	Н	Η	L		Μ	Μ			Н	
Course	Topic	(s)								•					

Unit 1: INTRODUCTION:

Sources of food- plant, animal and microbial origin; Different groups of food; properties of foodphysical, mechanical, thermal and sensory; Biochemical changes during processing of foods. Scope and importance of food processing.

Unit 2: LOW TEMPERATURE PROCESSING

Chilling and freezing: Freezing - Phase diagram, ice crystal formation, comparison of freezing and thawing. Freezing methods: air freezing, plate freezing, liquid immersion freezing and cryogenic freezing. Freeze concentration of liquid foods.

Unit 3: HIGH TEMPERATURE PROCESSING

Methods of applying heat to foods-sterilization, Blanching, Pasteurization. Basic concepts in thermal destruction of microorganisms -D, Z, F values. Sterilization- methods and equipments, UHT, Aseptic processing and packaging.

Unit 4: DRYING AND DEHYDRATIONS

Theory and mechanism of drying-water activity and its effect on the keeping quality, sorption isotherms and their use, factors affecting rate of drying, methods of drying of various food productsbatch and continuous drying, spray dryer, fluidized bed dryer, Freeze drying and vacuum drying

Unit 5: PRESERVATION

Introduction to food spoilage; Preservation of foods by use of sugar, salt, chemicals, smoking, pickling, curing, fermentation, baking, extrusion and canning, and Packaging-CAP, MAP. Hurdle technology.

Text Book(s):

1. B. Sivasankar. "Food Processing and Preservation". PHI Learning Private Limited. 2015.

9 Hours

9 Hours

9 Hours

9 Hours

 Fellows, P.J. "Food Processing Technology : Principles and Practice". Wood head Pub. Ltd, 2nd Edition, 2002.

Reference(s):

- 1. M. Shafeiur Rahman (1999). Handbook of Food Preservation, Marcel Dekker, Inc.
- 2. Khetarpaul N. "Food Processing and Preservation". Dya Publishing House, New Delhi. 2005.

ET1QD	0071	FOOD MICROBIOLOGY								L	Т		Р	Cre	edit		
F I IOF	N2/1									3	0		2	2	1		
Pre requ	uisite:	NIL				Course Categories: Program Core											
Соц										urse Type: Integrated Courses							
Course		Recognize and describe the characteristics of important pathogens and spoilage															
Objective (s)		microorganism															
		s in food															
Course Outcome(s)																	
CO1		Explain the interactions between microorganisms and the food environment, and factors influencing their growth and survival															
CO2		Explain the significance and activities of microorganisms in food.															
CO3		Describe the characteristics of food-borne, waterborne and spoilage microorganisms, and methods for their isolation, detection and identification															
CO4		Explain the effects of fermentation in food production and how it influences the Microbiological quality and status of the food product.															
CO5	CO5		Explain why microbiological quality control programmes are necessary in food Production.														
Mappin	ng of C	ourse	Outco	ome(s)	:												
СО																	
	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	P011	P012	PSO1	PSO2	PSO3		
CO1	Н		М			L							Η		Н		
CO2			Н			Μ	М						L				
CO3	М	М			М	Μ	Μ						L		Μ		
CO4		L	М		L	Μ		L	М	Μ			Η				
CO5		Η	L			Н	Η	L		Μ	Μ			Н	1		
Course	Topic	(s)	•	•	•		•	•	•		•	-	•	•			

Unit 1: INTRODUCTION

Introduction, historical developments in the food microbiology and its Significance, Microscope and its types, Microbial growth pattern, Study of microorganisms- Morphology, structure, classifications - bacteria, virus, fungi, yeast and mold, Microbiological Methods of enumeration and isolation of bacteria and fungi.

Unit 2: CONTAMINANTS& SPOILAGE

Sources of contamination, Spoilage of foods-Factors affecting Spoilage, Biochemical changes caused by microorganisms, Contamination and spoilage of foods- Fruits &vegetables, cereals & pulses, milk, sea foods and meat during Handling and processing.

Unit 3: MICROBES IN FOOD FERMENTATION

Importance of microbes in food fermentation, batch, fed batch and continuous fermentation, Homo and hetro-fermentative bacteria, yeast & fungi; Biochemistry of fermentation-pathway involved, Types of fermentation - lactic acid fermentation, alcoholic fermentations, Fermented foods – Sauerkraut, Cheese, Beer, Vinegar, yoghurt, soy products.

9 Hours Microsco

9 Hours

9 Hours Control of microorganisms- physical and chemical agents, Anti-microbial agents- their mechanism of action, HACCP & food safety, Hurdle Technology and its applications. List of Experiments 15 hours 1. Microscope its parts and utility in identification and differentiation of bacteria, yeast and mold. 2. Micrometry and determination of size of deferent different microbes 3. Direct total, viable, and non-viable count of microorganisms in milk. Preparation and sterilization of culture media for microbial counts 4. 5. Simple and differential staining of microorganisms and their examination. 6. Determination of Standard Plate Count (SPC) in natural and processed foods 7. Preparation of different types of plating techniques 8. Isolation of bacteria in food 9. Determination of Standard Plate Count (SPC) in milk 10. Enumeration of yeast and mold in food 11. Microbiological examination of potable water: Total and coliform count. 12. Preparation of yoghurt Text Book(s): 1. Frazier, W.C. and Westh off. "Modern Food Microbiology". Tata McGraw Hill Publishing Co. Ltd., New Delhi, 4 Edition, 2008.

Reference(s):

- 1. Adams M.R. and Moss M.O. "Food Microbiology". New Age International Ltd Publication. 2007.
- 2. Bibek Ray. "Fundamental food microbiology". CRC Press. 3rd Edition. 2005.

FT18R272	FOOD BIOCHEMISTRY	L	Т	Р	Credit						
	FOOD BIOCHEMISTRY	3	0	2	4						
Prerequisi	te: NIL Cou	urse Categories: Program Core Course Type: Integrated Course									
Objective(To understand the chemistry of foods - composition of food, role of each component and their interactions. To study the properties of various food components which affect the quality of food. 										
Course Ou	ome(s)										
CO1	Understand and control the major chemical and biochemical (enzymatic) reactions that influence food quality with emphasis on food industry applications										
CO2	Understand how the properties of different food components and interactions among these components modulate the specific quality attributes of food systems, and to understand the principle that underlies the biochemical/enzymatic techniques used food analysis.										
CO3	Explain the chemistry underlying the properties and reactions of various food components.										
CO4	Understand the need of biochemistry and efficiency of carbohydrates and protein in the industry.										
CO5	To delivers food pigment and their application in food processing										

Factors affecting growth of microorganism in food - intrinsic and extrinsic factors, foodborne Pathogens- Bacterial food borne diseases, Food Borne Viral Pathogens, Food Borne Animal

Unit 4: FOOD BORNE DISEASES

Parasites, Food poisoning, food infection and intoxication.

Unit5: FOOD SPOILAGE CONTROL

Марг	Mapping of Course Outcome(s)														
CO	1	12	3	4	15	90	7	8	60	10	11	12) 1) 2	33
	PC	PC	PC	PC	PC	PC	PC	PC	PC	Ы	Ы	Ы	PSC	PSC	PS(
CO1	Н												L		
CO2	М	L				М							L		
CO3	М	L				М							L		
CO4	М	L				М							L		
CO5	М	L				М							L		
Cour	se To	pics:													

Unit 1: INTRODUCTION

Importance of food, Scope of food chemistry - Introduction to different food groups: their classification and importance -Water -Structure of water molecule, types and properties of water, water activity and its importance

Unit 2: CARBOHYDRATES

9 Hours Carbohydrates -Definition, classification, sources, chemical make-up, properties, nutritional and industrial importance- Proteins - Sources, chemical make-up, properties, nutritional aspects- amino acids, amino essential acids, biological value, PER (Protein Efficiency Ratio), and industrial importance

Unit-3 FATS

Fats -Sources, chemical make-up, properties, nutritional aspects - essential fatty acids, PUFA (Polyunsaturated Fatty Acids) hydrogenation, rancidity and industrial-importance - Deficiency disorders and requirement of differentnutrients

Unit 4: MINERALS & VITAMINS

Minerals and Vitamins -Importance and sources of minerals and vitamins with special emphasis on calcium, iodine, zinc, iron, floride, fat, and minerals soluble and water-soluble vitamins, effect of processing and storage on vitamins- Deficiency disorders and requirement of different vitamins 9 Hours

Unit 5: FOOD PIGMENTS AND ENZYMES

Food Pigments-Importance, types and sources of pigments - their changes during processing and storage- Enzymes -Definition, importance, sources, nomenclature, classification -discuss their application in food processing in brief.

List Of Experiments

- 1. Estimation of reducing, non- reducing, total sugars.
- 2. Estimation of protein by Lowry's method/ Biuret method
- 3. Estimation of fat using soxhlet apparatus.
- 4. Estimation of moisture content in different foods.
- 5. Estimation of carotenoids in spices.
- 6. Estimation of Starch in cereals.
- 7. Determination of pH and Titratable acidity of foods

9 Hours

9 Hours

9 Hours

- 8. Estimation of Ascorbic acid in fruits
- 9. Determination of ash in foods
- 10. Determination of Fiber in foods
- 11. Estimation of enzymatic browning in food
- 12. Estimation of antioxidant(s) / polyphenol(s) in food sample

Textbook(s):

- 1. Belitz, H.D., Grosch .W., Schieberle .P. "Food Chemistry". Springer Publication, 4th Edition, 2009.
- 2. Dulsy Fatima. "Biochemistry". Saras Publication, 2015.

Reference(s):

- 1. John M. deMan. "Principles of Food Chemistry". An Aspen Publication. 1999.
- 2. Owen R.Fennama. "Food Chemistry". Marcel Dekker. 3rd Edition. 1996.

FT18	R202	INSTRUMENTAL METHODS OF									Т		Р	Cro	ed t	
I I I I O	R202		A	3	0		0	3								
Prerea	nisite: N	JII.							Cours	e Cate	gories	Pro	ogran	n Co	re	
Course												e Type: Theory				
Course		Provides students with an opportunity to identify different types of analytical														
Objecti	ve(s)	instruments in their respective laboratories														
Course	Outcon	ne(s)														
CO1		Take professional sampling and sample treatment prior to analysis														
CO2		Calibration of Instrumental methods and troubleshoot														
CO3		Understand and capable of performing basic chemical processes in an														
		analytical laboratory														
CO4		perform measurements on basic analytical instruments (photometers,														
		spectrometers, chromatographs, ion-selective electrodes)														
CO5 Evaluate the result of analysis and identify the compounds pre-										s prese	ent ii	n it.				
Mappir	ng of Co	urse O	outcom	e(s):												
CO										-						
	01	02	03	04	05	06	07	08	60	010	011	012	01	302	303	
	Ч	Ч	Ь	Р	Ь	Р	Р	Ч	Р	P(P(P(P	P	P	
CO1			М													
CO2					М											
CO3			М													
CO4					М											
CO5					М											
Course	Course Topic(s)															
Unit 1: COMPONENTS AND CLASSIFICATIONS OF INSTRUMENTS Classification- Types of optical instruments- Fourier transform measurements, Ca instrumental Methods- precision, validity. Electrical components and Circuits, Sig ratio- Signal-Noise enhancement -General Design-Sources of Radiation-Waveleng Sample containers-Radiation transducers.									Cal Sign ength	9 Ho ibrat al to n sele	ours ion o nois ector	of se s-				
Unit 2:	Unit 2: TRANSMITTANCE AND ABSORBANCE												H0	urs		
Spectrometry: Electromagnetic radiation – electromagnetic spectrum, Interaction of electromagnetic radiation with matter. Spectrophotometer analysis- Measurement of transmittance and Absorbance- Beer's law- Qualitative and quantitative absorption Measurements-Types of spectrophotometers–UV- Visible-IR-Raman Spectroscopy-Principle, instrumentation and applications. Visible spectrometry and Calorimetry – Theory, Instrumentation (Line diagram alone) and applications. Ultra violet spectroscopy – Theory, instrumentation - Single and Double beam, applications. Infra-red spectroscopy – Theory, Fundamental Vibrations, Instrumentation, Applications.

Turbidimetry & Nephlometry.

Unit 3: ATOMIC ABSORPTION & PHOTO IONIZATION MEASUREMENTS 9 Hours

Atomic Absorption and NMR Spectroscopy: AAS - Principle, Instrumentation and applications. NMR spectroscopy – Principle, Instrumentation, Chemical shift and applications. X-ray diffraction - Principle, instrumentation, detectors and applications. X- ray- photo electron spectroscopy(XPS)-Ultravioletphotoelectronspectroscopy(UPS)- Electron impact spectroscopy and auger electron Spectroscopy-Instrumentation Radiation Sources-Energy Analysis-Detectors and auxiliary systems. Flame photometer - Theory, Instrumentation and applications. Polarimetry - specific rotation, optical activity, Principle and instrumentation. Saccharimetery- Analysis of Sugar.

Unit 4: THERMO GRAVIMETRIC AND CONDUCTOMETRY

9 Hours

Thermal methods: thermos balance, derivative thermos gravimetric analysis-Thermogravimetry, Differential thermal analysis, Differential Scanning Calorimetry – Principle, Instrumentation, Applications and difference. Conductance and Potential Measurements: Definitions, conductance measurements, applications, Types, advantages and disadvantages of Conductometric titrations. Potential measurements, pH determination, Potentiometric Titrations. Basic principles of electrophoresis, theory and application of paper and gel.

Unit 5: SIZE EXCLUSION AND IONEXCHANGE CHROMATOGRAPHY 9 Hours Introduction to chromatography- principle, t ypes, applications, models, ideal separation, retention parameters, Van Deemter Equation-Gas chromatography, stationary phases, detectors-Kovats indices- HPLC-reverse phase and normal phase, pumps, columns, detectors- Ion Exchange Chromatography-Size Exclusion Chromatography-Supercritical chromatography- Capillary electrophoresis

Text Book(s):

1. Chatwal, Gurdeep R., and Anand, Sham K., —Instrumentation Methods of Chemical Analysis^{||}, 2nd Edition, Himalaya Publications, Bombay, 2003.

2. Willard, H., Merrit, L.,Instrumental Methods and Analysis, CBS Publishers and Distributors, th

NewDelhi,7 Edition,2004

3. Skoog, Holler and Nieman., Principles of Instrumental Analysis, Thomson Asia Pvt Ltd., Singapore,5th edition, (Reprint)2003

Reference(s):

 $1.\ Chatwal, R.G., An and, K.S., Instrumental Method of Chemical Analysis, Himalaya$

PublishingHouse,Mumbai,5thEdition(Reprint),2006

2. Ewing, G.W., Instrumental Methods of Chemical Analysis, McGraw Hill Company,

NewDelhi,5thEdition,1989

3. Skoog Douglas A., West Donald M., Holler F James, and Crouch Stanley R., —Analytical Chemistry: An Introduction J, 7 th Edition, South-Western, Australia, 2000.

4. Rouessac F., —Chemical Analysis: Modern International Method and Techniquesl, 3rd Edition, Wiley, New Delhi, 1999.

5. Banwell G.C., —Fundamentals of Molecular Spectroscopyl, 2 nd Edition, Tata McGraw-Hill, New Delhi, 1992.

ET19D	202								I	L L	P		Cre	edit	
ГІІОК	205	TEC	CHNO	LOGY	OF D	AIRY	PROI	DUCTS	3	3 0	0			3	
Prerequis	ite: NII								Cou	rse Cat	egories:	Pro	gran	n Co	ore
											Course	Ty	pe:]	Theo	ory
Objective	(s)	1	. To e	enable	the stud	dents to	o under	stand th	he need	d and in	nportanc	e of	dair	У	
		2	. Tok	know tl	ne com	positio	nal and	l techno	ologica	l aspect	s of mil	k			
Course O	utcome	e(s)													
CO1		The s	student	s learn	the tec	chnolog	gy of m	ilk and	its pro	ocessing	method	s			
CO2		The s	student	s gain	knowle	edge ab	out the	e variou	s milk	process	sing equ	ipm	ents		
CO3		Hand	ls-on sl	kills in	manuf	acturin	ig selec	ted dai	ry proo	ducts in	a pilot p	olant	sett	ing	
CO4		An a	pprecia	tion of	f the sa	fety an	d quali	ty facto	ors that	t determ	ine the a	acce	ptab	ility	r
		of th	e dairy	produ	cts by c	consum	ners								
CO5		Abili	ity to a	dapt ne	w tech	nology	and de	evelop o	quality	[,] produc	ts				
Mapping	of Cou	rse Ou	tcome	(s):											
СО										_					
	01	02	03	04	05	06	07	08	60	010	011	012	01	02	03
	Ā	P	Ā	P	Ā	P	Ā	Ā	Ā	PC	P(P(PS	PS	PS
CO1	н		М			T							н		н
CO^2	11													11	
CO_2	М	М	11		м	M	M					-	L		м
CO3	101	T	м		T	M	111	I	М	М		<u> </u>			111
C04			I		L	Ц	ц		141	M	М	-	11	Ц	
	ni a(a)	п													
Course 1	opic(s)														

Unit 1: INTRODUCTION

9 Hours

Introduction, Milk – Types, composition, nutritive value, factors affecting composition, physicochemical properties- Color, Flavour, Specific Gravity, Boiling point, Freezing point, Refractive Index, Acidity and pH, Viscosity, Surface Tension, System of pricing of milk.

Unit 2: PRIMARY PROCESSES OF MILK

Raw milk collection – cooling and transportation – milk reception –

Platform tests- Quality and Quantity tests at reception- contaminants, Smell, Appearance, Temperature, Sediment, Acidity, Lactometer Reading, Fat, Solids-Not-Fat, Dye Reduction Test: MBRT test, Resazurin tests, Mastitis test -Processing of milk, filtration, clarification, Bactofugation of milk, Cooling and storage of raw milk, Bulk transportation technologies – carbon dioxide impregnation. Milk Standardization, cream separation, Homogenization, Milk Pasteurization & heat treatment of milk-Milk Sterilization

Unit 3: MANUFACTURE OF DAIRY PRODUCTS

FluidMilkProcessing,Milk product Processing – cream, Butter, Khoa, Paneer, Ice-
cream, condensed milk & evaporated milk.Judging & grading of milk & its products.Dried milk prod
ucts -Buttermilk powder, Whey Powder, IceCream mixPowder, Infant milk food, WMP& SMP.Manufacturing of Fermented
cheddar cheese,Introduction, Manufacturing process, packaging, storage, defects and their prevention
Unit 4: BYPRODUCTS UTILIZATION9Hours

Introduction, Classification & composition of byproducts, Principles & methods of Utilization –whey utilization, Applications of enzymes in dairy industry

9Hours

Unit 5: CLEANING AND SANITATION OF DAIRY EQUIPMENTS

9 Hours

Dairy plant sanitization – Basic principles, Cleaning in place-types and design of CIP System, agents and methods – bottle and can washing- Rotary type and Straight through type, cleaning of tankers and silos – Energy use in Dairy plant - sources and cost of energy, Control of energy losses and Energy conservation.

Text book(s):

1. SukumarDe, Outlines of Dairy Technology, OxfordUniversity Press, 2nd edition, 1994.

- 2. JamesN.Warner, Principles of Dairy Processing, Wiley Eastern Ltd,3rdedition1998.
- 3. Tufail Ahmed, —Dairy Plant Engineering and Managementl, Kitab Mahal, New Delhi, 2012.

REFERENCS

- 1. Y.H.Hui. "Dairy Science and Technology Handbook-". Wiley Publication. 2005.
- 2. Jane Selia dos Reis Coimbra, Jose A. Teixeira, —Engineering Aspects of Milk and Dairy Productsl, CRC Press, New York, 2010.
- 3. Robinson R.K., —Modern Dairy Technology: Advances in Milk Productsl, Volume 2, Springer London Ltd., 2012.

]	BAKEI	RY AN		L		Т		Р		Crea	lit	
FT181	R281		CO	NFEC	TIONA	RY									
			I	ABOR	ATOR	Υ		0		0		3		2	
Co requi	site: NI	L					С	Course (Categ	gories	s: Pro	gran	n Co	ore	
							(Course	Туре	: Lał	oorate	ory C	Cour	se	
Course (Objectiv	ve(s)													
To learn	the form	ulation	and pr	ocessin	g of bal	kery and	d confe	ectionar	y pro	ducts	5				
Course (Outcom	e(s)													
CO1		Adap	t the sta	undards	and reg	gulation	s follov	wed in l	baker	y and	l conf	ectio	onar	У	
		indus	try												
CO2		Grasp	basic l	knowled	dge abo	ut food	ingred	ients ar	d its	used	in ba	kery	pro	ducts	\$
CO3		Utilize bakery unit processing machinery effectively													
CO4		Hand	le confe	ectionar	y produ	ucts and	l check	quality	in pr	oces	s line				
CO5		Adap	t variou	is proce	ess flow	line in	confec	tionary	and t	oaker	y pro	duct	s		
Mapping	g of Cou	irse ou	tcome(s	s):											
CO															
	01	02	03	04	05	06	07	08	60	D10	011	D12	501	302	503
	Р	Р	Р	Р	Р	Р	Р	Р	Р	P(P(P($\mathbf{P}_{\mathbf{C}}^{\mathbf{C}}$	Pc	P
CO1														М	
CO^2		М	M M												
CO_2		101								м				IVI	
C04										M				М	$\left - \right $
C04 C05										11/1				M	$\left - \right $
Evnorim	onto											15	Llor	IVI	\square
Experim	ents									43	1101	113			

- 2. Preparation of bun
- 3. Preparation of puffs and pizza
- 4. Preparation of doughnuts
- 5. Preparation of Hard dough biscuits&soft dough biscuits
- 6. Preparation of multigrain biscuits&high fiber biscuits
- 7. Preparation of multigrain cookies, Butter Cookies and Plain cookies
- 8. Preparation of Sponge cake, Chocolate and Fudge Cake
- 9. Preparation of cake [Eggless]
- 10. Preparation of Muffins
- 11. Preparation of hard boiled candies
- 12. Preparation of chocolates

Text Book(s):

1. Beckette, Industrial Chocolate Manufacture, Wiley-blackwellpublisher, 3rdedition, 2009

2. FaridiFaubion, Dough rheology and baked product texture, CBS publications, 1997

Reference Book(s):

1. Pyler, Baking science and Technology, SoslandPubCo, 2009

ГТ10	D772	UNI	T OPE	RATIO	ONS IN	N FOOD		L	Т	Р			Cre	edit	edit	
Г I 10	N 2/J		PF	ROCES	SING			3	1	2			-	5		
Pre re	quisite:	FT18	R101						Cours	e Catego	ories	: Pro	ogran	n Cor	e	
									Cou	rse Typ	e: In	tegr	ated (Cours	se	
Course	e	This	course	aims at	making	g the stu	dents 1	unders	stand the	fundame	ntal	prin	ciple	s and		
Object	tive(s):	conce	epts of I	heat tra	nsfer a	nd mech	anical	opera	tion in bi	ochemic	al pr	oces	ses.			
Course	e Outco	ome(s)														
CO1		Princ	iples ar	nd mech	nanism	of heat t	ransfe	r								
CO2		Fund	amenta	ls of co	nventio	onal heat	transf	ers								
CO3		Basic	e princij	ples of	heat ex	changer	desigr	l								
CO4		Conc	epts of	drying	and the	ermal pro	ocessir	ng of t	piological	materia	ls					
Mapping of Course(s):																
CO																
										0	1	2	1	5	33	
	P01	PO2	P03	P04	P05	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSC	PSC	PSC	
CO1	Н		М			L							Н		Н	
CO2			Н			М	М						L			
CO3	М	М			М	М	Μ						L		Μ	
CO4		L M L M L M H														
Course	e Topic	(s)														
UNIT	OPER A	ATION	NS													
UNIT-I SIZE REDUCTION AND SEPARATION 9Ho												9Ho	urs			

Size reduction principles, Need for size reduction and Laws: Kicks law, rittingers law and Bonds law, Size reduction operation: Compression & Attrition, Impact, Cutting & Grinding -various grinding equipments-Sieving Principles and equipments.

UNIT-II AGITATION AND MIXING

Types of impellers and blades, Power for agitation, Agitation of liquids - Gas-liquid systems –Gassolid, and liquid-solid, emulsification suspensions, Agitator scale up,

UNIT-III FILTRATION & SEDIMENTATION

Constant pressure and constant volume filtration, batch filtration, continuous filtration – Industrial filtration equipments: Plate & frame, centrifugal, rotary drum filter, vacuum leaf filter, pressure filter, gravity filter- batch sedimentation test - Centrifugation, Flocculation.

UNIT-IV EVAPORATORS

Steam economy, capacity, and boiling point elevation. Types of evaporators - Open pan evaporator, horizontal tube evaporator, vertical tube evaporator, long tube evaporator, forced circulation evaporator, Film type evaporators – working principle and applications. Multiple effect evaporators: Feed forward and feed backward operations.

UNIT-V DISTILLATION

Vapour-liquid equilibria, Raoult's law and deviations from ideality. Methods of distillation: Simple distillation- calculations using Rayleigh equation, Flash vaporization, steam distillation. Design of multistage tray towers for binary systems using McCabe-Thiele method.

List Of Experiments

- 1. Experiments on size reduction of fibrous food
- 2. Experiments on pulse milling
- 3. Experiments on grinding machine to determine the new surface created.
- 4. Experiments on pneumatic separation
- 5. Experiment on sieve analysis
- 6. Experiment on drying
- 7. Experiment on mixing index
- 8. Experiment on simple distillation
- 9. Determination of Work Index in Size reduction operation.
- 10. Experiment on batch sedimentation
- 11. Experiment on filtration
- 12. Experiment on Open pan evaporator

Text Book(s):

- 1. McCabe, W. L., Smith, J.C., Harriott, P., Unit Operations of Chemical Engineering, McGraw-Hill, NewYork,7th edition., 2005.
- 2. Brennan ,J. G., Butters, J.R., Cowell, N.D. and Lilly, A.E., Food Engineering Operations, Applied Science, London, Edition, 1990. 3rd

Reference(s):

- 1. Coulson, J.M., Richardson, J.F., Backhurst J.R. and Harker J.M., Coulson and Richardson's Chemical Engineering, Volume-I, Butterworth Heinemann, Oxford, NewYork,5th Edition,2002
- 2. David, M.Himmel blau, Basic Principles and Calculations in Chemical Engineering, Prentice-Hall of India, New Delhi, 7thEdition, 2004.

ET18D301	FOOD PACKAGING	L	Τ	Р	Credit
F I IONSUI	TECHNOLOGY	3	0	0	3
Prerequisite:	FT18R251		С	ourse C	ategories: Program Core
					Course Type: Theory

9Hours

9Hours

9Hours

9Hours

Cours	se	To	To study about the functions of packaging along with the influence of various factors on food												
Objec	ctive	fact	ors or	n food	l										
(s)															
Cours	se Outc	ome(s)												
CO1		Des	cribe	the fu	nctio	ns of p	packa	ging r	nateri	als an	d its i	mport	ance in	food I	ndustry
CO2		Exp	lain tl	ne pro	pertie	es, typ	es an	d appl	icatio	ns of	plasti	cs and	papers	s in pac	kaging
CO3		Exp	lain tl	ne pro	pertie	es, typ	es and	d appl	licatio	ns of	glass	and m	etals ir	n packa	ging
CO4		Ada	pt and	d utili	ze pac	ckagir	ng ma	terials	s for r	ight a	pplica	tion ir	n Food	Indust	ry
CO5		Exp Pac	Explain the laws, regulations and environmental standards pertaining to food Packaging												
Mapping of Course Outcome(s):															
CO															
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2	PSO3
CO1	Н		М			L							Н		
CO2			Н			М	М						L		
CO3	М	М			Μ	М	М						L		
CO4		L M L M L M M H													
CO5		Η	L			Н	Н	L		Μ	М			Н	
Cours	se Topi	c(s)	•								•			•	

Unit 1: INTRODUCTION TO FOOD PACKAGING

Packaging terminology –definition. Functions of Food Package, Packaging environment. Food marketing and role of packaging. Characteristics of food stuff that influences packaging selection - Packaged product quality and shelf life. Current status in food packaging in India.

Unit 2: PLASTIC AND PAPER PACKAGING

Types of plastics used in packaging – PE, PP, PET, PVC, EVOH, PVA. Secondary conversion techniques – film, extrusion and thermal lamination. Printing of plastic films and rigid plastic containers. Food contact and barrier properties. Sealability and closure. Application of plastics for food packaging.

Paper and Paperboard Packaging: Properties of paper and paperboard. Paper and paperboard manufacture - SBB, SUB, FBB, and WLC. Package types – paper, pouches, sachets, cartons, boxes, tubes, tubs, containers, drums, tapes, cushion, cap liners and diaphragm. Application of paper and paperboards for food packaging.

Unit 3: GLAS & METAL PACKAGING

Glass - Composition, Glass bottle design and specification, Glass container manufacture – melting, forming, surface treatments, Closure selection. Application of glass containers in food industries. Metal cans: Raw materials for can making – steel, aluminium. Can making processes - three piece welded cans, DWI, DRD cans – end making processes – coating. Film laminates and inks, metal packages – corrosion and sulphur staining. Latest developments in can making, Application of metal containers in food industries

Unit-4 TRENTS IN PACKAGING OF FRESH AND PROCESSED FOODS 9 hours

Special packaging methods- TETRA Packs, modified atmosphere packaging, Inner gas & vacuum packaging, Carbonation, Edible Packaging, Biodegradable packages, shrink wrapping, retort pouches, nano packaging, antimicrobial packaging, self-heating and cooling cans. Convenient packages-blister pack, stand up and zip lock pouch.

9 Hours

9 Hours

filling machines – Aseptic system, form and fill (volumetric and gravimetric), bottling machines. Form Fill Seal (FFS) and multilayer aseptic packaging machines. Packaging of Horticulture products, Carbonated beverages and dairy products – UHT milk and Cheese.

Unit-5 LAWS, REGULATIONS AND ENVIRONMENTAL ISSUES IN PACKAGING 9 Hours

Packaging Laws and Regulations, Safety aspects of packaging materials; sources of toxic materials and migration of toxins into food materials; Packaging material residues in food products; Environmental & Economic issues, recycling and water disposal.

Text Book(s):

1. Richard Coles and Mark J. Kirwan, —Food and Beverage Packaging Technologyl, 2nd Edition, Blackwell Publishing Asia Pty Ltd, CRC press, USA, 2011.

2. Robertson Gordon L., —Food Packaging: Principles and Practice, 3rd Edition, Marcel Dekker Inc, USA, 2012.

Reference(s):

 Han Jung H., —Innovations in Food Packaging, 2 nd Edition, Academic Press, USA 2013.
 Dong Sun Lee, Kit L. Yam and Luciano Piergiovanni, —Food Packaging Science and Technology, CRC press, USA, 2008.

3. Otto G . Piringer and A.L. Baner, —Plastic Packaging Materials for Foodl, 1st Edition, Wiley VCH, Germany, 2008.

4. Ahvenainen, R. "Novel Food Packaging Techniques". CRC Press. 2003.

Coles, R., McDowell, D. and Kirwan, M.J. "Food Packaging Technology". CRC Press.2003.

	FOOD ENGINEERING LABORATORYLTPCredit0021											
LABORATORY	0		0	2	1							
Prerequisite: NIL	Cours	se Cat	egories:	Program	m Core							
	Cour	se Typ	be: Labo	oratory C	Jourse							
and machinery	ng of vario	ous 100	a engine	eering oj	peration							
Course Outcome(s)												
CO1 Ability to describe the construction and	operating	princi	ples of f	food and								
beverage processing, handling and	l packagin	g syste	ms usin	g engine	eering							
terminology												
CO2 Effects of drying rate in foods and its in	npact											
CO3 Designing of freezers and preservation	of food by	refrig	eration									
CO4 Physical and rheological properties of f	ood and its	s chang	ges duri	ng proce	essing							
CO5 Heat and Mass transfer in food process	ing											
Mapping of Course Outcome(s):												
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7	PO8	PO9	PO10	PO11	PO12							
CO1 M M												
CO2 M												
CO3 M												
CO5 M	M											
Experiments				45	Hours							
1. Determination of drying rate of given food mat	erials				liouis							
3. Experiments on extrusion cooking	•••••											
4. Experiments on microwave cooking												
5. Experiments on freezing of foods – freeze thav	v stability											
6. Experiments on determination of physical prop	erties of fo	oods										
7. Experiments on rheological properties of foods												
8. Experiments on thermal conductivity of materials	5 oda											
10 Experiments on determination of hardness of f	oods											
11.Experiments on tear strength of packaging ma	erials											
Text Book(s):	Text Book(s):											
1. Nuri N. Mohsenin: Physical Properties of Plant and Animal Materials Gordon and Reach												
Science Publishers (1970)		1			1.D1							
2. Nurl N. Monsenin: Thermal Properties of Food & A Science Publishers (1970)	gricultura	i matei	Tals Go	rdon and	Reach							
Reference Book(s):												
1. M.A.Rao and S.S.H.Rizvi: Engineering Properties (of Foods M	fercel]	Dekker	inc. Nev	v York							
2. M.J.Lewis: Physical Properties of Foods and Food	Processing	g Syste	ems Wo	odhead								
Publishing Cambridge, UK (1990) 3 Shafiur Rehman: Food Properties Hand Book CRC	Press Inc	New Y	ork (19	95)								

			FO	DD S	AFET	Y		L	Т		P		Cre	dit	
FT18R37	71	R	EGUI	LATI	ONS	AND	-	•	0		•				
		Q	UAL	TY C	CONT	ROL		3	U		2		4	ŀ	
Pre requis	ite:	FT18	8R20	1					C	ourse	Categ	ories: 1	Program	m Core	•
										Co	urse T	'ype: I	ntegrat	ed Cou	ırse
Course		To l	learn a	about	qualit	y man	nagen	nent i	n foo	d prod	uction	chain.			
Objective	(s):														
Course Ou	utco	me(s)												
CO1		Des	cribe	about	physi	ical, cl	hemi	cal co	ntam	inants	in foo	ls			
CO2		Des	cribe	about	food	safety	' syst	em							
CO3		Des	cribe	interr	ation	al fooc	d law	s and	stand	lards					
CO4		Des	cribe	natio	nal foo	od law	vs and	l stan	dards						
CO5		Des	cribe	food	labelli	ing reg	gulati	ons							
Mapping	of C	ourse	e Out	come	(s):										
СО															
01		02	03	04	05	90	07	08	60	01	01	01	SO	SO	SO
Ч		Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Ч
CO1 H			L			H		L					L	L	
CO2			Μ		Μ	M		M		M	H			H	
CO3		T				M		H		M					
CO4			14			H		H		M				M	
CO5		M	Μ			H		М		Н				М	
Course 10	opic(<u>s)</u>													
			~~~~~				~								
Unit 1: IN	Unit 1: INTRODUCTION TO QUALITY CONTROL														
Principles	Principles of food safety and quality, food safety system, Introduction, Sources of Contamination,														
Control m	Control methods . quality attributes of food- Nutritional, Microbial, Sensory, total quality														
manageme	nt, C	JHP,	GMP	, 										0 TT -	
Unit 2: FC	JUD :+ N	<b>JAC</b>	EIY	IVIAI	NAG	LIVIEN	N I 7 Mai	20.00-	nont T	Duinain	laa Ea	od low		ש HOU	ГS
	ny N	141148 00000	Food	n sys Safet	tv mai	zuani nagem	ents	svste	m	meip	ю, го	ou law	s — ПР	iccr,	

#### Unit 3: INTERNATIONAL FOOD LAWS AND REGUALTIONS

9 Hours

Structure, organization and practical operation of WTO, WHO, FAO, CAC (Codex Alimantarious Commission), ICGFI.

#### **Unit 4: NATIONAL FOOD LAWS AND REGUALTIONS**

9 Hours

Structure, organization and practical operation of BIS, AGMARK, PFA, FSSAI.

#### **Unit 5: LABELLING REGULATIONS**

9 Hours.

Need for labelling, limitations of labelling- safety issues, labelling for irradiated foods, genetically modified foods, nutritional labelling, health claims

## List of Experiments

#### **15 Hours**

- 1. Qualitative tests for hydrogenated fats, butter, and ghee.
- 2. Quality inspection of various food stuffs- cereals, pulses, spices and condiments etc.
- 3. Estimation of sulphur dioxide in foods
- 4. Estimation of chromatographic estimation of colour.
- 5. Analysis of edible common salt for moisture content, MIW and total chlorides.
- 6. Determination of peroxide value, saponification value, acid value in oils
- 7. Estimation of benzoic acid/ sorbic acid in foods.
- 8. Detection of adulteration in food products
- 9. Detection of microorganism in food processing equipments using swab test
- 10. Sensitivity tests (Threshold/Dilution) to measure individual ability for sensory analysis
- 11. Assessment of quality of wheat flour sedimentation value, water absorption, alcohol acidity, gluten content.
- 12. Assessment of analysis of water used in food industry Alkalinity, acidity, PH, hardness.

#### TextBook(s):

- 1.S.Ranganna. "HandBook of Anlysis and Quality Control for Fruit and Vegetables Products". Tata McGraw –Hill. 2nd Edition.1986.
- 2. Manoranjan Kalia. "Food Quality Management". Agrotech Publishing Academy. 2nd Edition. 2014.

#### **Reference Book(s):**

- 1. Taxmann's. "Guide to the Food Safety and Standards Act 2006". Allied Services Pvt. Lt. 2006.
- 2. Rajesh Mehta and J. George Food Safety Regulation Concerns and Trade. Published by Macmillan India Ltd., New Delhi. 2005.

	INSTRUMENTATION AND PROCESS	L	Т	Р	Credit									
FT18R351	CONTROL	3	0	1	3.5									
Prerequisite: N	VIL Cour	se Categ	g <b>ories:</b> F	rogram	Core									
	Course Type	e: Theory	with Pr	actical (	Component									
Course	1. To study about the basic knowledge of instrumer	nts												
<b>Objective</b> (s)	2. To enable hands-on environment that is crucial for developing students													
-	understanding of theoretical concept													
Course Outcor	ne(s)													
CO1	Understand the principle, Construction and operati	on of inst	truments	5										
CO2	Control instruments and its function to give accura	te output	s											
CO3	Control processing instruments in food industry													
CO4	Give Logical reasoning and interpret results with s	tandard v	alues											
CO5	Troubleshoot instruments to maintain accuracy													

Mappi	Mapping of Course Outcome(s):													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1					М									
CO2					Μ									
CO3					Μ									
CO4								М						
CO5	CO5													
Course	Course Topic(s)													

#### **Unit 1: INTRODUCTION**

Introduction of process variables, static and dynamic characteristic of instruments and their General classification. Elements of measuring system and their function, principles, construction and operation of instruments for the measurements, transmission, control/ indication/recording of process variables like pressure, flow, level, humidity and composition. Principles of transducers: electro pneumatic, pneumatic, electrical and multi pressure.

#### Practical: Flow measurement, Level Measurement

#### **Unit 2: CONSTRUCTION AND CHARACTERISTICS OF FINAL CONTROL ELEMENTS** 9 Hours

Proportional, integral, PD, PID controllers, pneumatic control valve, principles and construction of pneumatic and electronic controllers.

#### Practical: PID controller, Control Valve Characteristics

#### Unit 3: PROCESS INSTRUMENT AT ION DIAGRAMS AND SYMBOLS 9 Hours

Process instrumentation for process equipments such as distillation column, heat exchangers, fluid storage vessel. Dynamic behavior of first order, second order and two or more first order systems in series.

#### Practical: MAT Lab Exercise for I& II order system

#### Unit 4: LAPLACE TRANSFORM

Laplace Transform- Linear open loop system, first and second order system and their Transient response. Interacting and non-interacting system. Transportation lag, linear closed loop system, block diagram of closed loop transfer function, controllers, transient response of closed loop systems.

Practical: Interacting system level control, Non interacting system level control

#### Unit 5: STABILITY CONCEPT AND INTRODUCTION TO FREQUENCY RESPONSE

#### 9 Hours

9 Hours

Stability concept Routh stability criterion, relative stability, huwitz Stability criterion, Nyquist's criterion. Root locus technique, introduction to frequency response, Bode diagrams, Bode stability criterion, gain and phase margins.

#### Practical: Stability analysis using MAT Lab – Root Locus – Bode diagram

#### **Text Book(s):**

1. Coughnowr, D.R., Process Systems Analysis and Control, McGraw Hill, New York,

3rd Edition, 2013

2. George Stephanopolous, Chemical Process Control, Prentice-Hall of India Pvt-Ltd., NewDelhi,1990

#### **Reference**(s):

- 1. Doeblin Ernest, Measurement Systems, Mc GrawHill, New York, 6th edition 2017
- 2. C.A. Smith and A.B. Corripio, Principles and Practice of Automatic Process Control, John Wiley and Sons, New York, 3rd Edition, 2005.
- 3. Luyben, M.L., Luyben, W. L., Essentials of Process Control, McGraw Hill, New York, 1997.

ГТ10	D277		ПЕ	ат а <b>л</b>		SC TI	DANCE	T D		L	Т		Р	Credit		
F 1 10	K3/2		пе			135 I F	KAINSI	LK		3	1		2	5		
Prereq	uisite: 1	FT18F	R101							Course	e Cat	tegori	es: Prog	gram Core		
										Cour	se T	'ype: I	ntegrate	ed Course		
Object	ive(s)	To in	ntroduc	e a bas	sic stud	ly of th	e phen	omeno	n of he	at and n	nass	transfe	er			
		To d	evelop	metho	dologi	es for s	olving	a wide	variet	y of pra	ctica	l engir	neering			
		prob	lems.													
Course	Outco	me(s)														
CO1		Basi	c Heat	& mas	s Trans	sfer me	chanis	m								
CO2		Heat	Heat Transfer by conduction in solid for steady state condition and convection													
CO3		Heat	Heat Transfer in closed, conduit, and on external surface													
CO4		To u	ndersta	and the	basics	of dry	ing									
CO5		Diffu	isive n	nass tra	nsfer											
Mappi	ng of C	ourse	Outco	me(s):												
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO11	PO12	2		
CO1	М	Μ														
CO2																
CO3																
CO4																
CO5			M M													
Course	• Topic(	s)														

#### **UNIT 1: INTRODUCTION**

Introduction to various modes of heat transfer, Fourier's law of heat conduction, effect of temperature on thermal conductivity, convection-free & forced, Laws of Radiation. Introduction to mass transfer operation & its application in food industries.

#### **UNIT 2: CONDUCTION AND CONVECTION**

Steady-state conduction, compound resistances in series, heat flow through a cylinder, and critical radius of insulation in pipes. Heat flux, average temperature of fluid stream, overall heat transfer coefficient, LMTD, individual heat transfer coefficients, relationship between individual and overall heat transfer coefficients. Application of dimensional analysis for convection, heat transfer to fluids

#### 9 Hours

#### exchanges, total condensers. Double pipe exchanger, single-pass 1-1 exchanger, 1-2 parallel-counter flow exchanger, 2-4 exchanger, heat transfer coefficients in shell-and-tube exchanger, coefficients for cross flow, correction of LMTD foe cross flow. Condensers: shell-and-tube condensers, kettle-type boilers, Calculation of number of tubes & Heat transfer area in heat exchangers.

## **UNIT 4: DRYING**

Drying-Equilibrium; classification of dryers; batch drying -Mechanism and time of cross through circulation drying, continuous dryers - material & energy balance, determination of length of rotary dryer using rate concept- tray dryer-spray drying

without phase change: heat transfer coefficient calculation for natural and forced convection, heat transfer to fluids with phase change: heat transfer from condensing vapours, drop-wise and film-type

Typical heat exchange equipment, counter current and parallel-current flows, enthalpy balances in: heat

## **UNIT 5: DIFFUSION**

Molecular diffusion, steady state molecular diffusion in fluids at rest and in laminar flow, molecular diffusion in gases-steady state diffusion: of A through non-diffusing B, equimolal counter diffusion, in multicomponent mixtures. Molecular diffusion in liquids-steady state diffusion: of A through nondiffusing B, equimolal counter diffusion. Effect of temperature and pressure on diffusivity.

## **Experiments**

- 1. Separation factors of the experiments with distillation.
- 2. Separation factors of the experiments with vapour liquid equilibrium.
- 3. Separation factors of the experiments with liquid-liquid extraction.

condensation, heat transfer coefficients calculation for film-type condensation.

**UNIT 3: HEAT EXCHANGING EQUIPMENTS** 

- 4. Separation factors of the experiments with solid–liquid extraction.
- 5. Experiment on Shell & tube heat exchanger for Surface area & Heat transfer coefficient determination
- 6. Studies on Bubble cap/tray/fractional column.
- 7. Studies on Humidification/Dehumidification columns.
- 8. Studies on crystallization
- 9. Experiment on adsorption
- 10. Experiment on
- 11. Diffusivity measurement
- 12. Experiment on Atmospheric batch drying.

## **TEXT BOOKS**

1. Warren L. Mccabe, Julian C. Smith and peter Harriott, "Unit Operations of Chemical Engineering", 7th Edition., McGraw Hill International Edition, New York 2014.

2. Donald Q. Kern, "Process Heat Transfer", Tata McGraw Hill Book Co., New Delhi, 1997

3. Robert E. Treybal, "Mass-Transfer Operations", 3rd Edition., McGraw Hill International Edition, Singapore, 1980

## **REFERENCE BOOKS**

1. Coulson J.M., Richardson J.F., Backhurst J.R. and Harker J.M., "Coulson & Richardson's Chemical Engineering", Vol. I, 6th Edition., Butter worth Heinemann, Oxford,

#### **15 Hours**

#### 9 Hours

L Т Р С **INSTRUMENTAL METHODS** FT18R382 **OF ANALYSIS LABORATORY** 0 0 2 1 **Course Categories:** Program Core **Prerequisite:** Nil Course Type: Laboratory Provides students with an opportunity to identify different types of analytical **Objective(s)** instruments in their respective laborotaries **Course Outcome(s)** CO1 Proficiency in professional sampling and sample treatment prior to analysis CO₂ Capability of treatment and evaluation of the results of analysis CO3 Understanding and capability of performing basic chemical processes in an analytical laboratory CO₄ Ability to handle complex Instruments to identify adulterants in Food CO5 Ability to identify Trace elements in food using chromatography techniques. Mapping of COs and POs CO PO2 PO1 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 CO1 Μ CO2 Μ CO3 Μ CO4 Μ CO5 Μ **Course Topic(s) List of Experiments** 45 Hours 1. Precision and validity in an experiment using absorptionspectroscopy 2. Validating Lambert-Beer's law using KMnO4 3. Finding the molar absorbtivity and stoichiometry of the Fe (1, 10 phenanthroline) 3 using absorption spectrometry 4. Estimation of suspended particles using nephlometry/turbidimetry 5. Limits of detection using aluminium alizarin complex 6. Chromatography analysis using TLC 7. Chromatography analysis using columnchromatography 8. Estimation of suspended solids and dissolvedoxygen

- 9. Estimation of BOD
- 10. Estimation of COD
- 11. Gas chromatography analysis
- 12. Estimating color of food using spectrophotometer
- 13. Use of electrophoresis in determination of protein
- 14. Use of flame photometer in estimation of trace metals like sodium and potassium

#### Text Book(s):

1. Chatwal, Gurdeep R., and Anand, Sham K., —Instrumentation Methods of Chemical Analysis^{||}, 2nd Edition, Himalaya Publications, Bombay, 2003.

 Willard, H., Merrit, L.,Instrumental Methods and Analysis, CBS Publishers and Distributors, th
 NewDelhi,7 Edition,2004
 Skoog, Holler and Nieman., Principles of Instrumental Analysis, Thomson Asia Pvt Ltd., Singapore,5th edition, (Reprint)2003

#### **Reference**(s):

 $1.\ Chatwal, R.G., An and, K.S., Instrumental Method of Chemical Analysis, Himalaya$ 

PublishingHouse,Mumbai,5thEdition(Reprint),2006

ГТ10	D <i>1</i> 01	EM	ERGI	NG TI	ECHN	OLOG	IES IN	FOOI	)	L	Т	P		Cre	dit
Г I 10	K4V1		PI	ROCE	SS EN	GINEE	ERING			3	0	0		3	
Prerec	quisite:	FT171	R251					(	Course	e Cate	egorie	s: Pr	ogra	ım Co	ore
		1							(	Cours	е Тур	e: Tł	neor	У	
Cours	e	To er	hable th	ne stude	ent to u	ndersta	ınd:								
Object	tive(s)	Eme	rging /	alterna	tive te	chnolog	gies app	plied to	food p	proces	sing				
		Rela	tive ad	vantage	es / dis	advanta	ages ov	er exist	ing tec	chnolo	gies				
		Ecor	nomics	and co	mmerc	ializati	on of n	ewer te	chnolo	ogies					
Cours	e Outco	ome(s)													
CO1		High	pressu	re proc	essing	of food	ls and i	mpact of	on nutr	ition a	and m	icrob	es		
CO2		Diffe	rent no	n therr	nal pro	cessing	of foo	d and it	s appl	icatio	n in fo	od p	roce	ssing	<b>r</b>
CO3		Nove	Novel non thermal methods for sterilization of food												
CO4		To u	ndersta	nd the	basic h	urdle te	chnolo	gy, me	chanis	m and	its ac	tion	in fo	ood	
CO5		Freez	e conc	entratio	on and	its effe	ct on fo	ood							
Mappi	ing of C	Course	Outco	me(s):											
CO															
	$\overline{\mathbf{O}}$	22	)3	4	)5	90	77	38	60	10	11	12	01	02	03
	P(	P(	P(	P(	P(	P(	P(	P(	P(	ЪС	PO	PC	$\mathbf{PS}$	PS	PS
CO1		М	Μ		Η	L					L	Μ			Η
CO2		Μ	Μ		Η	L					L	Μ			Η
CO3			Μ		Η	L					L	Μ			Η
CO4			Μ		Н	L					L	Μ			Η
CO5			М		Η	L					L	Μ			Η
I		1	1								1				

#### Unit 1: HIGH PRESSURE PROCESSING [HPP] OF FOODS

Introduction, principles, use of high pressure to improve food safety and stability. Effects of high pressure on food quality, Applications of high pressure. HPP of Salads/Ready Meals – effects on microorganisms, enzyme activity, texture and nutrients.

#### **Unit 2: NON THERMAL PROCESS**

9 Hours

Non thermal methods- its applications - in sterilization of foods and packaging materials –effects on food quality- effects on microorganisms, enzyme activity, texture and nutrients. Insight on technologies like osmotic dehydration, ohmic heating. Application of Radiofrequency, microwave, Infrared, Pulsed electric field, Ultrasonic waves, Pulsed light, Pulsed X rays and Oscillating magnetic field.

#### **Unit 3: NOVEL METHOD**

Food irradiation - advantages and applications. - Super critical fluid extraction and separation -Aseptic processing in foods - extrusion cooking - equipment.

#### **Unit 4: HURDLE TECHNOLOGY**

Basics of hurdle technology - Mechanism, Application to foods - Newer Chemical and Biochemical hurdles- organic acids - Plant derived antimicrobials - Antimicrobial enzymes bacteriocins - chitin / chitosan (only one representative example for each group of chemical and biochemical hurdle).

#### **Unit 5: LOW THERMAL PROCESSING**

Freeze drying (lyophilisation) – Frozen Foods- Freeze concentration - Cryogenic Grinding – Principle -- Equipment - Effect on foods -

#### **Textbook(s):**

- 1. Da-Wen Sun,"Emerging Technologies for Food Processing", Academic press/ Elsiever, London, UK, 2005.
- 2. Leistner L. and Gould G. Hurdle Technologies Combination treatments for food Stability safety and quality, Kluwer Academics / Plenum Publishers, New York (2002)

#### **Reference Book(s):**

- 1. Da Wen Sun, "Thermal Food Processing: New Technologies and Quality Issues, 2nd Edition, CRC Press/Taylor & Francis, Boca Raton, Florida, USA, 2012.
- 2. Gustavo V.Barbosa-Canovas, Maria S.Tapia and M.Pilar Cano, "Novel Food Processing Technologies". CRC Press, 2004.

#### 9 Hours

#### 9 Hours

#### PROFESSIONAL ELECTIVES PROCESS ENGINEERING

FT19	2D307		SUG	ARCA	NE AN	ND BE	VERA	GE		L	Т	P	(	Cred	lit
F I I C	OK302			TE	CHNC	DLOG	Y			3	0	0		3	
Preree	quisite:	NIL						Course	Cate	gories:	Profess	ional	Eleo	ctive	;
Ohiaa	tivo(a)	Tog	nin kno	wloday	on ma	ohinor	v and n	<b>r</b> 00000	involu	od in a	Cours	$\frac{e \mathbf{I} \mathbf{y}}{e \mathbf{x}}$	pe:	i nec	ory
Objec	uve(s)	and f	erment	ation p	rocess	involv	ed in m	aking t	bevera	ge proc	ess		mon	Jgy	
Cours	e Outco	ome(s)		<u> </u>				0		<u>5 r</u>					
CO1		Prepr	rocessii	ng suga	ircane	for best	t result								
CO2		Utiliz	ze clari	fiers ar	nd prese	ervativ	es to m	aintain	pH an	d color	of juice	e			
CO3		Adap	ot filtrat	tion and	d evapo	orative	techniq	ues for	qualit	ty outpu	ıt				
CO4		Setup	p proce	ss flow	line w	ith qua	lity sta	ndards	in sug	ar manı	ufacturi	ng un	it		
CO5		Proce	ess ferr	nented	bevera	ges wit	h alcoh	ol and	witho	ut alcoł	nol				
Mapp	ing of C	Course	Outco	me(s):											
СО										_					
	01	02	03	04	05	06	07	08	60	010	011	012	01	02	303
	Ч	Р	Р	Р	Р	Р	Р	Р	Р	PC	PC	P(	PS	PS	PS
CO1	М				I						T		T		
CO2	M				L	М					L		L		
CO3	М				L	М					L		L		
CO4		М			L		М			М	L		L		
CO5			М		L					М		L	L		Μ
Cours	e Topic	(S)													
Un:+ 1	. DDF 1		FCCIN	CODE	ъ а тъ	ONGA	ND II	ICE E	VTD		NT		0	Hav	
Sugara	cane-Co	nstitue	nts-Ha	GOFE rvestin	<b>MAIN</b> o indice	ons A es –Cai	ne cutti	ng-Mai	nual N	Aechan	ical-		9	ΠΟ	115
Transp	ortation	-loadi	ng-Unl	oading	-Canec	onvey	or-Wash	ning-Sh	nredde	rs-Type	es. Cru	shing	-Crı	ıshe	rs-
Types,	, C	rushin	g	efficie	ncy-Ex	tractio	nofjuice	e-meth	ods,Ac	cumula	ators-ty	pes-M	Iace	ratic	on-
Theory	yofcaneo	diffusiv	vity-dif	ferente	liffuser	-ring d	iffuser-	weighi	ng of j	juice.					
Unit 2	: CLAI		ATION		. 1 1				с тт				9 E	lour	S
Clarifi and gu	cation-r	nethod	s-clarii ce clari	ying ag	gent-bl	eaching	g agent-	-Kole o $-CO_{2}P_{1}$	of pH, 1 Ocano	non-sug 1 its im	gars, col	llo1ds > Filt	rati	n	
of mu	1. 1.	une jun		incario		ingoica	incjuice	-0021	205411	1 113 111	portane	c. 1 m	Iath	511	
Unit 3	: FILT	ERAT	ION A	ND EV	VAPO	RATIO	DN						9 I	Hou	rs
Filter	types –f	ilter pr	ess, rot	ary vao	cuum fi	ilter-Ra	pi-Floc	proces	ss. Filt	er cake	washin	g.			
Evapo	ration-E	vapora	ation ra	te-type	s of ev	aporate	ors used	l in can	e suga	r indus	try-Clea	aning	of		
evapoi	ators	D DD	ODUC	TION									0	Uar	MC
Entrai	nment	separat	or-met	hods-F	Roiling	in V	acuum	pan-F	ooting	magn	na-Mass	secuit	e.	1100 4. B	ns C-
Mothe	r liqu	or, N	Iolasse	s A,	B,C I	Molass	es ex	haustib	oility.C	rystalli	zation-S	Super	satu	ratic	on-
Crysta	llizersty	pe-bat	ch and	contin	ious. C	entrifu	ge-type	s. Dryi	ngofs	sugar –c	conveyo	rs for	sug	ar- ł	oy-
produc	et from s	sugar n	nills -u	tilizatio	on.										

# Unit 5: TECHNOLOGY OF BEVERAGES MANUFACTURE (ALCOHOLIC AND NON ALCOHOLIC) 9 Hours

Manufacture of beer, wine and champagne - Quality characteristics, Manufacture of distilled beverages including whisky, brandy, rum and gin – Quality aspects Manufacture of carbonated beverages – quality aspects – Manufacture of sugar-free, sugarless, carbonated beverages.

#### **Text Book(s):**

1.RamBehari Lal and Mathur.1972., Hand book of cane sugar technology. Oxford and IBH Publishing company NewDelhi

2.W.V.Cruees, Technology of wine making food science, Agrobios Publishers, 2009

#### **Reference**(s):

- 1. Baikow, V.E. 1967. Manufacturing and refining of raw cane sugar. Elsevier Publishing Company, New York
- 2. Girdhilal and Siddappa, Preservation of Fruits and Vegetables, Kalyani Publishers 2001.

ET1C	D202	TF	CHN				лат т		2	L	Т	Р		Cred	it
ГПС	JNJUJ	IL	CHIN	JLUG		AINI		rooda	,	3	0	0		3	
Prere	quisite:	NIL					(	Course	Cate	gorie	s: Pro	fessiona	l Elect	ive	
										(	Course	e Type:	Theory	/	
Objec	tive(s)	To u	nderst	and ne	ed and	1 impo	rtance	of live	stocl	c and j	ooultr	y indust	ry		
		To s	tudy st	ructur	e, con	npositi	on and	l nutriti	onal	quality	of ar	imal pr	oducts		
Cours	se Outco	ome(s	)												
CO1		Goo	d knov	vledge	about	physi	o-cher	nical pr	opert	ies of	milk	and its b	y prod	ucts	
CO2		Kno	wledge	e regar	ding p	process	sing m	ethods a	and it	s imp	ortanc	e in mil	k based	1	
		prod	ucts												
CO3		Abil	ity to (	Optimi	ize Teo	chnolo	gy for	proces	sing o	of mil	c and	its bypr	oducts		
CO4	CO4Knowledge regarding handling and transportation of meat and FishCO5Ability to adopt preservation techniques and Packaging for poultry products														
CO4       Knowledge regarding handling and transportation of meat and Fish         CO5       Ability to adopt preservation techniques and Packaging for poultry products															
Mapp	CO5Ability to adopt preservation techniques and Packaging for poultry productsMapping of Course Outcome(s):														
CO															
	1	02	)3	4	5	90	5	8	60	10	<del>,</del>	11 2	D1	02	33
	PC	PC	PC	РС	PC	PC	PC	PC	РС	PO			PS(	PS(	PS(
CO1	М					L	L								
CO2	Μ	М	L		L	М	М	М					L		
CO3	М		М			М					Μ		Μ	Μ	
CO4		L	М			М	L	М					Μ	Μ	М
CO5	L					Μ	L	Μ			Μ		Μ	Μ	Μ
Cours	se Topio	c(s)													
Unit1	• імтр		TIO	N									0 H/	nire	
Unit	• 11 V I K	ODU		٦									7 11(	Juis	

Meat composition from different sources; muscle structure and compositions; post-mortem muscle chemistry; Factors influencing the quality of meat. Meat Microbiology and safety.

#### **Unit 2: SLAUGHTERING AND STUNNING METHODS**

Ante mortem inspection and handling, Stunning types, Slaughtering types. Steps in slaughtering (Pig, Cattle, Sheep/Goat) and dressing.Slaughter house operations-Hoisting rail and traveling pulley system; .Modern abattoirs, typical layout and features, Offal handling and inspection. Grading of meat- retail and whole sale cuts. Operational factors affecting meat quality. Byproduct utilization .Meat plant hygiene – GMP and HACCP.

#### **Unit 3: PROCESSING OF MEAT**

Processing and preservation of meat: Chilling and freezing of meat, Canning, cooking, drying, pickling, curing and smoking; prepared meat products like sausages, kebabs, etc.. Intermediate moisture and dried meat products, Packaging of meat products.

#### **Unit 4: POULTRY PRODUCTS**

Poultry: methods of slaughtering, Slaughtering equipment and operations, dressing, handling, storage and preservation of poultry meat . Spoilage and its control. Freezing and chilling of poultry. Whole sale and retail cuts.

Eggs: Composition , handling , candeling, washing, coating, packaging and storage. Egg processing (Egg powder manufacturing, pasteurization, etc., Spoilage and its control.

### **Unit 5: FISH PRODUCTS**

Commercially important marine products from India, Proximate composition, Post mortem changes in fish muscle . Handling, Preservation and transportation of fish. Indices of fish quality, Microbiology of fish and shell fish , Freezing of fish and shell fish.

## Text Book(s):

1. Legarreta,I.G. "Handbook of Poultry Science and Technology" (Volume I and Volume II), John Wiley & Sons, Inc., Hoboken, 2010 .

#### **Reference Book(s):**

Mead M. "Poultry Meat Processing and Quality". Woodhead Publ. 2004.
 Pearson A. M. & Gillett T. A. "Processed Meat". 2nd Ed. Charmer & H. II. (1997)

2. Pearson, A.M. & Gillett, T.A. "Processed Meat". 3rd Ed. Chapman & Hall, 2006.

ET10D204	OILS AND FATS PROCESSING	L	Т	Р	С							
Г I I8К3V4	TECHNOLOGY	3	0	0	3							
Pre requisite:	Nil Course Categ	<b>gories:</b> P	rofession	al Elec	ctive							
	Course Type: Theory											
<b>Objective</b> (s)	To enable the students to understand											
	1. Physical and chemical properties of fats and oils	8										
	2. Extraction and refining processes											
	3. Packaging, quality standards of fats and oils.											
<b>Course Outco</b>	ome(s)											

#### 9 Hours

## 9 Hours

9 Hours

CO1		Chec	k the p	hysical	and cl	nemical	l proper	rty of o	ils and	fats						
CO2		Utiliz	ze diffe	rent m	ethods	of oil e	extraction	on for e	edible j	purpos	se					
CO3		Setur	proce	ss flow	line fo	or oil ex	xtractio	n								
CO4		Diffe	rent typ	pes of f	fat and	oil pro	ducts									
CO5		Stora	ge and	packag	ging m	aterials	used in	1 oil								
Mapp	ing of C	Course	Outco	me(s):												
СО																
	0	02	03 04 05 00 00 00 00 00 00 00 00 00 00 00 00													
	P	Pe	P	Pe	Pe	Pe	P	Ь	Pe	Ы	P(	P(	PS	PS	PS	
														ļ		
CO1	М	L				L							L		1	
CO2			М		L						L		М			
CO3	L				L	L					L		М			
CO4	L					L					L				Η	
CO5	L		Μ			L					L		М			
Cours	e Topic	<b>(S)</b>														

#### **Unit 1: PHYSICAL AND CHEMICAL PROPERTIES OF OIL**

Sources; chemical composition; physical and chemical characteristics; functional and Nutritional importance of dietary oils and fats. Post-harvest and ling storage and processing of oilseeds for directs use and consumption, importance of oil seeds processing in India.

#### **Unit 2: EXTRACTION METHODS**

Extractionofoilbymechanicalexpellingandsolventextractionandobtainingdeoiledcakes Suitable for edible purposes.Processing of other plant sources of edible oils and fats like coconut,cotton seed,rice bran,maze germ,etc.

#### **Unit 3: REFINING OF OILS**

Degumming, refining, bleaching, hydrogenation, fractional crystalization, interesterification, glycerolysis, molecular distillation, plasticizing and tempering Clarification, neutralization (alkali refining), bleaching, deodorization techniques/processes. Blending of oils. Chemical adjuncts-lecithins, monoglycerides and derivatives, propylene glycolesters, polyglycoesters, Hydrogenation, fractionation, winterzation, inter-esterificationetc. for obtaining tailor-made fats and oils.

#### **Unit 4: FAT AND OIL PRODUCTS**

Production of butteroil lard,tallow,Margarine,Cocoabutter equivalents,shortenings,low Fat spreads, peanut butteretc. Speciality fats and designer lipids for nutrition and dietetics, especially by biotechnology.Mayonnaise and salad dressings.Confectionerycoatings. Immitation dairy products- peanut butter and vegetable ghee.

#### **Unit 5: PACKAGING OF EDIBLE OILS**

Packing and storage of fats and oils,cocoabutter,fat substitutes.Changes during storage of oil – rancidity – causes – atmospheric oxidation and enzyme action – free fatty acid – colour-non edible oils – castor oil, linseed oil, vegetable waxes – production and processing.

9 Hours

9 Hours

## 9 Hours

#### 9 Hours

#### **Text Book(s):**

1. Bailey, Industrial Oil and Fat Products, JohnWileyandSons.6thedition2005 **Reference(s):** 

- 1. M.M. Chakrabarty, Chemistry and Technology of Oils & Fats, Applied Publisher, 2003.
- 2. Wolf Hamm, Richard J. Hamilton, Gijs Calliauw, Edible Oil Processing, 2nd Edition Wiley-Blackwell, 2013

FT19	RR 305		FRI	JITS A	ND V	EGET	ABLE	es		L	Т	Р		С		
<b>F I I C</b>	511,505		PRO	CESSI	ING T	ECHN	OLO	GY		3	0	0		3		
Pre re	equisite	: FT18	3R251				Cou	rse Cat	egorie	es: Profe	ession	al Ele	ctive			
		1							Cou	rse Typ	e: Th	eory				
Objec	ctive(s)	1	. Tou	inderst	and the	e proce	ssing t	echniqu	ies inv	olved fi	uit an	d veg	etable	•		
			tech	nology	/. 	1		<b>1</b>		11			.1			
		2	. Toh	ave sn	nall sca	ale com	imercia	al practi	ices as	well as	to illu	istrate	e the			
C	0.4		fund	lament	al sciei	itific p	rincipl	es invo	lved in	proces	sing.					
Cours	se Outco	ome(s)	)													
COI		Anal	yze the	nutrit	ional a	spects	in fruit	and ve	getable	es						
CO2		prov	ide solı	ition fo	or spoil	lage of	fruit a	nd vege	tables	while h	nandlii	ng and	d stor	age.		
CO3		Set u	up new processing flow line for new products with quality standards quality assurance policy in process flow meeting the standards for effective													
CO4		set q outpu	tup new processing flow line for new products with quality standards quality assurance policy in process flow meeting the standards for effective put													
CO5		set u	p proce	essing f	flow lin	ne with	qualit	y standa	ards fo	or choco	late a	nd spi	ces			
Mapp	oing of (	Course	e Outco	ome(s)	:											
CO																
	01	32	33	<u>)</u> 4	)5	96	27	<u>)8</u>	60	10	011	12	01	02	03	
	P(	P(	P(	P(	P(	PC	P(	P(	P(	PO	РО	Ю	PS	PS	PS	
CO1	М	М				L	Μ						Μ			
CO2		L	Μ		L	L				Μ					Η	
CO3		М	Н							Μ			Μ		Μ	
CO4		М	Μ		L					Μ	Μ		Μ			
CO5		Μ				М		Μ		Μ	Μ			Μ	Н	
Cours	se Topio	c(s)														

#### **Unit 1: INTRODUCTION**

#### 9 Hours

9 Hours

Indian and global scenario on production and processing of fruits and Vegetable. Pre-processing: Fresh fruits and vegetables – Handling, grading, cleaning, pretreatments, transportation, pre cooling, chilling, modified atmosphere packaging, Controlled atmosphere storage, packaging, transportation, quality assurance.

#### **Unit 2: FREEZING OF FRUITS AND VEGETABLES**

Freezing of Fruits and Vegetables - Different freezing methods and equipments, problems associated with specific fruits and vegetables.

#### **Unit 3: DEHYDRATION OF FRUITS AND VEGETABLES**

Dehydration – different methods of drying including sun, tray, cabinet, drum, spray, vacuum, tunnel, spray, low temperature drying process, process calculations ,osmotic dehydration and other modern methods, choice of suitable methods, preserving the colour, flavour and nutrient content of the products.

#### Unit 4: CANNING, JUICES & CONCENTRATES

Different unit operations involved in fruit and vegetable Pulp/juice extraction, concentration, Bulk aseptic packaging of fruit and vegetable pulps, juices and concentrates; aseptic packaging of fruit drinks, juices and other products. Fruit Juice / pulp/ Nectar/Drinks, concentrates – General and specific processing, different packing including aseptic.

#### Unit 5: FRUIT AND VEGETABLE PRODUCTS & STANDARDS

Ready to eat vegetable products, Jams/Marmalades, Squashes/cordials, Ketchup/sauces, Chutneys, Fruit Bar, Soup powders, Candied Fruits, Natural colors, Fruit and Vegetable Fibres - specific processing, different packing including aseptic, Product specifications and standards; food regulations with respect to fruit and vegetable products.

#### Text Book(s):

1. Wim Jongen. "Fruit and Vegetable Processing". Woodhead Publishing. 2002.

#### **Reference**(s):

- 1. RonB.H. Wills., John Golding. "Advances in Postharvest Fruit and Vegetable Technology".CRC Press.2015.
- 2. Sueli Rodrigues, Fabiano Andre NArciso Ferandes. "Advances in Fruit Processing Technologies". CRC Press, 2012.

ГТ10	D204	J	<b>FECHN</b>	NOLO	GY OI	FFLA	VORS	AND		L	Т	]	P	Cred	it
ГПС	<b>SK3U0</b>			C	OLOR	ANTS				3	0	(	)	3	
Prereq	uisite: F	T18R2	201					Cours	e Cate	gories	: Profe	ession	al El	ective	
										Co	urse T	ype: '	Theo	ry	
Objec	tive(s)	To en pigm	nable th ents	e stude	ent to u	ndersta	and bas	ic cher	nistry &	& tech	nology	v of fla	avou	rs and	
Cours	e Outco	ome(s)													
CO1		Unde	erstand	basics	food fl	avors a	nd colo	ours							
CO2		To u	ndersta	nd flav	or com	pound	used ir	n food i	ndustr	у					
CO3		To de	develop chemical sensors and receptors												
CO4		To de	evelop	method	ls for s	tabiliza	tion of	natura	l color	ants					
Mapp	ing of C	Course	Outco	me(s):											
CO															
	01	02	33	<b>)</b> 4	<b>D5</b>	9C	70	<b>3</b> 8	6C	010	011	012	01	02	03
	P(	P(	P(	P(	P(	P(	P(	P(	P(	PC	РС	PC	PS	PS	PS
<b>G</b> 01															
COI	Μ	Μ					-	Н				Μ			
CO2			М				L						Μ		
CO3	Μ					L				L				М	
CO4		Μ				L					Μ	Μ			

#### 9 Hours

9 Hours

CO5	М	L			L	L						М			
Cours	e Topio	c(s)													
Unit 1	I: INTR	RODU(	CTION											9 Ho	urs
Proble	ems in fl	lavour	researc	h – cla	ssifica	tion of	food fla	avours;	chemi	cal con	mpoun	ds res	spons	sible	
forflay	our. Re	ecent tr	ends in	flavor	s and c	colorant	s.								
Unit 2	2: FLAV	VOUR	COMI	POUN	DS									9 Ho	urs
Chem	ical con	npound	classes	s and th	heir fla	vour re	sponse	s; flavo	ur dev	elopm	ent du	ring b	ioge	nesis,	
flavou	r develo	opment	during	food p	process	sing; us	e of bio	otechno	logy to	devel	lop flav	vours			
Unit 3	3: TASI	ГЕ & F	FLAVO	R PE	RCEP	TION								<b>9 Ho</b>	urs
Anatomy of the chemical senses; neural development of the chemical senses; receptor mechanism neural coding; the control of eating. Taste maskers-Taste modifiers, flavor Enhancers													ıs,		
neural coding; the control of eating, Taste maskers-Taste modifiers, flavor Enhancers															
neural coding; the control of eating, Taste maskers-Taste modifiers, flavor EnhancersUnit 4: COLOR AND FLAVOUR ANALYSIS9 H														9 Ho	urs
Subjec	ctive ver	rsus Ot	ojective	metho	ds of a	analysis	; psych	iophysi	cs and	sensor	ry eval	uation	n;		
Instru	mental a	analysis	s; samp	le hand	iling a	ind artif	acts; da	ata hano	aling						
Unit 5	COL	ORAN	TS											<b>9 Ho</b>	urs
Natura	al and cl	hemica	l colors	s, Natu	ral col	or synth	nesis, e	xtractio	n and j	preserv	vation	methe	ods, f	factors	\$
affecti	ng colo	r stabil	ity. Che	emical	synthe	esis of f	ood co	lors and	i health	n aspeo	cts				
Text I	Book(s)	:													
1. Fish	ner, Car	olyn "F	Food Fl	avours	Biol	ogy and	l Chem	istry".	Royal S	Societ	y of Cl	nemis	try, 1	997	
2. Ash	urst, Ph	nilip R.	"Food	Flavor	ings".	3rd Ed	ition. A	spen P	ublicat	ion, I	999.				
Refer	ence(s):			~									_		
1. Rei	neccius	, Gary	"Flavo	r Chen	nistry	and Te	chnolog	gy". 2n	d Editi	ion. Ta	aylor &	¢ Fra	ncis,	. 2006.	. 2.

Hofman, Thomas, Chi-Tang-Ho and Wilhelm Pickenhagen "Challenges in Taste Chemistry and Biology". ACS Publications, 2003.

FT10D210	FOOD PLANT SAFETY AND HAZARDS IN	L	Т	Р	Credit									
F I 18K310	FOOD INDUSTRY	3	0	0	3									
Pre requisite:	FT18R271 Course Cat	tegories	: Professi	onal E	lective									
		Cours	se Type: '	Theory	ý									
Course	To study about waste management in food industry	у.												
<b>Objective</b> (s)	To Study about the safety regulations undertaken i	n food i	ndustry.											
Course Outco	me(s) Identify the source of contamination in process line													
CO1	Identify the source of contamination in process line													
CO2	Use quality tools for effective quality assurance													
CO3	Implement and maintain HACCP principles for qu	ality ass	urance											
CO4	Identify food safety issues due to additives, toxic s	ubstanc	es and pre	eservat	ives									
CO5	Identify food allergy, food intolerance and contam	inants ir	n processe	ed food	1									
Mapping of C	Course Outcome(s):													

СО	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	POII	P012	PSO1	PSO2	PSO3
CO1		H	, ,		, ,	L	, ,	M		, ,	M	, ,	, ,	M	, ,
CO2	L	М	М			М		Н		М				М	
CO3		Н	М		L	Н		Н	Μ	L	М	Μ		Н	
CO4		Μ	Μ		L	Н	М	М						Μ	
CO5		L	Н		L	Н	М	Н						Μ	
Cours	e Topio	c(s)													

#### **Unit 1: FOODSAFETY**

Principles of food safety-Historical developments-indicators of risk-risk analysis-risk management-causes of major failure- clothing and personal hygiene-source of contamination-test for food safety.

#### **Unit 2: QUALITY CONTROL ANDFOOD LABELING**

Introduction to quality control-definition. Aspects of quality-Quality control tools. Quality controlchart-Qualityfactorsinfood-Nutritionallabeling-Specification-Rulesand Regulationsneed for food plant sanitation—cleaning and cleaners-Water supply-Good Manufacturing Practice.

#### **Unit 3: HAZARDANALYSIS-HACCP**

HACCP-History definition-preliminary task -principles-hazard analysis-recordkeeping -HACCPimplementationandmaintenance.Generalprincipleofmicrobialrisk-assessment -hazarddetermination-HACCPworksheet.CriticalControlPoint-identificationofcritical points in the process- Methods by which obstacles can be overcome.

#### **Unit 4: METAL CONTAMINANTS AND ADDITIVES**

Metal contaminants-Sources of health hazard of metallic contaminants-Assessment of food safety-Generalandacutetoxicity-Mutagenicityandcarcinogenicity.Additives(Intention - direct)-Preservatives-antioxidants, sweeteners, flavours, colours, vitamins, stabilizers- indirectadditivesorganicresides-inorganicresiduesandcontaminants.

#### **Unit 5: FOOD ALLERGY**

Food allergy, food intolerance, contaminants of processed foods, solvent residue, Contaminants of smokedfoods. Cleaner food industry-fruit and vegetable processing, seafood processing, brewing and wine processing.

#### **TextBook(s):**

- 1. Michael M Cramer., Food plant sanitation. CRC Press, 2016
- 2. Tatiana Koutchma., Food Plant safety: UV Applications for food and nonfood surfaces. Elsevier, 2014

#### **Reference**(s):

- 1. Y.H.Hui. Plant sanitation for food processing and food service., CRC Press, 2014
- 2. Sanjay Banerjee., Industrial hazards and plant safety., CRC Press, 2002

9 Hours

#### 9 Hours

9 Hours

#### 9 Hours

ET1C	20402	CDI						пист	2	L	Т		P	Cre	dit	
FIIC	DK4U2	SPI	ICES A	IND PI			N PRO	DUCI	>	3	0		0	3	•	
Pre r	equisite	: Nil						Course	Categ	ories	Profe	ession	al E	lectiv	e	
							Cou	rse Typ	e: The	ory w	ith Pra	actica	l Co	mpor	ient	
Objec	tive(s)	To er	nable th	ne stude	ent to u	indersta	and									
		1. Th	ie impo	rtance	and dif	ferent	basic u	nit oper	ations	in pro	ocessir	ng of	spice	2S		
		2. Pr	ocessin	g meth	ods of	plantat	tion cro	ps.								
		3. Ide	entifyin	ig the q	luality	aspects	s of pla	ntation	crops a	and sp	ices					
Cours	e Outco	ome(s)														
CO1		To u	ndersta	nd abo	ut Coff	èe, its	process	sing tech	nnique	s and	coffee	e prod	lucts	•		
CO2		To le	arn the	differe	ent type	es of te	a, its m	anufact	uring t	techni	ques a	nd qu	ıality	/		
		parar	neters													
CO3		To le	arn Cocoa, its processing and chocolate manufacturing technology													
CO4		Tala	arn Cocoa, its processing and chocolate manufacturing technology													
CO5		ТОК	now the	e proce	ssing a	nd che	mistry	or majo	r and i	IIIIIOI	spices					
Mapp	ing of C	Course	Outco	me(s):												
CO																
	01	5	33	4	5	90	5	8	60	10	11	12	<b>D</b> 1	$\overline{2}$	33	
	PC	PC	PC	PC	PC	PC	PC	PC	PC	PO	PO	Ю	PSC	PS(	PSC	
CO1	Μ	L				L	М						L			
CO2		L	Μ			L	Μ								L	
CO3	L		Μ			L	М				L		L		L	
CO4	Н	М	L			L	М				L				Μ	
CO5	Н	М	L			L	Μ				L					
Cours	e Topic	(s)	•	•	•	•		· · ·								

#### **Unit1: CHEMISTRY AND TECHNOLOGY OF COFFEE**

# Coffee – Occurrence – chemical constituents – harvesting – fermentation of coffee beans – changes taking place during fermentation – drying – roasting – Process flow sheet for the manufacture of coffee powder – Instant coffee, technology – Chicory chemistry - Quality grading of coffee

#### Unit 2: TEA – CHEMISTRY AND TECHNOLOGY

Occurrence – chemistry of constituents – harvesting – types of tea – green, oolong and ctc – Chemistry and technology of CTC tea – Manufacturing process – Green tea manufacture – Instant tea manufacture – Grading of tea

#### Unit 3: CHEMISTRY AND TECHNOLOGY OF COCOA AND COCOA PRODUCTS 9 Hours

Occurrence – Chemistry of the cocoa bean – changes taking place during fermentation of cocoa bean – Processing of cocoa bean – cocoa powder – cocoa liquor manufacture

#### 9 Hours

Chocolates – Types – Chemistry and technology of chocolate manufacture – Quality control of chocolates

#### Unit 4: CHEMISTRY AND TECHNOLOGY OF MAJOR SPICES9 Hours

Pepper, Cardamom, ginger and turmeric – Oleoresins and essential oils – Method of manufacture – Chemistry of the volatiles –Enzymatic synthesis of flavour identicals - Quality control

#### Unit 5: CHEMISTRY AND TECHNOLOGY OF MINOR SPICES

9 Hours

Cumin, Coriander, Cinnamon, fenugreek, Garlic, Clove and Vanilla - Oleoresins and essential oils – Method of manufacture – Chemistry of the volatiles – Quality control Present trends in synthesis of volatiles – micro-organisms, plant suspension cultures

#### **Text Book(s):**

- 1. Minor spices and condiments : crop management and post harvest technology., J.S.Purthi, ICAR Publication, Ist edition 2001
- 2. J.S.Purthi, Ist edition., Major spices of india crop management and post harvest technology. ICAR Publication.2003

#### **Reference Book(s):**

1. Handbook on Spices, National Institute of Industrial Research (NIIR) Board, Asia Pacific Business Press Inc., New Delhi 2004.

- 2. Kenji hirasa and mitsuo takemasam., Spice science and technology, CRC Press, 1998
- 3. Minifie Bernard W., Chocolate, Cocoa and Confectionery Technology, III Edition,

Aspen Publication, 1999.

ET10	2D 402	Μ	ILLIN	G TEC	CHNO	LOGY	FOR	FOOD	)	L	Т		P	Cre	dit
FIIC	<b>5K4</b> 03			$\mathbf{N}$	IATEF	RIALS				3	0		0	3	\$
								Cour	se Cat	egorie	s: Pro	fessi	onal	Elect	tive
Pre re	quisite:	FT18F	R273							Cours	se Typ	pe: 7	Theor	ry	
Objec	tive(s)	On su	uccessf	ul com	pletion	of the	subject	t, stude	ents wil	l get ex	rposur	e ab	out		
_		Proce	essing o	of cerea	als, pul	ses and	storag	e of ce	reals						
Cours	e Outco	ome(s)													
CO1		Unde	erstand	the pos	st harve	est prac	tices a	nd loss	es of fo	ood gra	ins				
CO2		Adap	t the right post harvest practice for wheat												
CO3		Unde	erstand	physic	ochem	ical pro	perties	of rice	and by	yprodu	cts fro	om it			
CO4		Deve	lopmer	nt of sn	acks fr	om mil	llets								
CO5		Deve	lopmer	nt of sv	veets a	nd savo	ory base	ed prod	ucts fro	om pul	ses				
Mapp	ing of C	Course	Outco	me(s):											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO	Р	Р	PS	Р
										0	11	0	S	O2	S
												1	Ο		0
												2	1		3
CO1	Н	М	L			L	Η			L			Μ		

CO2		Μ	М	L	L	Н		L	М	1	Λ	
CO3	М		Μ	L		Η		L	М	1	Λ	
CO4	М		М	L		Η		L	Μ	1	Λ	
CO5			М	L		Н		L	М	1	Λ	
C	- T	(-)										

#### **Course Topic(s)**

#### **Unit 1: INTRODUCTION AND POSTHARVEST LOSSES**

Importance of cereals and legumes, Post-harvest quality and quantity losses. Recommended pre-processing practices for handling of cereals and pulses for their safe storage, including control of infestation, National and International quality and grading standards.

#### **Unit 2: MILLING OF WHEAT**

Structure, types, composition, quality characteristics and physicochemical properties of wheat. Cleaning, tempering and conditioning, and milling processes for different wheat's. Turbogriding & Air Classification. Blending of flours. Milling equipments and milling products (Dalia, Atta, Semolina and flour). Flour grades and their suitability for baked goods. Quality characteristics and rheological properties of wheat milling products and its assessment. Byproduct utilization.

#### **Unit 3: RICE MILLING**

Structure, types, composition, quality characteristics and physicochemical properties of rice. Milling and parboiling of paddy, Curing and ageing of paddy and rice. Criteria in assessment of milling, cooking, nutritional and storage qualities of raw & parboiled rice. Processed rice products (flaked, expanded and puffed rice). By-product (husk and rice bran) utilization.

#### **Unit 4: MILLING AND PROCESSING OF MAIZE AND MILLETS**

Structure, types and composition of corn. Dry and wet milling of corn. Starch and its conversion products. Processed corn products (popped corn, corn flakes etc.) Structure and composition of barley, bajra, jowar and other cereal grains and millets. Malting of barley. Pearling of millets. Parched and snack products.

#### **Unit 5: MILLING OF PULSES**

Structure, composition and properties of legumes. Cleaning, grading, pretreatments for difficult-to-mill (urad, arhar, moong, moth) and easy-to-mill (chana, masoor and pea) legumes, milling practices and actual milling of different legumes. Sweet and savory products from legumes in India.

#### **Text Book(s):**

- 1. N.L.Kent, Technologyof Cereals, Wood Head Publishing, 4th edition 2004.
- Shankuntala N.Mannay, Food Facts and Principles, New age International (p) 2. Ltd. 2008

#### **Reference**(s):

- 1. Norman N.Potter, Food science, Springer publication, 1995
- 2. DAV Dendy and B.J.Dobraszerk, Cereals and cereals Products- Chemistry and Technology, Aspen Publication 2001.

9 Hours

9 Hours

#### 9 Hours

#### 9 Hours

	D 40.4		OFC				L	Т	1	Р	Cre	dit					
F11/	K404	PKU	ICE22	ING C	UNIN	ODII	IES UI	r rooi		3	0		0	3			
Pre re	quisite:	FT18	R251					Course	e Cate	gorie	s: Pro	ofess	ional I	Electiv	ve		
											Co	urse	e Type	: The	ory		
Cours	e	To In	ntroduc	e stude	nts abo	out the	method	ls of pro	ocessir	ıg foo	d to p	oreve	ent was	stage			
Objec	tive(s)	and l	osses														
Cours	e Outco	ome(s)															
CO1		To le	arn abo	out diff	erent p	rocess	ing tech	niques	of frui	its and	l vege	etabl	es				
CO2		To le	To learn about processing of dairy products														
CO3		To study about bakery technology and learning quality aspects of bakery produc															
CO4		To le	arn abo	out slau	ghterir	ng and	process	sing me	thods	of mea	at and	l ma	rine				
		processing technology															
CO5		To st	udy ab	out mil	ling pr	ocessi	ng of ce	reals ar	nd puls	ses and	d lear	n the	e grain	stora	ge		
		pract	ices														
Mapp	ing of C	Course	Outco	me(s):													
CO																	
	01	)2	33	<b>)</b> 4	)5	9C	77	<b>3</b> 8	60	10	11	012	01	02	03		
	P(	P(	P(	P(	P(	P(	P(	P(	P(	PC	PC	PC	PS	PS	PS		
CO1	М		L		L		L			L	Μ		М				
CO2	М		Μ		L		L			L	Μ		М				
CO3		М	Μ		L		L			L	Μ		Μ				
CO4		М	Μ		L		L			L	Μ		Μ				
CO5		М	М		L		L			L	Μ		М				
Cours	e Topic	(s)															

#### **Unit 1: FRUITS AND VEGETABLE PROCESSING**

Production of Fruits and vegetables in India, Cause for heavy losses, preservation treatments - Canning of Fruits and Vegetables, Minimal processing and Hurdle technology as applied to Vegetable and Fruit processing, Processing of fruit juices, Dehydration, Aseptic and other methods of processing.

#### **Unit 2: DAIRY PROCESSING**

Basic dairy terminology, composition, Quality and Quantity tests at reception, dairy Processing Equipments, various dairy Products, Packaging of milk in bottles and sachets.

#### **Unit 3: MILLING AND BAKERY TECHNOLOGY**

Fundamentals of Market Analysis for Wheat and Wheat Products, Laboratory testing of Wheat grain Quality, Moisture tests, Outline of the Wheat Milling Process, equipments

#### Unit 4: MEAT, FISH AND POULTRY PROCESSING

Meat composition from different sources, Definitions and measurements, Slaughtering and Carcass Processing, Meat Products, Processing of Poultry Products, Fish and other Marine

#### 9 Hours

## 9 Hours

#### l to

9 Hours

Products Processing.

#### **Unit 5: CEREAL TECHNOLOGY**

Paddy Processing - Varieties, their Composition and Quality characteristics, Curing of Paddy, Parboiling Processes, By Products. Rice milling and equipments, Milling of Pulses, Grain Storage and Handling.

#### **Text Book(s):**

1. Srivastava, R.P. and Kumar, S.: Fruit and Vegetable Preservation: Principles and Practices. International Book Distributing Co. Lucknow (2nd Edition 1998).

2. Chakraverty, A., Mujumdar A.S., Raghavan G.S.V and Ramaswamy H.S. Handbook of Post-harvest Technology: Marcel Dekker Press, USA (2001)

#### **Reference Book(s):**

1. W. James Harper and Carl W. Hall: Dairy Technology and Engineering AVI Publishing, Westport, USA (1976)

2. Karel Kulp and Joseph P Pante:Hand Book Of Cereal Science and Technology Mercel Dekkar USA (2000)

ET19	2D / AAA		FC	OD I	NDUS'	FRY W	VASTE	C		L		Т	I	)	Credit		
<b>F I I</b> 0	DN407			MA	NAG	EMEN	Т			3		0	(	)	3		
Pre re	quisite:	: FT18	R251					Cour	se Ca	ategoi	ries:	Profe	ssior	nalE	lective		
										Co	urse	Туре	: The	eory			
Cours	e	Effec	tive uti	lizatio	n of fo	od was	te										
Objec	tive(s)																
Cours	e Outco	ome(s)															
CO1		Unde	erstand	the cha	racteri	zation	and che	emical	l prop	erties	of fo	od w	aste				
CO2		Hand conta	lle indu mination	strial w	vaste w	ith nec	essary	utions	s to av	oid i	nfecti	on a	nd cr	OSS			
CO3		To er	nable th	e stude	ent to u	Indersta	and the	metho	ods of	of treatment							
CO4		Mon	itor the	sludge	and ef	fluents	discha	rom f	food ii	ndust	ries n	neet	the				
		limita	ation by	y law													
CO5		Cont	rol env	ironme	ntal po	llution	by pro	per tre	eatme	nt of f	food	waste					
Mapp	ing of (	Course	Outco	me(s):													
CO																	
	01	32	33	<b>5</b> 4	05	9C	77	<b>3</b> 8	6C	10	11	012	01	02	03		
	P(	P(	P(	P(	P(	P(	P(	P(	P(	PC	PC	PC	PS	$\mathbf{PS}$	PS		
CO1	М	Н				L	Η	М			Н	Μ	L				
CO2		М	М			Н	Н				Μ	Μ					
CO3		Н	М		Н		Μ	Η	Μ			L					
CO4	M M H H M									Μ	Η	Μ			L		
CO5			Μ				Η	Μ				Μ			М		
Cours	e Topic	<b>c(s)</b>															

#### Unit 1: CHARACTERIZATIONOFFOODWASTE

Characterization of by-products from cereals. pulses, oilseeds. fruits. vegetables, plantation, dairy, eggs, meat, fishandpoultry processing industries. Elements of importance in efficient management of wastes from aforesaid food industries. Treatments of solid waste. Standards BOD/COD Waste from various industries.

#### **Unit 2: STANDARDS FOR EMISSION/DISCHARGE**

Standards for emission or discharge of environmental pollutants from food processing industriescoveredunderEPAAct.Characterizationoffoodindustrieseffluentsin terms of parameters of importance 9Hours

#### **Unit 3: TREATMENTOFFOODINDUSTRY EFFLUENTS**

Unit concept of treatment of food industry effluents: Screening, sedimentation, floatation as per and primary treatments, biological oxidations:- objectives, organisms, reactions, oxygen requirements, aerationdevices. Improved biocatalysts and innovative bioreactors for enhanced bioprocessing of liquid food wastes. Effect on characteristic parameters of effluents in treatments using lagoons, trickling filters, activated sludge process, oxidation ditches, rotating biological c ontractors and their variations and advanced modifications. Occupational health and safety. **Unit 4: ADVANCED WASTEWATER TREATMENT SYSTEMS** 9 Hours

Advanced wastewater treatment systems: physical, physicochemical and chemical treatments. Genobiotics- Bio remediation, Coagulation and flocculation, disinfection, handling and disposal of sludge and treated effluents conforming to EPA provisions.

#### **Unit 5: BY PRODUCT UTILIZATION**

Extraction of Pectin, color, collagen, Pharmaceutical and functional ingredients, Bio fertilizers, Food ingredients.

#### Textbook(s):

1.LawrenceK.Wang, Yung-TseHung, Wastewatertreatmentinthefoodprocessing industry, CRC press, 2nd edition, 2006

2.N.F.Gray., Watertechnology: an introduction for environmental scientists and engineers, ElsevierButterworth-Heinemann,2ndEdition,2002

#### **Reference**(s):

1.Patwardhan.,IndustrialWasteWaterTreatment,Prentice-Hallof IndiaPvt Ltd,1stedition,2008 2.K.C.Agrawal., Environmental pollution and law, AgroBotanical Publishers, 1995

ET10D304	SENSORY EVALUATION OF EOODS	L	Τ	Р	С
F I 18K204	SENSORY EVALUATION OF FOODS	3	0	0	3
Pre requisite:	Nil Course (	Categories	: Prof	essional el	ective
		Course	Туре	: Theory	
Objective(s)	The objective of the course is for evaluating proce	ssed foods			
<b>Course Outco</b>	me(s)				
CO1	Understand and apply importance of taste				
CO2	Understand and analyze the odor perception				
CO3	Learn about detection of color in food substances				
CO4	Learn about texture and rheological properties				
CO5	Learn the method of panel screening and instrume	ntal analys	sis		
Mapping of C	Os and Pos				

#### 9 Hours

# 9 Hours

СО															
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	М				Μ	Μ					М		L		
CO2		Η	Μ		Μ	Μ				М	М		L		L
CO3	Н	L			Μ	Μ				Μ	М		L		
CO4					Μ	Μ				М	М		L		
CO5	М				Μ	Μ				Μ	Μ		L		
Cours	e Topic	( <b>s</b> )													

#### TASTE

Introduction and importance of taste-Structure and physiology of taste organs- tongue, papillae, taste buds, salivary glands - Mechanism of taste perception - Chemical dimensions of basic tastes- sweet, salt, sour, bitter and umami - Factors affecting taste quality, reaction time, taste modification, absolute and recognition - threshold Taste abnormalities - Taste measurement

#### **ODOUR**

Introduction, definition and importance of odour and flavor - Anatomy of nose, physiology of odour perception - Mechanism of odour perception - Odour classification, chemical specificity of odour. -Odour measurement using different techniques - primitive to recent techniques. Merits and demerits of each method. Olfactory abnormalities

#### COLOUR

Introduction and importance of colour. - Dimensions of colour and attributes of colour, appearance factors, gloss etc. - Perception of colour. Golour abnormalities - Measurement of colour; Munsell colour system, CIE colour system, Hunter colour - system, spectrophotometry and colorimetry etc.

#### **TEXTURE**

Introduction, definition and importance of texture - Phases of oral processing - Texture perception, receptors involved in texture perception - Texture classification - Texture measurement - basic rheological models, forces involved in texture measurement

#### SENSORY EVALUVATION

Sensory evaluation-introduction, panel screening, Sensory and instrumental analysis in quality control, IPR and patents

#### **TEXTBOOK**

- 1. Rao E. S. (2013). Food Quality Evaluation, Variety Books.
- 2. Meilgard (1999). Sensory Evaluation Techniques, 3rd ed. CRC Press LLC, 1999

#### **REFERENCE BOOK**

1. deMan J. (2007). Principles of Food Chemistry, 3rd ed., Springer. 62

#### 9 Hours

9 Hours

#### 9 Hours

#### 9 Hours

2. Brannen and et al.,(1990)Food Additives, Marcel Dekker, New York, 1990

ET10	20205	EN	GINE	ERING	F PRO	PERTI	ES OF	FOO	D	L	Т	P	,	Cred	lit	
ГПС	)K2U5			$\mathbf{N}$	IATE	RIALS				3	0	0		3		
Pre re	equisite:	Nil						Cours	e Cate	gories	: Profes	ssion	al El	ectiv	'e	
								0	Course	Type:	Theory	y witl	h Pra	ictica	ıl	
Objec	tive(s)	To en	nable th	e stud	ents un	derstan	d the ef	ffect of	variou	is meth	ods of	proc	essin	ig on		
		the st	tructure	e and te	exture of	of food	materia	ıls								
Cours	e Outco	ome(s)														
CO1		Unde	erstand	the phy	ysical c	haracte	ers of fo	ods to	design	the fo	rmulati	on, p	roce	ssing	5	
		equip	oments,	quality	y parar	neters										
CO2		Unde meth	addressing the texture and rheological properties of food to design processing ethods and equipments													
CO3		Unde	nderstand the Thermal properties of food to design pack material, processing													
		meth	ethods and equipments													
CO4		Unde	nderstand the Aerodynamic properties of food to design processing methods,													
		equip	oments													
CO5		Unde	erstand	the Ele	ectrical	proper	ties of f	food to	desigr	n formu	lation,	proc	essir	ıg		
		meth	ods and	l equip	ments											
Mapp	ing of C	Course	Outco	me(s):												
CO										_						
	01	02	33	<b>5</b>	05	9C	LC	<b>3</b> 8	6C	010	011	)12	01	02	03	
	P(	P(	P(	PC	PC	P(	P(	P(	Ы	PC	PC	PC	$\mathbf{PS}$	PS	PS	
CO1	М				M	M					M		L		-	
CO2		H	M		M	M				M	M		L		L	
CO3	Н	L			M	M				M	M		L			
CO4					M	M				M	M		L			
CO5	M				М	Μ				М	М		L			
Cours	e Topic	<b>(S)</b>														

#### **Unit 1: PHYSICAL PROPERTIES OF FOODS**

Methods of estimation of - Shape, size, volume, density, porosity, texture, viscosity, surface area, Structures of materials - gel structure, amorphous and crystalline, drag coefficient, glass transition 9 Hours

#### **Unit 2: RHEOLOGICAL PROPERTIES OF FOODS**

Rheological Classification and models, Static tests for solid foods, Creep, relaxation, Dynamic testing of solid foods, stress and strain in solid foods, stress-strain diagram, visco-elastic fluids, measurement methods, Viscometers and Rheometers of different design and their applications, texture measuring instruments. Hardness and brittleness of food materials.

#### **Unit 3: THERMAL PROPERTIES OF FOODS**

Definitions - specific heat, enthalpy, conductivity and diffusivity, surface heat transfer coefficient. Absorptivity, transmissivity. Measurement of thermal properties like specific heat, enthalpy, conductivity and diffusivity;

**Unit 4: AERODYNAMIC AND HYDRODYNAMIC PROPERTIES OF FOODS** 9Hours Drag coefficient, terminal velocity and their application in the handling and seperation of food

#### 9 Hours

#### materials.

#### **Unit 5: ELECTRICAL PROPERTIES OF FOODS**

Dielectric properties, electric energy transmission properties, Electro-magnetic field effects, Dielectric measurements, Polar solvents, Ionic solutions. Reaction to electromagnetic radiation. Definition- Optical properties-method and light aborsorptance, light transmittance, color, intensity, light reflectance.

#### Text Book(s):

1. Nuri N. Mohsenin: Physical Properties of Plant and Animal Materials Gordon and Reach Science Publishers (1970)

2. Nuri N. Mohsenin: Thermal Properties of Food & Agricultural materials Gordon and Reach Science Publishers (1970)

#### **Reference Book(s):**

1. M.A.Rao and S.S.H.Rizvi: Engineering Properties of Foods Mercel Dekker inc. New York (1998)

2. M.J.Lewis: Physical Properties of Foods and Food Processing Systems Woodhead Publishing Cambridge, UK (1990)

3. Shafiur Rehman: Food Properties Hand Book CRC Press Inc. New York (1995)

ET10D207	18R307 FOOD PROCESS EQUIPMENT DESIGN						т	L	Т	]	P	С			
F I 18K3U/	гU	OD PI	NUCE	55 EQ	UIPNI		ESIG		3	0	(	0	3		
	-					С	ourse (	Categ	ories:	Profess	ional	elect	ive		
Pre requisite:	MEC	18R15	l					C	'ourse '	Туре: 🛛	Theor	ry			
<b>Objective</b> (s)	To de	esign a	nd dev	elop eq	uipmei	nts used	d in foo	d pro	cessing	, operat	ions				
<b>Course Outco</b>	ome(s)														
CO1	Use of	details	nachi	nes											
	deper	epending on food product													
CO2	Desig	esign equipments based on material handling capacity and quality of materials													
CO3	Set u	et up food transportation within processing unit with Conveyor belts and													
	Eleva	ators		1		1		U							
CO4	Chec	k Food	qualit	y and it	ts stand	lard lev	el in fo	od in	dustry						
CO5	Impo	rtance	of Con	nputer	applica	tions a	nd Insti	rumer	nt calib	ration f	or pe	rfect	ion a	nd	
	autor	nation.													
Mapping of C	COs an	d POs													
СО															
									(	_	2	1	5	3	
<b>D1</b>	32	33	24	<b>D5</b>	9C	6C	<b>D</b> 1(	01.0	<b>D1</b> 2	00	SO.	Õ			
P(	PC	P(	PC	P(	P(	P(	P(	P(	P	P	ĥ				
CO1 H	М	Η	L		М	Η				Μ		L		L	
CO2	М	Η		L	L					Η		L		L	
CO3 M	М	Η								H		L			

CO4	М	Μ	Н					Н	L	
CO5	М	Μ	Η	Η	Η			Η		Μ
~	-									
Cours	e Topic	c(s)								

#### **INTRODUCTION**

Introduction to various mechanical properties of materials to be used as material of construction, resistance of metals to corrosion under varying conditions of temperature and pressure etc. Application and use of various codes and standards in design.

#### **DESIGNING OF HANDLING EQUIPMENT**

Design of material handling equipment: Belt conveyor, bucket elevator, screw conveyor, Cyclone conveyor, chain conveyor, pneumatic conveyor. Design of seed processing equipments: Air screen cleaner, rotary cleaner, graders based on size shape and surface produce and led, seed treater.

#### DESIGNING OF STORAGE VESSELS

Design of non-pressure storage vessel, tall vertical vessels, unfired pressure vessels with Internal pressure: storage vessels and process vessels.

#### **DESIGING OF PRESSURE EQUIPMENTS**

Design of unfired pressure vessels with external pressures, end closures, flat plates, domed ends, tori spherical, ellipsoidal, hemispherical and conical ends. Design of nozzles, openings and re inforcements, Bolts, flanges, gaskets.

#### **DESIGING OF DRYERS AND HEAT EXCHANGERS**

Bolted flanges, pipelinedesignandMechanicaldesignofselectedprocessequipmentssuch As heat exchangers, Evaporators, Distillation columns, Absorbers, Reactors and Dryers and Crystallizers; Use of soft wares for design of equipments.

#### **TEXTBOOKS**

1. Peters Max. S., Timmerhaus Klaus D. and Ronald EWest., Plant Design and EconomicsforChemicalEngineers,VEditionMcGrawHill.2003

2. Coulson, J.M. and Richardson J.F., Chemical Engineering, Pargamon Press, vol.6 1989.

#### REFERENCES

1. Evans, F. L., "EquipmentDesignHandbook", GulfPublishingCompany, 2ndEdition1979.

2. Perry, R. HandChitton, Perry'sChemicalEngineersHandbook, McGrawHill,

NewYork.7thEdition.1997

## 9 Hours

9 Hours

9 Hours

#### 9 Hours

ETT1 (	DD 405	,	FOOD			DEVE				L	Т		P	Cre	dit		
FII	SK405		FOOD	PROD		DEVE.	LOPM	LENI		3	0		0	3	I.		
Pre re	equisite:	Nil						Cours	e Cat	egories	: Profe	essio	nal E	Electi	ve		
		r									Cou	rse T	ype	: The	ory		
Cours	se	Top	rovide	the opp	ortunit	y for st	tudents	to inte	grate t	heir tra	ining i	in foo	od sc	ience	•		
Objec	ctive(s)	and t	echnol	ogy cou	irses a	nd relat	ed disc	uplines	and to	o gain e	xperie	ence	with	the			
Course	na Outar	theor	ry and p	bractice	or dev	elopin	g 100a	produc	ts.								
Cours	se Outco	Jine(s)	. 1	1	1 0	1		· ,	•	n and marketing							
COI		Unde	erstand	about t	ne too	a comp	any or	ganizat	10n an	d marke	eting.						
CO2		To and indust	nalyze 1 stry.	the tech	nnical a	aspects	of new	[,] produ	ct dev	elopme	nt in d	airy	and 1	neat			
CO3		To analyze the technical aspects of new product development in beverages industry.															
<u>CO4</u>		To analyze the technical aspects of new product development in flavor industry															
C04		10 a	haiyze	the tech	inical a	ispects	or new	produ	ct deve	elopme	nt in T	lavor	inat	istry.			
CO5		Unde	erstand	the cor	icepts (	of qual	ity con	trol asp	ects.								
Mapp	oing of C	Course	Outco	me(s):													
CO																	
	01	02	33	54	<b>J</b> 5	9C	77	<b>3</b> 8	6C	010	11	012	01	02	03		
	P(	P(	P(	P(	P(	P(	P(	P(	P(	PC	PC	PC	PS	PS	$\mathbf{PS}$		
CO1	М	М				M		M		M	M		M				
CO2			H			M		H		M	H		M		Н		
CO3		L	Н			Μ		Н		Μ	Н		Μ		Н		
CO4		L	Н			Μ		Н		М	Н		Μ		Η		
CO5         M         M         H         H         M         H         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M         M												Μ	Η				
Cours	se Topic	<b>z(S)</b>															
Unit 1 Corpo	I: INTR	<b>ODU</b> ganizat	C <b>TION</b> tion of	Food	Comp	anies.	Overv	iew of	Food	Produ	ct De	velo	omer	<b>9 Ho</b> nt(FP	urs D),		

Product Development Process, Ideation and Screening Process, FP Marketing and Market Research, Legal and Fiscal, – Test Markets and Launches, Successes and Failure. 9 Hours

#### **Unit 2: PRODUCT DEVELOPMENT**

Technical Aspects of New Product Development-Dairy, Meat, Poultry, Egg Products, Fish and Shellfish Products.

#### **Unit 3: PRODUCT DEVELOPMENT**

Technical Aspects of New Product Development-Juices and Non-alcoholic Beverages, Cereals and Grains, Fats and Oils.

#### **Unit 4: PRODUCT DEVELOPMENT**

Technical Aspects of New Product Development –Flavors and Flavor Companies, Sugar, Candy and Chocolate.

#### **Unit 5: QUALITY ASPECTS**

QC/QA Aspects of Food Product Development, Microbial Aspects of New Product Development, PackageDevelopment, Shelf Life of Packaged Foods, Nutrients and Fortification, Labeling and Pertinent Regulations

#### **Text Book(s):**

#### 9 Hours

#### 9 Hours

1. Brody, A.L. and Lord, J. 2008. Developing New Food Productsfor a Changing Marketplace, 2nd Edition. CRC Press, Boca Raton, FL.

2. Campbell-Platt,G. 2009. Food Science and Technology. Blackwell Publishing Ltd., Oxford,UK.

#### **Reference Book(s):**

- 1. Fuller,G.W. 2011. New Food Product Development, 3rd Edition. CRC Press, Boca Raton, FL.
- 2. Moskowitz, H., Saguy, I. S., and Straus, T. 2009. An Integrated Approach toNew Food ProductDevelopment. CRC Press, Boca Raton, FL.

ст10	2D 406	F	ם חרו	т а міт	TAVO			FSICN		L	Т	]	P	Cre	dit	
<b>F I 1</b> 0	<b>K4</b> 00	г	JOD P	LANI		JUIA	מ עמ	LSIGN		3	0		0	3	*	
Pre re	quisite:	FT18	R310					Cours	e Cate	gorie	s: Profe	essio	nal E	Electi	ve	
										Cours	е Туре	e: The	eory			
Cours	e	Desig	gn a lay	out for	food p	process	ing pla	nt and	estimat	tion of	f cost					
Objec	tive(s)															
Cours	e Outco	ome(s)														
CO1		Desig consu	gn and a ltant	setting	up of r	new foo	od proc	essing	plant a	s Entr	eprene	ur an	d/or			
CO2		The i	e importance HACCP and food safety laws governing food industries													
CO3		Imple	plement the food safety standards in food industries													
CO4		Prepa	repare cost estimate and economic analysis of food industry													
CO5		Help produ	to min uction	imize t	he food	lindus	try loss	ses and	maxim	nize th	e proce	essed	foo	d		
Mapp	ing of C	Course	Outco	me(s)												
СО	POI	P02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3	
CO1		Н	М				М			Μ	Η	Μ	Μ			
CO2		Н	Н				Μ			L	Н	Μ	Μ			
CO3		М	Н					Н		L	М	Μ	L	Μ		
CO4		Μ	Μ							Μ	Н	Μ	L			
CO5	L	Н	М							Μ	Н	Μ	L			
Cours	e Topic	$\mathbf{s}(\mathbf{s})$														

#### **Unit 1: SITE SELECTION**

Site selection - Factors - Case Study: Site Selection - Product Capacity and quality – Storage of Raw materials and Product - Waste Disposal, Utilities – Requirements for water, electricity, labor, transportation facilities, refrigeration, boiler- laboratory - Plans for Future Expansion- Hours of Operation- Completion Date- Safety

#### **Unit 2: PLANT DESIGN**

Manufacturing Plant Design – Building design – Legal aspects – Building bylaws, Expansion – Plant Location – The structure – Facilities Lay-out Office, toilet, laboratory- classification of dairy

#### 9 Hours
and food plants, farm level collection and chilling Centre, space requirements

### Unit 3: OCCUPATIOAL SAFETY AND HYGIENIC DESIGN

Impact of technological developments on working conditions, Occupational health problemsdermatitis, asthma, hearing damage, stress& policies, OSHA regulations for safe working environments, Hygienic design principles and benefits- factory, utilities & equipment, process and machineries, material of construction, Hygienic welding, Best practices of hygienic design as per GFSI - Cleaning and decontamination, personal hygiene, drainages, hazard management

### **Unit 4: LAYOUT AND COST ESTIMATION**

#### 9 Hours

New Plant Layout- Product and process layout - Expansion and Improvements of Existing/ Facilities- Case Study: Layout and Warehouse Requirements – Inventory control - Cost Indexes -Capacity vis-a-vis Costs - Factored Cost Estimate – Break – even point - Improvements– Module Cost Estimation - Unit Operations Estimate- Detailed Cost Estimate- Accuracy of Estimates- Case Study: Capital Cost Estimation.

# Unit 5: ECONOMIC ANALYSIS

# 9 Hours

Cost of Producing a Product- Capital - Elementary Profitability Measures- Time Value of Money-Compound Interest- Net Present Value- Rate of Return- Comparison of Net Present Value and Rate of Return Methods- Proper Interest Rates - Expected Return on the Investment- Economic Evaluation – Depreciation – Amortization- Depletion Allowance- Investment Credit- Special Tax Rules - Problems.

# **Text Book(s):**

1. Dennis R. Heldman and Daryl B. Lund. "Hand Book of Food Engineering", Second edition, CRC Press, Taylor and Francis Group, 2007.

2. William D. Baasel. "Preliminary chemical engineering plant design", Second edition Van Nostrand Reinhold, 1990.

# **Reference Book(s):**

1. R.K. Sinnot. "Coulson and Richardsons Chemical Engineering" Vo. 6., 4th Edition, Elsevier Publication. 2005.

2. Max S. Peters and Klaus D. Timmerhaus and Ronald West. "Plant Design And Economics For Chemical Engineers", 5th Edition, Tata Mc-Graw Hill Education. 2003.

ET10D200	PROTEIN CHEMISTRY AND	L	Т	Р	Credit										
F I 10K300	TECHNOLOGY	3	0	0	3										
Pre requisite:	FT18R272 Course C	Categori	es: Profes	sional	Elective										
		Cours	se Type: '	Theory	1										
Objective(s)	Understand basic chemistry and structures of prote new technologies and sources of proteins	inderstand basic chemistry and structures of protein found in food and develop ew technologies and sources of proteins e(s)													
<b>Course Outco</b>	e(s)														
CO1	(s) nalyze protein quality and identify protein structure and application in food														
CO2	sector														
CO3	Understand the importance of protein engineering functional properties of food	in impro	oving the	nutritio	onal and										
CO4	Isolate protein from source like fish, legume, oilse	eds and	microbes												
CO5	Structural and Functional properties of protein														
Mapping of C	Course Outcome(s):														

CO										_					
	01	02	03	04	05	06	07	08	60	010	011	012	01	02	03
	P	P	Pe	P	P	P	P	P	P	P(	PC	P(	PS	PS	PS
CO1	Н					L					L		L		
CO2	М					L					L		L		
CO3		Μ				L					М				Η
CO4		Μ	М			L	М				М		L		
CO5	М					L	М				М		L		
Cours	e Topic	c(s)									•				

#### **Unit 1: BASICS OF AMINO ACIDS AND PROTEIN CHEMISTRY**

Amino acids (the students should be thorough with three and single letter codes) and their molecular properties (size, solubility, charge, pKa), Chemical reactivity in relation to post- translational modification (involving amino, carboxyl, hydroxyl, thiol, imidazole groups) and peptide synthesis. Covalent, Ionic, Hydrogen, Coordinate, hydrophobic and Vander walls interactions in protein structure. Interaction with electromagnetic radiation (radio, micro, infrared, visible, ultraviolet, X-ray) and elucidation of protein structure.

# **Unit 2: PROTEIN ARCHITECTURE**

**Primary structure:** peptide mapping, peptide sequencing - automated Edman method & massspec. High-throughput protein sequencing setup

**Secondary structure**: Alpha, beta and loop structures and methods to determine (Basics only) Basics of Super-secondary structure: Alpha-turn-alpha, beta-turn-beta (hairpin), beta-sheets, alphabeta-alpha, topology diagrams, up and down & TIM barrel structures nucleotide binding folds, prediction of substrate binding sites

**Tertiary structure**:Domains, folding, denaturation and renaturation, overview of methods to determine 3D structures, Quaternary structure: Modular nature, formation of complexes.

#### **Unit 3: PROTEIN ENGINEERING**

#### 9 Hours

Advantages and purpose, overview of methods, underlying principles with specific examples: thermal stability T4-lysozyme, recombinant insulin to reduce aggregation and inactivation, de novoprotein design.

# Unit 4: BASICS OF THE PROPERTIES OF FOOD PROTEINS – ANIMAL AND MARINESOURCES CASEINS AND WHEY PROTEINS9 Hours

Caseins – Heterogeneity and Molecular properties – caseins micelles – Mechanism of stabilization – Structure models – Structure of whey proteins and improvement of functionality Muscle

proteins– Structure and functionality – Application of muscle proteins in foods Sea weed proteins – Protein content and functionality, digestibility of algal proteins – applications to food systems

**Unit 5: BASIC PROPERTIES OF FOOD PROTEINS – PLANT SOURCES** 9 Hours Composition, functional properties of soya, rapeseed, peanut. Leaf as a protein source – Basic and Food applications of rubisco

# **Text Book(s):**

1. Voet D. and Voet G., "Biochemistry", Third Edn. John Wiley and Sons, 2001

2 .Zidzisław E. Sikorski, Chemical and Functional Properties of Food Proteins, CRC Press, 2001. **Reference Book(s):** 

1. Creighton T.E. Proteins, Freeman WH, Second Edition, 1993

2. Moody P.C.E. and Wilkinson A.J. "Protein Engineering", IRL Press, Oxford, UK, 1999

9 Hours

ET10	D 200		NIT		ΓΙΟΝ		IOCIII	EMIST	DV		L	Т	P	<b>C</b>	redit	
гпс	<b>JKJU</b> 9		NU		TION	AL DI	ЮСП	CIVITS I	ĸı		3	0	0	)	3	
Pre re	quisit	e: Nil						(	Course	Categ	gories:	Profe	ssiona	al Elec	tive	
										0	Course '	Туре	: Theo	ory		
Objec	tive(s)	То	enabl	le stuc	lents	unders	tand th	e basics	s of foc	od bioc	hemisti	ry and	l nutri	ition a	nd	
		im	portar	nce of	nutrit	tion an	d enab	le them	to dev	elop n	ew proc	lucts	of hig	h nutr	itive	
	0.4	val	ue													
Cours	e Out	come(	<b>S</b> )													
CO1		Un	dersta	and ch	nemica	al proc	ess inv	volved in	n carbo	ohydra	tes meta	abolis	m			
CO2		Gr	oup a	mino	acids	and lip	oid met	abolism	1							
CO3		Un	Iderstand basic concepts of nutrition Iderstand anti nutritional factors and its affects in health													
CO4		Un	nderstand basic concepts of nutrition													
CO5		De	nderstand anti nutritional factors and its affects in health esigning new range of products with improved nutritional characteristics													
Марр	ing of	Cour	se Ou	tcom	e(s):				_							
CO																
	01	02	)3	4	)5	90	5	80	60	10	11	12	<b>D1</b>	<b>J</b> 2	33	
	PC	PC	PC	PC	PC	PC	PC	PC	PC	РО	PO	PO	PS(	PS(	PS(	
CO1	Η	М				L							L			
CO2	Н					L							L			
CO3	Н	Μ				L		L			L		L	М		
CO4	М	Μ				L		L					L			
CO5	М					Н		L						М		
Cours	e Toni	ir(s)														

#### **Unit 1: CARBOHYDRATE METABOLISM**

Electron transport chain - glycolysis, TCA cycle, gluconeogenesis, Pentose phosphate shunt, Embden Meyerhof Pathway (EMP), urea cycle, interconnection of pathways, Metabolic regulation, Bioenergetics: Respiratory chain ATP cycle, energy rich compounds

#### **Unit 2: AMINOACID AND LIPID METABOLISM**

Biosyntheses and degradation of fatty acids, and cholesterol - Biosyntheses and degradation of amino acids (one example each for sulphur containing, aliphatic, aromatic, heterocyclic, basic and acidic amino acids), peptides and proteins; Biosynthesis and degradation of purines, pyrimidines and nucleic acids.

#### **Unit 3: BASIC CONCEPTS OF NUTRITION**

Basic concept of nutrition – Importance of nutrition and dietetics - Assessment of nutritional status - energy value of carbohydrates, proteins and fats - determination of energy value - balanced diet - Recommended dietary intake - Acceptable dietary intake - Protein efficiency ratio - Net protein utilisation and their determinations - Malnutrition and its problems - Nutrient supplementation fortification - Nutritional labeling and its importance - Effect of processing on protein quality, essential amino acids - Digestibility, carbohydrates in food and dietary fibre

# 9 Hours

9 Hours

#### Unit 4: INBORN ERRORS OF CARBOHYDRATE, PROTEIN AND FAT METABOLISM 9 Hours

Inborn errors of carbohydrate, protein and fat metabolisms - Nutrition and disorders associated with organs such as liver and kidney - Naturally occurring anti-nutritional factors – Cyanogens, lectins, enzyme inhibitors, phytoallexins, phytates

### **Unit 5:NUTRITION FOR SPECIALIZED PURPOSES**

9 Hours

Nutrition for specialized purposes – Paediatric nutrition – geriatric nutrition – Sports nutrition – Nutrition during pregnancy - Functional foods Ageing – Theories of ageing – Nutrition and ageing

- Cancer and its prevention - Age-related metabolic disorders - Nutrition in the treatment of agerelated disorders like hypertension, diabetes, Alzheimer's disease **Text Book(s):** 

1. Voet D, Voet G, Principles of Biochemistry, Third Edition, John Wiley and Sons, 2008.

2. Martin Eastwood. Principles of Human nutrition – Second Edition, Ed. Wiley - Blackwell Publishing, 2003.

### **Reference Book(s):**

1. Ronald Ross Watson, Functional foods and Nutraceuticals in Cancer Prevention, Ed. Wiley – Blackwell, 2003.

2. Lehninger A.L, Nelson D.L. and Cox M.M., Principles of Biochemistry, W.H. Freeman and Company Publications, 2008.

FT1	8R4(	)7	TRA	DITI	ONA	L & F	FERM	IENT	ED	L		Т	Р		С		
	01110				FC	DODS	\$			3		0	0		3		
Prere	quisi	te: I	Nil						Cou	rse Ca	itego	ries	: Pr	ofessi	onal Ele	ective	;
										Co	urse	Тур	e: '	Theor	y		
Obje	ctive(	<b>(s)</b>	To u of fe	ndersta rmente	and va ed food	rious 1 prod	conce luction	pts, p n	rincip	oles and	d pro	cedı	ires	invol	lved in t	he are	ea
Cour	se Oı	itco	me(s)														
CO1			Unde	erstand	the ir	nporta	ance c	of food	d and	its rela	tions	ship	wit	h cult	ure in Iı	ndia	
CO2			Gras cultu	p good re	l know	ledge	e of Fe	ermen	ted fo	ods an	d its	revo	oluti	ion in	Indian	food	
CO3			Use	senefit	s of tr	aditio	nal fo	ods a	nd its	existe	nce a	t pre	esen	t to e	xplore		
CO4			Adap	dapt the Impact of fermented products and its benefits reserve Traditional Foods by adapting technology to meet demands.													
CO5			Prese	Adapt the Impact of fermented products and its benefits Preserve Traditional Foods by adapting technology to meet demands.													
Mapp	ping o	of C	Os an	d POs													
CO																	
	P01		P02	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10		P011	P012	PSOI	PSO2	PSO3
CO1			H				Н								М		
CO2	L		N	[			Н		L						L		
CO3			M	[			Н					L			Η		
CO4	L		Ν	[			Η					L			Η		
CO5	L		Ν	[			Η					Μ					
Cour	se To	pic(	<b>s</b> )														
TRA	DIT	ION	IAL F	ERM	ENTE	D FC	<b>OD</b> S										

Indian traditional sweet, savory and snack food products: Sweetmeats, Namkins, Papads Idli and Dosa.

#### CULTURE MAINTENANCE

Preparation and Maintenance of Bacterial, Yeast and Mold cultures for food fermentations. Probiotics - Lactic acid bacteria-activities and health-promoting effects. Mushrooms: Cultivation and preservation.

#### FERMENTED PRODUCTS

Fermented Dairy Products: Cheeses, Curd and Yoghurt, Butter milk and the fermented milks. Spoilages and defects of fermented dairy products and their control. Fermented meat and fish products, Oriental fermented foods

#### FERMENTED DRINKS

Fermentative Production of Beer, Wines, Cider and Vinegar, distilled spirits (eg. Rum, gin,whisky), Fermented Vegetables (Pickles).

#### MICROBIAL PROTEINS

Production of Baker's Yeast, Microbial Proteins and fats, Food enzymes (eg. Amylases, protease, lipases, pectinases, rennin), HFCS(High Fructose Corn Syrup)

#### **TEXT BOOKS**

K.H. Steinkrus, Handbook of Indigenous Fermented Foods, Marcel Dekker publisher, 1983.
 Sukumar De, Outlines of Dairy Technology, Oxford University Press N Delhi, 1991.
 Prescott and Dunn, Industrial Microbiology, Agrobios (India) publisher, 2009

#### **REFERENCES:**

 L.E.Casida, Industrial Microbiology, New Age International(p) Ltd N Delhi, 2007
 W.C.frazier and D.C.Westhoff, Food Microbiology, Tata Mcgraw Hill publisher, 3rd edition, 2008.

	<b>RADIATION PRESERVATION</b>	L	Т	Р	Credit									
FT18R408	AND PROCESSING OF FOOD PRODUCTS	3	0	0	3									
Pre requisite: N	il	<b>Course Ca</b>	tego	ries: Profe	ssional									
Elective														
				Course 7	<b>Fype:</b> Theory									
Course	On completion of the subject, the studen	nts will gair	n kno	wledge ab	out									
<b>Objective</b> (s)	irradiation and safety measures to be followed and its application in food industries													
	industries.													
<b>Course Outcom</b>	e(s)													
CO1	To study the importance of non-thermal	methods li	ke ir	radiation as	s an									
	alternative to the conventional methods	of processi	ng.											
CO2	To study the importance and safety issu	es of the irr	adia	ted foods										
CO3	To study the effect of microwave radiat	ion as a pro	cess	ing and pre	servation									
	method													
CO4	Understand the interaction of IR radiation	on with foo	d ma	terials- its	merits and									

		de	emeri	ts													
CO5		U	nders	tand t	he im	pact o	f radi	o and	UV ra	diation	on micr	oorgar	nism o	of foo	d		
Mappir	ng of (	Course	e Out	tcome	:(s):												
CO																	
	01	02	03	P03 P04 P05 P06 P07 P07 P07 P09 P010 P011 P011 P011 P012 P012 P012 P012													
	P	Ь	P	Ь	P	P	P	P	P	P(	P(	PC	PS	PS	PS		
	PACTOR PA																
CO1	Η			M									L				
CO2		Η	Μ	M				M					L	M			
CO3		М	Μ		Н			L					L	Μ			
CO4		М			Н						L				L		
CO5		М	Μ		Н						М				Μ		
Course	Topi	$\overline{\mathbf{c}(\mathbf{s})}$															

# **Unit 1: BASICS OF RADIATION CHEMISTRY**

Electromagnetic energy, ionizing radiation, Concept of radiation, dielectric properties, ionization and excitation, Radiation chemistry basics -primarychemical effects and secondary effects on food, G value, irradiation parameters, instruments for measuring radiation, effect of food irradiation and potentialities for radiation processing of foods.

#### **Unit 2: RADIATION CHEMISTRY OF FOOD COMPONENTS**

Basics-carbohydrates, proteins, lipids, vitamins etc. Radiation effect on contaminating microorganisms like bacteria, viruses, yeasts and molds -Dosages of radiation for various plant foods and animal foods-meat and poultry,

fruits, vegetables, spices, dairy products; Radiation equipment, salient features; Packaging of irradiated foods and safety issues.

# **Unit 3: MICROWAVES IN FOOD PROCESSING**

Microwave heating, nature of energy, batch and continuous ovens, microwave generators, wave guides, brief description of oven construction, application of microwave radiation and safety measures.

#### **Unit 4: INFRA RED RADIATION**

Absorption and scattering characteristics of various food materials, Polarization characteristics of IR radiation, Propagation of IR radiation in food stuffs. IR generators, applications, Relative merits and demerits.

#### **Unit 5: RADIO FREQUENCY HEATING PRINCIPLES**

RF heating equipment, Advantages of Radio frequency heating of foods - Ultra violet radiation and its effect on microorganisms in foods - UV treatment application and equipment.

#### **Text Book(s):**

1.J.F.Diehl: Safety of Radiated FoodsMarcel Dekker Inc. NY (1995)

2.Gould G.W. New Methods of Food Preservation, Aspen Publisheres Inc. Maryland. 1999. **Reference Book(s):** 

1. Ohlsson and Bengtson: Microwave Processing TechnologiesWoodhead Publishing, Cambridge, UK (2002)

2. Philip Richardson: Thermal Technologies for Food ProcessingWoodhead Publishing Limited, CRC Press. (2001)

### 9 Hou

# 9 Hou

# 9 Hou

9 Hou

9 Hou

FT1	8R206		F	OOD E	BIOTE	CHNO	OLOG	Y		L	Т	I		Cre	dit
										3	0	(	)	3	
Pre re	equisite	NIL							Cou	rse Ca	tegorie	es: 0	pen l	Electi	ive
										Cours	е Туре	: The	eory		
Cours	se	The	objecti	ve of th	ne cour	rse is to	o create	genera	l unde	rstandi	ng abo	ut ne	w te	chniq	ues
Objec	ctive(s)	used	in foo	d biote	chnolo	gу									
Cours	se Outco	ome(s)													
CO1		Und	erstand	about	Prospe	ectus of	f Bio-T	echnolo	ogy						
CO2		Und	erstand	about	differe	nt mici	robial p	oroduct	S						
CO3		Ada	pt enzy	me tec	hnolog	уy									
CO4		Ada	pt biote	echnolo	gical a	spects	in plan	t tissue	cultur	e					
CO5															
Mapp	oing of (	Course	e Outco	ome(s):	:										
CO															
			~	<del></del>		<u>`</u>	~	~	•	01	[]	2	)1	32	)3
	PO	POC	PO	PO	PO!	PO(	PO	PO	POG	PO	PO	PO	PSC	PSC	PSC
CO1	Н					L					L	L	L		L
002		м	TT			T		T			м		м		м
02		IVI	п					L			IVI		IVI		IVI
CO3	М					L					Н		М		Μ
CO4			М		Н						L	L	М		М
CO5		М	M			Н	Н				М		М	+	M
Cours	 se Topic	(s)							1		<u> </u>	1		<u> </u>	<u> </u>

#### **Unit 1: BIOTECHNOLOGY**

Definition, Scope, Application. Gene cloning - Definition, Basic concepts, Characteristics of ideal cloning vector, Plasmid, Bacteriophages, Cosmid and Phasmid Eg. PBR 322.

# **Unit 2: FERMENTATION TECHNOLOGY**

Definition, Steps in fermentation, Design of bio reactors, Medium & Micro organism. Microbial products - Primary, secondary metabolites, Vit B12, Citric Acid, Penicillin & alcohol.

# **Unit 3: ENZYME TECHNOLOGY**

Production of enzymes - Amylase, Protease, Lipase, Lactase and pectinase, Use of enzymes in food & beverage industry (eg Cheese, fruit, juice, Wine, Meat tendarizing & dairy)

#### **Unit 4: PLANT TISSUE CULTURE**

Basic requirement for tissue culture Lab, Media & Techniques (Basics only)Animal cell culture -Primary culture cell line, media requirement & application (only outline)

# **BIOTECHNOLOGY & HEALTH CARE VACCINES**

# 9 Hours

9 Hours

9 Hours

# 9 Hours

Types, Biogas & Bio ethanol production, Concept of Bio - remediation, Hazards of genetic engineering.

### Text Book(s):

- 1. Biotechnology, Kumar's V. Saris Publications, Kanyakumari.
- 2. Biotechnology, Singh B.D. Kalyani Publications, New Delhi.
- 3. A text book of Biotechnology, Dubey, R.C. S Chand & Co, New Delhi.

### **Reference Book(s):**

- 1. Gene Technology, Davson, M.T., Powel, R,. and Gannon F. Bios scientific publishers Ltd U.K.
- 2. Basic Biotechnology, Rev, Fr, Dr. Ignasimuthu, S.J. Tata Mc Graw Hill Publication Co Ltd., New Delhi.

FT18	3R207	TEC	CHNO	LOGY	OF C	ONVE	NIEN'	Г FOO	D	L	Т	]	P	Cre	dit	
										3	0		)	3	5	
Pre re	equisite:	NIL						Co	ourse (	Categ	ories	: Ope	n Eleo	ctive		
									Cou	rse T	ype: [	Theor	у			
Cours	se	To en	nable th	ne stud	ent to u	inderst	and trac	litional	patter	ns of	food					
Objec	tive(s)															
Cours	se Outco	ome(s)														
CO1		Unde	erstand	about	cultura	l perspe	ectives	and ba	sic ing	redie	nt for	food	prepa	ratior	ı	
CO2		To u	ndersta	nd trad	itional	metho	d of foo	od pres	ervatio	n						
CO3		To u	ndersta	nd con	nmercia	al produ	action of	of tradi	tional f	food a	and he	ealth a	aspect	s of		
		tradi	tional f	ood												
CO4		Unde	derstand the commercial method of production of traditional foods derstand the health aspect of Traditional foods													
CO5		Unde	iderstand the commercial method of production of traditional foods													
Mapp	ing of C	Course	Outco	me(s):												
CO																
	01	02	03	04	05	06	01	08	60	010	)11	)12	01	02	03	
	P	Ā	P	P	P	P	P	P	P	P(	P(	P(	$\mathbf{PS}$	PS	PS	
CO1	М					Н		L		L			L			
CO2			М		L	T.					М		М			
002			111		L	Ľ					101		111			
CO3		М	М			Н					М		М			
CO4			М			М					М		М			
CO5	М		М			Н	М				Н			Н		

#### **Course Topic(s)**

#### **Unit 1: HISTORICAL AND CULTURAL PERSPECTIVES**

Importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, festive occasions, specific religious festivals, mourning; Kosher, Halal foods.

### **Unit 2: TRADITIONAL METHODS OF FOOD PROCESSING**

Dairy Products- paneer, butter and ghee manufacture; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi.

### **Unit 3: TRADITIONAL FOOD PATTERNS**

Typical breakfast, meal and snack foods of different regions of India, Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods

### Unit 4: COMMERCIAL PRODUCTION OF TRADITIONAL FOODS

Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods, Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

### **Unit 5: HEALTH ASPECTS OF TRADITIONAL FOODS**

Comparison of traditional foods with typical fast foods / junk foods – cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses.

#### **Text Book(s):**

- 1. Sen, Colleen Taylor "Food Culture in India" Greenwood Press, 2005.
- 2. Davidar, Ruth N. "Indian Food Science: A Health and Nutrition Guide to Traditional Recipes: East West Books, 2001.

FT182208	FOUNDATION OF FOOD AND	L	Т	P	Credit								
F 1 10K200	NUTRITION	3	0	0	3								
Pre requisite:	NIL Co	ourse Ca	ategories:	Open	Elective								
		Cours	se Type: '	Theory	/								
Course	Students will be able to apply their knowledge in r	nutrition	in design	ing ne	w range								
<b>Objective</b> (s)	of products with improved nutritional characteristics												
Course Outco	e(s)												
CO1	Understand students about the importance of food	and nut	rition										
CO2	Understand students about the importance of nutrit	tion and	classifica	tion of	f nutrition								
CO3	The student will be able to understand about balan	ced diet											
CO4	Enable them to develop different method of cooking	ng											
CO5	Enable them to develop new products of high nutri	itive val	ue										

# 9 Hours

9 Hours

9 Hours

9 Hours

Mapp	ing of (	Course	Outco	me(s):											
CO															
	P01	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	Н		М			М							L		
CO2	М		М			М	L						L		
CO3	М		L			М		L			L		М	М	
CO4	М		L	L		L							М		
CO5	М	L	М	L		Н		L			М		М	М	
Cours	e Topic	c(s)	•	•	•	•	•	•		•	•				

# **Unit 1: INTRODUCTION TO FOOD AND NUTRITION**

Basic terms used in study of food and nutrition, Understanding relationship between food, nutrition and health

# **Unit 2:BALANCED DIET**

Functions of food-physiological, psychological and social., Concept of Balanced Diet, Food Groups, Food Pyramid, Food Exchange List, Principles of Meal Planning

# **Unit 3: NUTRIENTS**

Classification, digestion, absorption, functions, dietary sources, RDA, clinical manifestations of deficiency and excess of the following in brief: Energy, Carbohydrates, lipids and proteins, Fat soluble vitamins-A, D, E and K, Water soluble vitamins – thiamin, riboflavin, niacin, pyridoxine, folate, vitamin B12 and vitamin C Minerals – calcium, iron, iodine, fluorine and zinc

# **Unit 4: METHODS OF COOKING**

Dry, moist, frying and microwave cooking, Advantages, disadvantages and the effect of various methods of cooking on foods

# **Unit 5: NUTRITION IMPROVEMENT OF FOODS**

Nutrient losses in cooking and enhancing the nutritional quality of foods, Fortification of foods, Probiotic and Prebiotic foods.

# **Text Book(s):**

- 1. Bamji MS, Krishnaswamy K, Brahmam GNV (2009). Textbook of Human Nutrition, 3rd edition. Oxford and IBH Publishing Co. Pvt. Ltd.
- 2. Srilakshmi (2007). Food Science, 4th Edition. New Age International Ltd.

# 9 Hours

#### 9 Hours

9 Hours

# 9 Hours

# **Reference book(s):**

- 1. Sizer, F & Whitney, E. (2008). Nutrition: concepts and controversies. (11th ed.). Belmont, CA: Wadsworth/Thompson.
- 2. Millsaps, E.M. (Ed.). (2009). Writing at Carson-Newman college. (5th ed.). Jefferson City, TN: Carson-Newman.

FT18	3R209	F	OOD I	PROC	ESSIN	G TEC	CHNO	LOGY		L	Т	P		C	
										3	0	0		3	
Pre re	quisite:	NIL						С	ourse	Categ	gories:	Open	Elec	tive	
								(	Course	Туре	: Theo	ory			
Cours	e	To in	troduc	e stude	nts abo	out the	method	ls of pr	ocessir	ig and	l presei	rvatio	n to j	preve	ent
Objec	tive(s)	food	wastag	ge and l	osses										
Cours	e Outco	ome(s)													
CO1		Expl	ain the	curren	t scena	rio of f	ood de	mand i	n India	& wo	rld.				
CO2		Unde	erstand	the uni	it opera	ations to	o contr	ol the f	actors	affect	ing for	ods.			
CO3		Appl	y Unit	Operat	ions ar	nd Unit	Proces	ses in t	food pr	ocess	indust	ries.			
CO4		Expl	ain abo	ut the	packag	ing tecl	hnologi	ies for	various	s kind	s of fo	ods			
CO5		Appl unde	y the m r asepti	nanufac	cturing itions i	technic n food	ques in proces	the pro	oductio tries.	n of v	alue ad	ided f	food	produ	ucts
Марр	ing of C	Course	Outco	me(s):			1								
CO															
	<u> </u>	32	)3	4	)5	96	70	98	60	10	011	12	01	02	03
	P(	P(	P(	P(	P(	P(	P(	P(	P(	PC	PC	PC	PS	PS	PS
<b>GO</b> 1				-								-			
COI	Н	М		L		L		М				L	Μ	M	
CO2	М		L	М						L	L		М	L	
CO3	М		T		М	T					М		т		T
COS	101		L		IVI						101		L		L
CO4	М		М		L	L					М		L		L
CO5	М	T	М		T	T	н	М			T		М		
005	141	L	141		L		11	141					111		
Cours	e Topic	(s)	•	•	•	•	•	•	•						•

#### **Unit 1: INTRODUCTION**

#### 9 Hours

General aspects of food industry; World food need and Indian situation; Constituents of food; Quality and nutrition aspects; Food additive and standards

# **Unit 2: DETERIORATIVE FACTORS**

Deteriorative factor and their control; Preliminary processing methods; Conservation and Preservation Operations

#### **Unit 3: PRESERVATION METHODS**

Preservation by heat and cold; Dehydration; Concentration; Frying; Drying; Irradiation; Microwave heating.

### **Unit 4: PACKING METHODS**

#### 9 Hours

Sterilization and pasteurization; Fermentation; Pickling; Packing methods. Cereal, grains; pulses; Vegetables; Fruits; Spices; Fats and Oils.

Unit 5: PRODUCTION AND UTILIZATION OF FOOD PRODUCTS 9 Hours Bakery, confectionery and chocolate products; Soft and alcoholic beverages; Dairy products; Meat; poultry and fish products: - Factory Hygiene -Wastewater disposal and pollution control in food industry.

# Text Book(s):

1. P.J. Fellows. "Food Processing Technology –Principles and Practice". Woodhead Publication. 3rd edition.2009.

# **Reference Book(s):**

- 1. Toledo, R. T., Fundamentals of Food Process Engineering, Aspen Publishers, 2nd Edition, 2002.
- 2. Stephanie Clark, Stephaine Jung, Buddhi Lamsal. "Food Processing: Principles and Applications". Wiley Blackwell. 2nd Edition.2014.

FT18R2	210	CON	<b>MPOS</b>	TION	, QUA	LITY	& SAF	TETY (	OF	L	Т	P		Cre	dit	
I 1 10K2	210				FOO	DS				3	0	0	)	3	1	
Pre requ	isite:	NIL						Co	ourse (	Catego	ories:	Open	Elec	tive		
										Cour	se Typ	e: Tl	heory	7		
Course		To er	nable th	ne stude	ent to u	Indersta	and inte	eractior	ı betwe	een co	nstitue	ents a	nd its	s effec	ets	
Objectiv	ve(s)	on fo	od qua	lity												
Course (	Outco	me(s)														
CO1		Asse	es nutritional quality of food and composition luate sensory quality test with instruments													
CO2		Evalı	uate sensory quality test with instruments													
CO3		Setup	o qualit	y mana	igemen	t syste	m in fo	od indu	ıstry							
CO4		Inspe	ect fron	n raw n	naterial	to fina	ıl produ	uct in p	rocessi	ing lin	ie					
CO5		Anal	ysis of	undesi	rable co	onstitue	ents in	food du	uring p	rocess	sing					
Mapping	g of C	ourse	Outco	me(s):												
СО																
	01	02	03	04	05	90	01	08	60	010	011	012	01	302	303	
	Ā	Ā	Ā	Ā	P	Ā	Ā	Ā	Ā	P(	P(	P(	Ъ	PS	Sd	

CO1	Н		L			L						Μ	
CO2		Н	М	М	М					М			
CO3		М	Н		L	М	М		М	Н	М		
CO4		М	Н		L	L		L	М	Н		М	
CO5	L	М	Н			М	М		L	М			
Cours	e Topic	c(s)											

# **Unit 1: INTRODUCTION**

Ways of describing food quality: Composition, appearance, kinesthetic and flavor attributes. Nutritional quality of foods and its assessment (content and quality of nutrients). Microbiological quality of foods.

### **Unit 2: SENSORY**

Sensory quality and its evaluation, instrumental measurement of sensory attributes such as color, viscosity, texture etc.

### **Unit 3 : QUALITYCONTROL**

Quality control, quality assurance and total quality management in food industry.

# **Unit 4 :DEFECTS IN FOOD QUALITY**

Defects in food quality, its sources, classification, prevention and control. Statistical quality control. Quality costs.

# **Unit 5: ANTI NUTRITIONAL FACTORS**

Anti nutritional factors in food. Undesirable constituents developing in Process and storage of food. Microbial contamination, pesticide residues, concept of HACCP, physical, chemical and microbiological safety of food.

# TextBook(s):

- 1. MarkClute, Quality Controlforthefoodindustry, CRCpress, Nov2008.
- 2. VkJoshi,SensoryScience:PrinciplesAndApplicationInFoodEvaluation,AgrotechBooks,2ndedi tion,2006

# **ReferenceBook(s):**

- 1. ElenaCastell
  - perez, LjubicaDokic, PetarDokic, P.W. Vowsy, Rheology Applications ToFood Quality And Product Development, Blackwell PubProfessional, 2010
- 2. Fenemaowen, Foodchemistry. Marcel Dekkerpublication, 3rdedition, 2005

	L	Т	Р	Credit
				·

#### 9 Hours

# 9 Hours

# 9 Hours

9 Hours

FT18	8R211		BAKE	RYA	ND CO	ONFEC	TION	ARY		2	0		•	2	
				TE	CHN	OLOG	Y			3	U		U	3	
Pre re	equisite	NIL						Co	urse C	atego	ries: C	pen F	Electi	ve	
									Course	e Typ	e: Theo	ory			
Cours	se	On s	uccessf	ul com	pletion	n of the	subjec	et, stude	ents wi	ll get	exposu	re abo	out h	ow to	)
Objec	ctive(s)	proc	ess bak	ery and	l confe	ectionar	y prod	ucts							
Cours	se Outco	ome(s)													
CO1		Adap	pt the st	tandard	ls and	regulati	ons fo	llowed	in Bak	ery ar	nd conf	ectior	nary i	ndus	try
CO2		Utili	ze bake	ery unit	proce	ssing n	nachine	ery effe	ctively						
CO3		adap	t variou	is proc	ess flo	w line i	in conf	ectiona	ry and	baker	y prod	ucts			
CO4		Hand	ile con	fection	ary pro	oducts									
CO5		Kno	wledge	about	prepar	ation m	ethod a	and qua	lity as	pect o	f cerea	l base	ed pro	oduct	s
Mapp	oing of (	Course	Outco	me(s):											
CO															
	01	02	03	04	05	90	01	08	60	010	011	012	01	03	03
	P	Ъ	Pe	P	P	P	Ъ	P	P	P(	P(	PC	PS	PS	PS
CO1	Н		М			L		М			L		М		-
CO2		М	М			L				М	L		Μ		
CO3	L	М	Μ			L				Μ	L		Μ		
CO4		Н	М			L				М	L		М		
CO5		М	М			L				М	L		М		-
Cours	se Topic	:(s)		I	<u> </u>	_ <b>_</b>	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

#### **I** (a)

#### **Unit 1: BAKERY INDUSTRY**

Current status, growth rate, and economic importance of Bakery Industry in India. Product types, nutritional quality and safety of products, pertinent standards & regulations.

#### Unit 2: BREAD, BUNS AND PIZZA BASE

Ingredients & processes for breads, buns, pizza base, Equipments used, product quality characteristics, faults and corrective measures

#### Unit 3: CAKES, BISCUITS, COOKIES & CRACKERS

Ingredients & processes for cakes, Equipments used, product quality characteristics, faults and Corrective measures. Different types of icings.

#### **Unit 4: CONFECTIONARY PRODUCTS**

Hard-boiled candies, toffees fruit drops, chocolates and other confectionaries:ingredients,equipments&processes,productqualityparameters,faultsand corrective measures.

9 Hours

#### 9 Hours

# 9 Hours

# Unit 5: BREAKFAST CEREALS, MACARONI PRODUCTS AND MALT 9 Hours

Production and quality of breakfast cereals, macaroni products and malt, Production & quality of chewing and bubble gums, cocoa products, breakfast cereals, macaroni products, sprouted grains.

#### Text Book(s):

1.Beckette, Industrial Chocolate Manufacture, Wiley-blackwellpublisher, 3rdedition, 2009 2.Faridi Faubion, Dough rheology and baked product texture, CBSpublications, 1997

#### **Refernce Book(s):**

1. Pyler, Bakingscience and Technology, Sosland PubCo, 2009

ET18	D211		DF			CUN		177		L	Т	]	P	Crea	lit
<b>F I 10</b>	KJII		BE	VEKA	GE II	LCHN	OLUG	r <b>X</b>		3	0	(	0	3	
Pre ree	quisite:	FT18	R209						Cou	rse Ca	tegor	y: Op	en E	lectiv	e
									Cou	rse Ty	<b>pe:</b> T	heory			
Course	e	The	student	s acqui	re kno	wledge	of var	ious pro	ocessir	ng and j	preser	vatior	n tecl	hniqu	es
Object	tive(s)	for b	everage	es.											
Course	e Outco	ome(s)													
CO1		Proc	ess ferr	nented	bevera	ages wi	th and	withou	t alcoh	ol					
CO2		Proc	ess frui	t juices	s and c	oncent	rates w	ith proc	cess eq	uipmei	nts				
CO3		Proc	ess inst	ant cof	fee po	wder a	dapting	g new te	echnolo	ogies					
CO4		Adap	ot new	techno	logy to	proces	s tea								
CO5		Adap	ot brew	ing and	l ferme	entatior	n for ef	fective	produc	ction of	bever	rages			
Mappi	ing of C	Course	Outco	me(s):											
CO															
	01	02	03	6	05	90	10	08	60	010	011	012	01	02	03
	P	P	P	P	P	P	P	P	P	P(	P(	P(	PS	PS	PS
CO1	М		М			L		М					Н	L	
CO2	М		М		Т	T					T		ц		
002	IVI		IVI			L					L		11		
CO3	М		М		L	L					L		Η		
CO4	М		М				L				L		М		
CO5	М										L		Н		
Course	e Topic	(s)	I	I	I	I	<u> </u>	1	I	<u> </u>	I	I		I	

# **Unit1: INTRODUCTION**

Classification, production and consumption of beverages- Alcoholic beverages & nonalcoholic beverages- carbonated and noncarbonated.- Concept of fermentation for production of beverages, legislation of beverage products.

# Unit 2: FRUITJUICES

Fruit Juices Squashes &Cordials:Equipment for fruit juices,double operations process-Pulping equipment, flash pasteurization, fruit beverage-preparation &preservation- Straining, filtration& clarification- Preservation of fruitjuices preservation by additionof sugar,freezing, by carbonation &by filtration.

# Unit 3: COFFEEANDTEAPROCESSING

Coffee-Production practice, processing of coffee beans into powder, instant coffee, decaffeination- Tea-Leaf processing, various classes of tea, changes during processing of tea leaves, instant tea.

# **Unit 4: CHEMISTRYOFFERMENTATION**

compositionofwine-mold&yeastofgrape&wine-Productionofred&whitetablewine, productionof sherry sparkling wine,desertwinever mouth wine, flavored wine,fruit wine etc-Nonbacterial &bacterial spoilage of wine-winery byproducts.

# Unit 5: BREWING

FermentedBeverages:Beer–Brewing,rawmaterial&manufacture,storagefinishing& packaging- Brandy &whisky production - Definition, compounds &methods for manufacturing

# TextBook(s):

1. Varman Alan, and Sakesland, Technology, Chemistry and Microbiology of food

beverages,Springer(sie)Publisher,2ndedition,2009

# **Reference**(s):

- 1. GirdharilalandSiddappa,Preservationof FruitsandVegetables,KalyaniPublishers, 2001.
- 2. W.V.Cruees, Commercial fruits and Vegetable products, Agrobios Publishers, 2009.

FT18R312	FERMENTED FOOD PRODUCTS	L	Т	Р	Credit
		3	0	0	3
Pre requisite:	NIL Cours	se Categ	gories: Op	oen Ele	ective
	Cou	ırse Typ	e: Theory	у	
<b>Objective</b> (s)	To provide students with the skill to produce some	foods a	nd drinks	result	ing from
	alcoholic or acidic fermentation process.				
Course Outco	me(s)				
CO1	Understand the basics of fermentation process and	their be	nefits.		
CO2	Adapt the Impact of fermented products and its be	nefits			

# 9 Hours

9 Hours

# 9 Hours

9 Hours

CO3		Prese	erve fer	mented	d Food	s by ad	apting	techno	logy to	meet	dema	nds.			
Mapp	ing of (	Course	Objec	tive(s)	:										
СО	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	P010	P011	P012	PSOI	PSO2	PSO3
CO1	М					L							L		
CO2	L	М						L					L		
CO3	М		М			L					M		Μ		
CO4			М			М					М		М		
CO5			М			М					M		М		
Cours	e Topic	r(s)													

# **Unit 1: INTRODUCTION TO FERMENTATION**

Definition-benefit offermentation-nutritive value offermented foods-microbial changes infermentedfoods-microorganism-proteolytic, liploytic and fermentativebacteria.

#### **Unit 2: CULTUREMAINTENANCE**

Preparation and Maintenance of Bacterial, Yeast and Mold cultures for food fermentations. Probiotics - Lactic acid bacteria-activities and health-promoting effects. Mushrooms: Cultivation and preservation.

#### **Unit 3: FERMENTEDPRODUCTS**

Fermented Dairy Products: Cheeses, Curd and Yoghurt, Buttermilk and the fermented milks. Spoilages and effects of fermented dairy products and their control. Fermented meat and fish products, Oriental fermented foods

#### **Unit 4: FERMENTEDDRINKS**

Fermentative Production of Beer. Wines. Cider and Vinegar, distilled spirits (eg. Rum, gin, whisky), Fermented Vegetables (Pickles).

# **Unit 5: MICROBIALPROTEINS**

Production Baker's Microbial of Yeast. Proteins and fats. Foodenzymes(eg.Amylases,protease,lipases,pectinases,rennin),HFCS(HighFructoseCornSyrup)

#### **TextBook(s):**

- 1. SukumarDe, Outlinesof DairyTechnology, OxfordUniversityPressNDelhi, 1991.
- 2. Prescott and Dunn, Industrial Microbiology, Agrobios (India) publisher, 2009

#### **Reference Book(s):**

- 1. L.E.Casida, Industrial Microbiology, New Age International (p) Ltd NDelhi, 2007
- 2. W.C.frazier and D.C.Westhoff, Food Microbiology, Tata Mcgraw Hill publisher, 3rd

# 9 Hours

9 Hours

9 Hours

# 9 Hours

FT18	3R313		FOO	D LAV	VS AN	D STA	NDAI	RDS		L	Τ	P		Cree	lit
										3	0	0	)	3	
Pre re	equisite:	FT18	R210						Cou	ırse Ca	ategor	ies: C	)pen	Electi	ve
										Cours	se Typ	pe: Th	neory		
Cours	se	To e	nable th	ne stude	ents to	unders	tand th	e basic	s of f	ood saf	ety an	id regi	ulatio	ons	
Objec	ctive(s)	gove	rning tl	he same	e, the v	world o	ver.								
Cours	se Outco	ome(s)													
CO1		Stud Indu	ents wi stries	ll be ab	ole to d	levelop	Protoc	ols bas	sed or	GMP	for Fo	od Pr	ocess	sing	
CO2		Deve regul	lop nev lations	w innovand con	vative	norms	and En	sure in	plem	entatio	n of a	dequa	te sat	fety	
CO3		Stud from	ents wi produc	ll be ab ction li	ole to ru nes.	un risk	analys	is base	d upo	n data a	and sta	atistic	s obt	ained	
Mapp	ing of C	Course	Outco	me(s):											
CO															
	01	02	03	04	05	90	01	08	60	010	011	012	S01	S02	S03
		Ц				H	H	H	Щ	Р	Р	Р	P	P	P
CO1	Н		М			L		Н	М	М	L	М	М	Н	
CO2		Н						Н	М	М	L	М		Н	
CO3		М	Н					Н	М	М	L	М		Н	
CO4		М	М					Н	М	М	L	М		Н	
CO5		М	Н				Н	Н	М	М	L	М		Н	
Cours	se Topic	<b>(s)</b>				1	1	1	1	1	1	1		1	L

# Unit 1: GENERAL PRINCIPLES FOR FOOD SAFETY AND HYGIENE

Principles of food safety and quality - Food Safety System - Quality attributes - Total Quality Management. Good Hygienic Practices, Good Manufacturing Practices

#### Unit 2: HACCP

HACCP –Introduction, Seven Principles, – AOQL (Average Outgoing Quality Limit) – HACCP plan chart.

# **Unit 3: INTERNATIONAL BODIES**

Structure, organization and practical operation of International Standardization Organization (ISO),

# 9 Hours

9 Hours

Codex Alimentarius, World Trade order, World Health Organization

# **Unit 4 :NATIONAL STANDARDS**

Food standards and Specifications: FSSAI- Structure, Organization and Functions, PFA, AGMARK, and BIS Standards.

# **Unit 5: FOOD LABELLING STANDARDS**

Food labelling –Standards for processed food, irradiated foods, Safety aspects of drinking water and Indian regulations for bottled water.

#### Textbook(s):

- 1. Neal D. Fortin. 2009. Food regulation, Wiley Publishers.
- 2. Naomi Rees. David Watson. 2000. International standards for food safety, An Aspen Publications.

#### **Reference Book**

1. O'Rourke. 2005. European Food law, 3rd Edition, Thomson, Sweet and Maxwell.

			PA	CKA	GINC	Ĵ		L	J	Г	Р		Cre	edit		
FT18	R314		TECH	INOL FOO	.OGY DS	OF		3	(	)	0			3		
Pre ree	quisite	NIL							Cou	rse C	latego	ories:	Open	Elect	ive	
									Co	urse 🛛	Гуре:	Theo	ry			
Object	tive(s)	To s	study a	bout t	he fur	nctions	s of pa	ckagi	ng alo	ng wi	th the	influ	ence o	of vari	ious	
		facto	ors on	food												
Course	e Outco	ome(s	5)													
CO1		Und	erstan	d pacl	caging	g mate	rials a	nd its	impor	tance	in fo	od Inc	lustry			
CO2		Ada	pt and utilize packaging materials for right application in Food Industry ck Barrier properties of Packaging materials to avoid cross contamination													
CO3		Che	eck Barrier properties of Packaging materials to avoid cross contamination													
		with	eck Barrier properties of Packaging materials to avoid cross contamination h air, water and printing ink													
CO4		Stan	dardiz	ze test	ing me	ethods	for pa	ickagi	ing ma	aterial	to as	sure q	uality			
CO5		Con	firm p	ackag	ing la	ws and	l regu	lation	s meet	ting st	andar	ds				
Mappi	ing of (	COs a	nd Po	S												
CO																
		- `							-	0	1	5	1	02	)3	
	201	202	503	204	505	506	207	80d	606	201	201	201	SSC	SC	SC	
CO1		M	H	I	H	T	I	I	н	I	I	H	T	I	I	
	п	IVI				L										
CO2		М	Н		М		М						М			
				-			-									
CO3		Μ	Μ	L			L						Μ			

9 Hours

CO4	Н		М		L				М	М		
CO5	М		Н		Н	Н	L	L	L		Η	
Course	Toni	a(a)										

#### Course Topic(s)

# **Unit 1: INTRODUCTION TO FOOD PACKAGING**

Packaging terminology –definition.Functions of Food Package, Packaging environment. Characteristics of food stuff that influences packaging selection, Shelf Life Estimation.

### **Unit 2 : PACKAGING METHODS**

Active packaging, CAP & MAP. Special packaging methods-vacuum and gas packaging, shrink package, retort pouches, Biodegradable packages.

### **Unit 3: PACKAGING MATERIAL AND THEIR PROPERTIES**

Manufacturing of Metal cans, glass containers, plastic containers and pouches, paper and paperboard. Properties of plastics, .Filling and sealing of Flexible plastic containers

### **Unit 4 : PACAKGING OF FRESH AND PROCESSED FOODS**

Packaging of Fruits and vegetables, Fats and Oils, Spices, meat, Poultry and sea foods, Dairy Products, Bakery, beverages, Dehydrated and frozen foods. Liquid and powder filling machines –bottling machines, Form Fill Seal (FFS) and multilayer aseptic packaging machines.

# **Unit 5: ENVIRONMENTAL ISSUES IN PACKAGING**

Packaging Laws and Regulations, Safety aspects of packaging materials; sources of toxic materials and migration of toxins into food materials, Environmental & Economic issues, recycling and water disposal.

# TextBook(s):

1. Robertson,G.L. "Food Packaging: Principles and Practice ( 2nd Edn). Taylor & Francis.2006.

#### **ReferenceBook(s):**

1. Han, J.H. "Innovations in Food Packaging". Elsevier Academic Press, 2005.

2. Ahvenainen, R. "Novel Food Packaging Techniques". CRC Press. 2003.

Coles, R., McDowell, D. and Kirwan, M.J. "Food Packaging Technology". CRC Press. 2003.

FT18R315	NUTRACEUTICALS AND FUNCTIONAL	L	Т	P	С
111010315	FOODS	3	0	0	3
Pre requisite:	FT18R208 Cours	e Categ	ories: Op	en Ele	ctive
		Course	Type: 1	heory	

# 9 Hours

9 Hours

#### 9 Hours

#### 9 Hours

Cours	se	Desc	ribe th	e reseat	rch on	the hea	alth ber	nefits of	f functi	onal	foods	and				
Objec	ctive(s)	nutra	aceutica	als iden	tifying	streng	ths ,lin	nitation	s and f	uture	direc	tion	S			
Cours	se Outco	ome(s)														
CO1		Unde	erstand	about	functio	nal foc	ods and	its pro	perties							
CO2		Unde	erstand	regard	ing Me	etabolic	e disorc	lers and	l its rel	ation	with	func	ction	al foc	ods	
CO3		Lear	n the b	enefits	of fort	ificatio	n in Fo	od sup	plemen	nts						
CO4		Utili	ze food	l waste	for nut	trition	enrichr	nent								
CO5		Unde	erstand	the imp	portanc	ce of P	rebiotio	c and pr	robiotic	c food	ds					
Mapp	ing of (	Course	irse Outcome(s):													
СО																
	POI	PO2	P03 P04 P05 P06 P07 P07 P07 P07 P07 P07 P010 P010 P011 P012 P011 P012 PS01 PS01													
<u>CO1</u>	U	М		T		т							T			
COI	п	101											L			
CO2		М	Н			М		Н		М		L	L	L		
CO3	М	М				М		М			М	L		L		
CO4	L		М			М	L	L			L	L	L			
CO5	L		М			М	Η	M			М	M	М			
Cours	e Topic	<b>c(s)</b>	1	1	•	1		4	1	•			1	LI		

#### Unit 1: NUTRACEUTICALS: HISTORICAL, TELEOLOGICAL ASPECTS AND CLASSIFICATION 9 Hours

Introduction – Historical Reviews - Teleology of nutraceuticals - Organization models for nutraceuticals – Classification of Nutraceuticals based on the sources– Animal, Plant and Microbial – Nutraceuticals in specific foods.

# Unit 2: FOODRECOMMENDED FOR METABOLIC DISORDER 9 Hours

Food recommended and restricted in metabolic disorders and disturbances, gastrointestinal disorders; fever and infection; liver, gall, bladder and pancreatic disturbances; blood, circulatory and cardiac diseases; urinary and musculo skeletal diseases; allergies.

#### **Unit 3: NUTRITIONAL DEFICIENCIES**

Nutritional deficiencies and its correction trough fortification and supplementation of foods. Beneficial effect of spices, honey, spirulina etc.

# **Unit 4 :HEALTH BENEFITS OF MICRO NUTRIENTS**

Health benefits/mode of action of PUFA/gamma linolenic acids, antioxidants, dietary fiber, oligo saccharides, sugaralcohols, peptides and proteins, glycosides, alcohols, iso-prenoides and vitamins, choline, LAB, phenolics, flavonols, minerals

# **Unit 5: HERBS AS FUNCTIONAL FOODS**

#### 9 Hours

# 9 Hours

Herbal medicine – Herbs as ingredients in functional foods – actions of herbal and evidence of efficacy, Cruciferous vegetables and cancer prevention, Evolution of marketing environment for Functional foods and Nutraceuticals, Potential product positioning.

#### Text Book(s):

Robert E.C Wildman. Handbook of Nutraceuticals and Functional Foods, Ed., Robert E.C. Wildman, CRC Press LLC. ISBN – 0849387345, 2001.

ET1	2D/10	DD	OCES	SINC	OF M			DUCT	2	L		Т	P		С
<b>F I I C</b>	<b>M4</b> 10		OCED	5110	OF M			DUCI	5	3		0	0		3
Pre re	auisite:	FT18	R209					Co	ourse (	Categ	orie	s: O1	ben F	Elect	ive
	1							Co	urse T	Гуре:	The	ory			
Cours	se	To u	ndersta	ind abo	ut the	compos	sition, n	utritive	e value	and	proce	essin	g tec	hno	logy
Objec	tive(s)	of m	arine p	roducts	5										
Cours	se Outco	ome(s)													
CO1		The	student	will be	e able t	o unde	rstand a	about th	ne com	posit	ion o	f ma	rine	prod	ucts
CO2		The	student	will l	have kr	nowled	ge on t	he pro	cessin	g of	ma	rine	and t	heir	by
CO3		Exar	nine th	e quali	tvofm	arine n	roducts	and an	ality i	ssues	in p	ost n	rodu	ctior	n and
000		facto	ors affe	cting th	ne quali	ity	100000	, una qu	iunity i	55405	III P	00 <b>.</b> P	1044	00101	i unu
Mapp	ing of C	Course	Outco	me(s):											
CO															
	01	02	33	54 24	05	9C	70	<b>3</b> 8	6C	010	)11	012	01	02	03
	PC	P(	P(	P(	P(	P(	P(	P(	Ы	PC	PC	РС	PS	PS	PS
CO1	М												L		<u> </u>
CO2	М					L	Η						Μ		L
CO3	М	М		L	L						L		L	L	
CO4	L		М								М		М		
CO5	L	М	М	L	L						L		М		
Cours	e Topic	:(s)	<u> </u>			<u> </u>				<u> </u>	I			L	<u> </u>

#### **Unit 1: INTRODUCTION**

Chemistry of sea food components- Proteins, Lipids. Protein hydrolysis in sea foods, oxidation of lipids in sea foods. Flavor of fish- Taste active component

#### **PROCESSING OF BY-PRODUCTS**

Fish By-products: Protein, Peptides, Collagen and Gelatin, Fish oil. Crustaceans By-products: Chitin and Chitosan, Seaweed by-products and their applications.

#### 9 Hours

#### **Unit 3: QUALITY OF SEA FOODS**

Freshness quality of sea foods- Appearance, Color, Texture, Odor and Flavor, Destructive slow analyses, Alternative methods. Factors affecting the loss of quality in sea foods.

#### **Unit 4: PRESERVATION OF SEA FOOD**

Chilling of fresh fish, Freezing and frozen storage, Drying of sea foods, Smoking and other methods of preservation

#### **Unit 5: CANNING OF SEA FOODS**

#### 9 Hours

Introduction, Unit operations in the canning process- primary processing, heat treatment, packing and sealing, cooling. Production of canned sea foods – Mackerel, Salmon, Tuna, Shrimp and clams.

# **Text Book(s):**

- 1. Shahidi and J.R. Botta, "Sea foods: Chemistry, Processing, Technology and Quality", Springer Science Business media, 1996.
- 2. 2. Zdzisław E. Sikorshi, "Sea foods: Resources, Nutritional Composition, and Preservation", CRC Press, 2004.

FT1S	<b>RR41</b> 1	1		NAN	ОТЕ	CH	NOL	OGY	IN FO	OD		L	Т	P	Credit						
<b>FIR</b>	<b>JIN 71</b>					PRC	OCES	SING	r			I  I  I  Creating    3  0  0  3    Course Categories: Honours Course Type: Theory    gy principles and industry									
Pre re	equisi	te: I	T18F	<b>R210</b>							(	Cours	e Categ	ories:	Honours						
												(	Course 7	Гуре: Т	Theory						
Cours	se	,	The st	udent	will	be a	ble to	work	in nan	otechn	ology p	orincip	oles and	indust	ſУ						
Objec	tive(s	<b>s</b> )	applic	ations	5																
Cours	se Ou	tcon	ne(s)																		
CO1		-	Under	standing about basic of nanotechnology rstand about nano particles structures / key concepts of nanotechnology in food packaging																	
CO2			Under	rstand about nano particles structures y key concepts of nanotechnology in food packaging rstand the Ethical behaviors to be followed in nanotechnology																	
CO3			Apply	rstand about nano particles structures / key concepts of nanotechnology in food packaging rstand the Ethical behaviors to be followed in nanotechnology																	
CO4			Under	y key concepts of nanotechnology in food packaging erstand the Ethical behaviors to be followed in nanotechnology																	
CO5			Under	stand	the r	egul	ations	of na	notech	nology	in foo	ds									
Mapp	oing o	f Co	urse (	Outco	me(s	5):															
CO																					
			~	-		5	4	~		0	1	5	01	02	)3						
	POJ	PO2	PO3	ЪО	POʻ	PO(	PO7	PO	POG	POJ	POJ	POJ	PSC	PSC	PSC						
CO1	Н		М	L	Η	L							М		L						
CO2	Н		М	L	Η	L					М	М			Н						
CO3		Μ	Н	L	Н	L					М	М			Н						

#### 9 Hours

CO4	L		М	L	Η	L	Н			М	М	
CO5			Η	L	Η	L	М	L	М		М	
		• ()										

#### Course Topic(s)

#### Unit 1: BASICS OF NANOTECHNOLOGY AND NANOSTRUCTURES IN FOOD

#### 9 Hours

9 Hours

9 Hours

Background-Evolution of new technologies in the food sector, Public perception of nanotechnology food products, Nanomaterials for food applications-Nano-sized food ingredients and additives, Naturally occurring food nano substances and nanostructure

#### **Unit 2: NANOSENSORS**

Introduction-Sensors- Biosensors-Enzyme biosensors and diagnostics-DNA-based biosensors and diagnostics-RFID- Integrated nano sensor networks, detection and response-Nano sensors for food quality- Transduction principles.

#### **Unit 3: NANOTECHNOLOGY IN FOOD PACKAGING**

Introduction-Reasons to package food products-Physical properties of packaging materials-Antimicrobial functionality-Visual indicators-Improvement of mechanical properties through nanocomposites, nano-structured coatings, Active packaging materials-Intelligent packaging concepts.

### **Unit 4: NANO-ETHICS**

Nano-ethics-Historical background-Identifying and avoiding unethical nano technological products-Ensuring ethical nanotechnological research, innovation and production-Nano-ethics as the question of the good nano technological society

# **Unit 5: APPLICATIONS**

Current and projected applications of nanotechnology for the food sector-Potential health risks and governance of risks - Regulations pertaining to nano foods the world over

#### **Text Book(s):**

Qasim Chaudhry, Lawrence Castle and Richard Watkins, "Nanotechnologies in Food" published by Royal Society of Chemistry, 2010.

#### **Reference Book(s):**

Lynn J. Frewer, Willem, Norde, Arnout Fischer, and Frans Kampers, "Nanotechnology in Agri-Food Sector" Published by Wiley-VCH Verlag GmbH & co. KGaA Hoschstr, 2011.

FT18R412	ENVIRONMENTAL POLLUTION		L	Т	Р	Credit
1 1 1011412	CONTROL		3	0	0	3
Pre requisite:	FT18R313	Cou	ırse Ca	tegories:	Open	Elective
			Cours	se Type:	Theory	1

#### 9 Hours

Cours	se	To e	nable tl	ne stude	ent to ı	inderst	and en	vironm	ental p	ollut	ion c	ontro	ol in fo	ood			
Objec	tive(s)	indus	stries														
Cours	se Outco	ome(s)															
CO1		Utili	ze bypi	oducts	from c	ereals,	pulses	, oilsee	ds, frui	its ar	nd ve	getab	oles				
CO2		Man	age ind	ustrial	waste	from fo	od ind	ustries									
CO3		Use	of biolo	ogical o	xidatio	on syste	em										
CO4		Use	advanc	ed wast	te wate	er syste	m by u	sing ph	ysic ch	nemi	cal m	netho	ds				
CO5		Anal	yze env	vironme	ental is	sues th	at lead	to glob	al warr	ning	, acid	l rain	and g	reen h	ouse		
		effec	ts														
Mapp	ing of C	Course	rse Outcome(s):														
СО			$\frac{1}{100} = \frac{1}{100} = \frac{1}$														
	01	02	03	04	05	06	01	08	60	010	)11	012	01	02	03		
	Ā	Ā	Ā	đ	Ā	Ā	Ā	Ā	đ	P(	P(	P(	PS	PS	PS		
CO1	Н		М				Н						М				
CO2		М	М			L	Н	Μ		L				М			
001																	
CO3		М	Μ				Н				Μ		L				
CO4	М		М	М			Н	М			М		L				
CO5			М			L	Н	Н						М			
Cours	e Topic	(s)	1	1	1	I	ı	1	1	1			I	1			

#### **Unit 1: FOOD WASTE FROM INDUSTRIES**

Characterization and utilization of by-products from cereals, pulses, oilseeds, fruits, Vegetables, plantation, dairy, eggs, meat, fish and poultry processing industries. Elements of importance in efficient management of wastes from aforesaid food industries.

# **Unit 2: POLLUTION AND ITS ABATEMENT**

Standards for emission or discharge of environmental pollutants from food processing Industries covered under EPA. Characterization of food industries effluents, in terms of parameters of importance.

# **Unit 3: PRIMARY TREATMENTS OF EFFLUENT**

Screening, sedimentation, float at ion as per and primary treatments, biological oxidations:-objectives, organisms, reactions, oxygen requirements, a eration devices.

# **Unit 4: ADVANCED WASTE WATER SYSTEMS**

Effect on characteristic parameters of effluents in treatments using lagoons, trickling filters, activated sludge process, oxidation ditches, rotating biological contracters and theirs variations and advanced modifications. Coagulation and flocculation, disinfection, handling and disposal of sludge and treated effluents Conforming to EPA provisions.

# 9 Hours

9 Hours

### 9 Hours

# **Unit 5: ENVIRONEMENTAL ETHICS FOR SUSTAINABLE DEVELOPMENT 9 Hours**

Environmental ethics-issues and possible solutions-population explosion, climatic change, ozone layer depletion,global warming,acid rainand greenhouse effect. Sustainable development: definition, objectives and environmental dimensions of sustainable development- environmental audit for sustainable development.

# TextBook(s):

- 1. GreenJH,KramerA, Foodprocessing wastemanagement AVI Publishers,West port,CT,1979.
- 2. VassoOreopoulou,WinfriedRuss,(Eds.),Utilizationofby-productsandtreatmentof wasteinthefoodindustry,Springer,2007.

# **Reference**(s):

- 1. NFGray, Watertechnology: Anintroduction for Scientists, Elsevier, 2005.
- 2. KCAgarwal, Environmental pollution, Vedams Books, 2001.

ET1	D/12	TE	CHNO	LOGY	OF F	TOOD	EMUL	SIONS	5,	L		Т	Р	C	redit	
ГП	<b>5K415</b>			FOA	MS Al	ND GE	LS			3		0	0		3	
Pre re	equisite:	FT18	R272							Cou	irse (	Catego	ories:	Hor	ours	
										Cou	irse '	Гуре:	Theor	ry		
Objec	ctive(s)	To in	npart b	asic kn	owledg	ge rega	rding fo	ood disp	persion	n sys	tems	, their	forma	atior	i,	
		beha	vior an	d facto	rs affec	cting th	eir stab	oility.								
Cours	se Outco	ome(s)														
CO1		To u	ndersta	nd abo	ut food	l disper	sions									
CO2		To u	ndersta	nd abo	ut food	l emuls	ions									
CO3		To u	ndersta	nd abo	ut foan	n and st	tructure	e								
CO4		To u	understand about structure of gel understand about theory of gel formation													
CO5		To u	understand about theory of gel formation se Outcome(s):													
Mapp	ing of C	Course	Outco	me(s):												
CO																
	01	02	03	24 24	<b>D5</b>	9C	LC	<b>3</b> 8	60	010	)11	012	01	02	03	
	PQ	P(	PC	PC	P(	PC	PC	PC	Ы	PC	PC	РС	PS	PS	PS	
001	**															
COI	H												Μ			
CO2	Н												М			
CO3	Н										L		М		L	
CO4	Н										М		М		L	
CO5	Н										М		М			
Cours	se Topic	e(s)						<u> </u>						1		
Unit 1	l: FOOI	D DISI	PERSI	ONS										9 H	Iours	

#### **Unit 1: FOOD DISPERSIONS**

Food dispersions, their characteristics and factors affecting food dispersions.

#### **Unit 2: FOOD EMULSIONS**

Food emulsions; emulsifiers and their functions in foods; the HLB concept in food emulsifiers; emulsion formation and stability; polymers and surfectants.

# **Unit 3: FOAM AND STRUCTURES**

Milk foams and their applications, structure of foams, egg foams and uses, foam formation and stability.

# **Unit 4: STRUCTURE OF GELS**

Structure of dairy foods representing emulsions, foams and gels; physical structure of fat rich, concentrated, fermented, coagulated and dried products.

# 9 Hours

# 9 Hours

# **Unit 5: THEORY OF GEL FORMATION**

Theory of gel formation; pectic substances and jellies; fruit pectin gels; milk jellies. Text Book(s):

- Stig E.Friberg., Kare Larsson and Johan Sjoblom. "Food Emulsions". CRC Press.2003.
  David Julian Mc Clements. "Food Emulsions". CRC Press. 1998.

# **Reference Book(s):**

1. Blanshard JMV & Lillford P. "Food Structure and Behaviour". Academic Press. 1987

FT18	RR414		NAN	OTEC	HNOI	LOGY	IN FO	OD		L		Т	P	Cr	edit
<b>FIR</b>	<b>JX717</b>			Pl	ROCE	SSING	r			3		0	0		3
Pre re	equisite:	FT18	R251						(	Cour	se C	atego	ories: ]	Honou	ırs
											Cou	rse T	ype: 🛛	Theory	Y
Cours	se	The s	student	will be	e able t	o work	in nan	otechno	ology p	orinc	iples	and	indust	ry	
Objec	tive(s)	appli	cations	5											
Cours	se Outco	ome(s)													
CO1		Unde	erstand	ing abo	out basi	c of na	notech	nology							
CO2		Unde	erstand	about	nano pa	articles	structu	ires							
CO3		Appl	y key c	concept	s of na	notech	nology	in food	l packa	aging	5				
CO4		Unde	erstand	the Eth	nical be	ehavior	s to be	follow	ed in n	anot	echn	ology	7		
CO5		Unde	erstand	the reg	gulatior	ns of na	notech	nology	in foo	ds					
Mapp	ing of C	Course	Outco	me(s):											
СО														-	
	01	02	03	04	05	06	07	08	60	010	)11	012	01	02	03
	P	Ā	Ā	Ā	Ā	Ā	Ā	Ā	Ā	P(	P(	P(	PS	PS	PS
CO1	Н		М	L	Н	L							М		L
CO2	Н		М	L	Н	L					М	М			Н
CO3		М	Н	L	Н	L					М	М			Н
CO4	L		М	L	Н	L		Н				М		М	
CO5			Н	L	Н	L		М		L	М			М	
Cours	e Topic	:(s)				<u> </u>				1					<u> </u>

#### **Unit 1: BASICS OF NANOTECHNOLOGY AND NANOSTRUCTURES IN FOOD 9 Hours**

Background-Evolution of new technologies in the food sector, Public perception of nanotechnology food products, Nanomaterials for food applications-Nano-sized food ingredients and additives, Naturally occurring food nano substances and nanostructure

#### **Unit 2: NANOSENSORS**

Introduction-Sensors- Biosensors-Enzyme biosensors and diagnostics-DNA-based biosensors and diagnostics-RFID- Integrated nanosensor networks, detection and response-Nanosensors for food quality- Transduction principles.

#### **Unit 3: NANOTECHNOLOGY IN FOOD PACKAGING**

Introduction-Reasons to package food products-Physical properties of packaging materials-Antimicrobial functionality-Visual indicators-Improvement of mechanical properties through nanocomposites, nano-structured coatings, Active packaging materials-Intelligent packaging concepts.

#### 9 Hours

### **Unit 4: NANO-ETHICS**

Nano-ethics-Historical background-Identifying and avoiding unethical nanotechnologicalproducts-Ensuring ethical nanotechnological research, innovation and production-Nano-ethics as the question of the good nanotechnological society

# **Unit 5: APPLICATIONS**

Current and projected applications of nanotechnology for the food sector-Potential health risks and governance of risks - Regulations pertaining to nano foods the world over

### Text Book(s):

Qasim Chaudhry, Lawrence Castle and Richard Watkins, "Nanotechnologies in Food" published by Royal Society of Chemistry, 2010.

### **Reference Book(s):**

Lynn J. Frewer, Willem, Norde, Arnout Fischer, and Frans Kampers, "Nanotechnology in Agri-Food Sector" Published by Wiley-VCH Verlag GmbH & co. KGaA Hoschstr, 2011.

FT18	3R415		D	RYIN	G TEC	CHNOI	LOGY			L		Т	P	Cre	edit	
										3		0	0		3	
Pre-re	equisite:	FT18	<b>R372</b>						(	Cour	se C	atego	ories:	Honou	ırs	
										Cour	se T	ype:	Theor	У		
Cours	e	To en	nable th	ne stude	ent to u	Indersta	and bas	ic theo	ry of d	rying	g and	l its s	ignific	ance i	n	
Objec	tive(s)	food	system	IS												
Cours	e Outco	ome(s)														
CO1		Unde	erstand	the imp	portanc	e of dr	ying as	a meth	nod of	food	proc	cessin	g			
CO2		Unde	rstand the principle and working of various types of dryers. y the knowledge on drying technology in various food industries. erstand and apply the principle of freeze drying in the industry													
CO3		Appl	y the knowledge on drying technology in various food industries. erstand and apply the principle of freeze drying in the industry													
CO4		Unde	erstand	y the knowledge on drying technology in various food industries. rstand and apply the principle of freeze drying in the industry												
CO5		Unde	rstand and apply the principle of freeze drying in the industry rstand and apply the fluidized bed drying technology in the industry													
Mapp	ing of C	Course	Outco	me(s):												
СО																
	01	02	03	04	05	06	07	08	60	<b>D1</b> 0	011	012	301	302	303	
	Ь	Р	Р	Р	Р	Р	Р	Р	Р	P(	P(	P(	PS	Po	PS	
CO1	Н	М	М	Н									М		L	
CO2	М		Н		М						М		М		L	
															_	
CO3	М		М		М						Μ		М		L	
CO4	М		М		М						Μ		М		L	

#### 9 Hours

CO5	М		Μ	М			М	М	L
Cours	e Topic	c(s)							

#### **Unit 1: BASICS OF DEHYDRATION**

Principles of drying– Fundamentals of air-water mixtures – psychrometric chart – Heat and mass transfer in ideal dryers – with and without recirculation. Theories of drying – constant and falling rate period - diffusion theory, capillary theory, evaporation – condensation theory, Luikov, Philip and De Vries theory Water content in foods and its determination – Theoretical and empirical models for determining water activity

#### Unit 2: CABINET, VACUUM AND DRUM DRYING OF FOODS

Fundamentals of cabinet drying – Mass and Heat balances in dryers (batch and continuous) (simple problems only) – description of batch and continuous dryers – Application in Food industry – Vacuum and Drum driers

#### **Unit 3: SPRAY DRYING OF FOOD**

Fundamentals –Nozzles, Rotary atomizers and two fluid feeds- Interaction of droplets with air- Drying of droplets with soluble and insoluble solids – Microstructure of spray dried products – Reconstitution – Foam spray drying – Applications in the Food industry

#### **Unit 4: FREEZE DRYING OF FOODS**

Fundamentals of freeze drying – Freezing and drying steps – Combined heat and mass transfer (only theory) – Structural changes and volatile retention during freeze drying – Freeze dehydration related processes : prefreezing, preconcentration, condensation, defrosting – Industrial freeze driers – Atmospheric freeze drying - Applications in food industry

#### **Unit 5: FLUIDISED BED DRYING, MICROWAVE DRYING AND EXTRUSION O FOODS**

#### 9 Hours

Fluidised bed drying – Batch and Continuous dryers – Pneumatic dryer. Extrusion cooking – Single and Twin-screw extruders Packaging of dehydrated products

#### Text Book(s):

1. Y. H. Hui : *Food Drying Science and Technology, Microbiology, Chemistry, Application,* CHIPS (2008)

#### **Reference Book(s):**

1. Arun S. Mujumdar: Handbook of Industrial Drying, 3rd Edition, CHIPS (2006)

FT18R416	FOOD TOXICOLOGY	L	Т	Р	Credit
		3	0	0	3
Pre-requisite:	FT18R371	Cour	se Catego	ories: ]	Honours
		Cours	se Type: 7	Theory	7

#### 9 Hours

9 Hours

#### 9 Hours

Cours	se	The	objecti	ve of th	e cour	se is to	introd	uce foo	d relat	ed to	xicol	logica	al con	pound	s		
Objec	ctive(s)																
Cours	se Outco	ome(s)															
CO1		Unde	erstand	about	food to	xicolog	gy and	its haza	ards								
CO2		Unde	erstand	about	food se	ensitivit	ty and a	allergy									
CO3		Anal	yze fo	od toxir	n in foc	od samj	ples										
CO4		Adap	pting to	oxin for	med du	uring p	rocessi	ng and	contro	lling							
Mapp	oing of C	Course	Outco	ome(s):													
CO			03 02 01 01 03 03 04 09 03 03 03 03 03 03 03 03 03 03 03 03 03														
	01	02	P03 P04 P05 P06 P07 P09 P09 P09 P09 P09 P09 P09 P09 P09 P09														
	L L	Ч	PO3 PO4 PO5 PO6 PO6 PO7 PO7 PO3 PO10 PO10 PO10 PO10 PO11 PO11 PO12 PO12 PO12 PO12 PO12 PO3														
CO1	М		М			L	Н						L	М			
CO2	М		М			L	М	L						М			
CO3		М	М	L			М							Н			
CO4		М		М		L	Н			L				Н			
CO5			Н	М			Н	L		L		Μ		Н			
Cours	se Topic	:(s)															

# **Unit 1: INTRODUCTION**

Definition and need for understanding food toxicology; Hazards - Microbiological, nutritional and environmental.Basics of immune resources - humoral and cell media resources. Allergen and mechanismof allergic resources.

#### **Unit 2: FOOD ALLERGY AND SENSITIVITY**

Chemistry of food allergens, celiac disease, food disorders associated with metabolism, lactose intolerance, and asthma

# **Unit 3: PRINCIPLES OF TOXICOLOGY**

Natural food toxicants - toxicity of mushroom alkaloids, seafood, vegetables, fruits, pulses, and antinutritional compounds. Biological factors that influence toxicity, toxin absorption in the G.I.track, Industrial microflora, blood, brain barrier, storage and excretion of toxins

# **Unit 4: DETERMINATION OF TOXICANTS IN FOOD SAMPLING**

Quantitative and qualitative analysis of toxicants in foods; Biological determination of toxicants. Assessment of food safety – Risk assessment and risk benefit indices of human exposure, acute toxicity, mutagen city and carcinogenicity, reproductive and developmental toxicity, neurotoxicity and behavioural effect, immunotoxicity.

# Unit 5: TOXICANTS FORMED DURING FOOD PROCESSING

#### 9 Hours

# 9 Hours

# 9 Hours

# 9 Hours

Intentional direct additives, preservatives, nitrate, nitrite, and N- nitroso compound flavour enhancers, food colours, indirect additives, residues and contaminants, heavy metals, other organic residues and packaging materials.Toxicity of heated and processed foods, food carcinogens and mutagens – Polycyclicaromatic hydrocarbons, N - nitrosamines, Acrylamide and their mode of action

#### Textbook(s):

1. Shibamoto, Taka yuki and Leonard F.Bjeldanzes "Introduction to Food Toxicology" 2nd Edition. Academic Press, 2009.

2. Alluwalia, Vikas "Food Hygiene and Toxicology" Paragon International Publishers, 2007

#### **Refernece Book(s):**

1. Helferich, William and Carl K. Winter "Food Toxicology" CRC Press, 2001.

FT17	7R417		EX	<b>FRUSI</b>	ON TI	ECHN	OLOG	Y		L		Т	P		С	
										3		0	0		3	
requis	site: FT	17R38	1						C	ours	e Ca	ategor	ies:	Hon	our	
									C	Cour	se T	ype: ٦	Theor	ry		
Objec	tive(s)	To en	nable to	o stude	nts to d	levelop	extrud	led proc	ducts w	ith c	liffer	ent fo	od			
		ingre	dients													
Cours	se Outco	ome(s)														
CO1		Stud	y about	the pr	inciple,	, and m	ethods	of extr	usion t	echn	olog	y to i	denti	fy th	ne	
		prod	uct spe	cific ex	truder											
CO2		Knov	weldge about design extruders weldge about impact of physio-chemical characters of food ingredients and													
CO3		Knov	vledge about design extruders vledge about impact of physio-chemical characters of food ingredients and ess parameters on quality of extruded products to optimize the process													
		Proc	nowledge about impact of physio-chemical characters of food ingredients and ocess parameters on quality of extruded products to optimize the process rameters for cost and quality optimization													
CO4		Unde	erstand	the im	pact of	proces	s parar	neters of	on Nuti	ritior	nal as	spect e	extru	ded		
		prod	uct to d	lesign t	he valu	ie adde	d extru	ded pro	oducts			•				
CO5		Unde	erstand	the Ap	plication	ons and	l Advai	ntages o	of Extr	uder	S					
Mapp	ing of C	COs an	d Pos													
CO														- `		
	01	02	0 00 00 00 00 00 00 00 00 00 00 00 00 0												303	
	Р	Р	Ч	Ч	Р	Ч	Ч	Р	Р	P(	P(	P(	PS	Po	PG	
CO1	М		Н	М	Н								Μ			

~		( )									
CO5	Н		Μ	М	Н	М		М	Μ	Μ	М
CO4	Н			М	Н					М	
CO3	М		М	М	Н					М	
CO2		М	М	М	Н					М	

#### **Course Topic(s)**

#### **Unit 1: Introduction**

Definition of extrusion, Principle of extrusion, functions and advantages of extruders, Componenets of extruder, classification of extruders: single screw, twin screw, cold extruder, extruder cooker, pressure classification

#### **Unit 2: Basics of Extruder design**

Rheology of feeds, modeling of feed flow in extruder, Isothermal Newtonian flow, Corrected flow equation, Leakage flow, Isothermal Non Newtonian, Modelling of input power, Design of Die: die characteristics and effects

#### Unit 3: Composition and physical requirements of extruder feeds

Preconditioning of extruder feeds, benefits, types of pre conditioners (atmospheric and pressurized, single/double shaft, DDDS, Effects of extruder parameters and feed composition on characteristics of extruded products: gelatinization of starch feeds, denaturation of protein feeds Unit 4: Changes caused by extrusion 9 Hours

Structural changes – expansion, texturization etc. and nutritional changes in carbohydrates, protein, lipid, vitamins, minerals, antinutritional factors

#### Unit 5: Application of extrusion technology:

Food - Protein based, sugar based and cereal based (Ex. RTE Breakfast cereals, meat substitutes, and milk proteins, specialty foods, toffee, surimi, textured plant snacks etc.,) Precooked/thermally modified starch, flours and grain. Animal feed- pet foods, aquatic feed, cattle feed. Quality improvement - Texture alteration, Enzymes inactivation, partial dehydration, Homogenization, Protein denaturing, Gelatinization, destruction of microbes and toxic compounds.

#### **Text Book(s):**

- 1. Medeni Maskan, Aylin Altan Advances in Food Extrusion Technology CRC Press (2016)
- 2. N.D. Frame The Technology of Extrusion Cooking Springer science business media (2012)

#### **Reference**(s)

Jean-Marie Bouvier and Osvaldo H. Campanella -Extrusion Processing Technology: Food and Non-Food Biomaterials – Wiley – (2014).

#### 9 Hours

# 9 Hours

9 Hours

FT18R418		<b>REFRIGERATION AND</b>						L	Т		Р		Credit			
		COLD STORAGE						3	0		0		3			
Prerequisite: FT17R372								Course Categories: Honours								
								Course Type: Theory								
<b>Objective</b> (s)		1. To enable the students to understand the various concepts behind refrigeration														
		and cold storage construction.														
		2. On completion of the subject, the students will be able to apply their														
		knowledge on cold storage of perishable products.														
Course Outcome(s)																
CO1		To enable the students to understand the various concepts behind refrigeration and air conditioning.														
CO2		The students will be able to design refrigeration and cold storage systems														
CO3		To stu	udy the	variou	ıs refrig	geration	n syst	tems								
CO4		The students will be able to understand freezing and different types of freezer used														
CO5		To enable the students to understand the various concepts behind cold storage construction, design, maintenance, and applications in food industry.														
Mapping of Course Outcome(s):																
CO																
	PO1	P02	PO3	P04	P05	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3	
CO1	М			L		L							М			
CO2	М			М		L	М				М	М	М			
CO3	М			L		L		L			Н		М			
CO4	М			L		L							М			
CO5			М			L		М			M	М	М			
Cours	e Topic	<b>e</b> ( <b>s</b> )				ı										

#### **Unit 1: REFRIGERATOR**

Thermodynamic principles of refrigeration, Refrigeration cycles, Refrigerants and Equipments-COP -Atmospheric air and its properties, Psychometrics

#### **Unit 2: COLD STORAGE**

Cold Storage- construction, design, prefabricated systems. Freezer storage, pre-cooling and pre freezing. Cold storage practice, stacking and handling of materials, optimum temperatures for foods. Storages- operation and maintenance

#### Unit 3: CHILLING

# 9 Hours

9 Hours
Chilled foods- equipment, Secondary refrigerants, direct expansion, transport and display cabinets - microbiology, packaging - Hygienic design considerations for chillers and chilled Storages- Evaporative cooling and its applications.

### Unit 4: FREEZING

9 Hours

Freezing equipment, Freezing rates, ice crystals, quick freezing, cryogenic Freezing, freezing of different foods.

### **Unit 5: PRESERVATION**

9 Hours

Preservation of different products - dairy plant refrigeration system, meat and poultry refrigeration system, seafood refrigeration system

# Text Book(s):

- 1. Da-Wen Sun, Hand book of Frozen Food Processing and Packaging, Second Edition, CRC Press, Taylor and Francis Group, 2012.
- 2. C.P. Mallet, Frozen Food Technology, Springer London, Limited, 2012.

# **Refernce Book(s):**

- 1. William C. Whitman, William M. Johnson, John A. Tomczyk, and Eugene Silberstein Refrigeration and Air Conditioning Technology, Sixth Edition, Delmar, Cengage Learning, 2009
- 2. Judith A. Evans, Frozen Food Science and Technology, Blackwell Publishing Ltd, 2008.

#### POST HARVEST PEST MANAGEMENT IN FT18R419 **FOOD SAFETY**

L	Т	Р	С
3	0	0	3

Prerequisite: FT18R371

# Course Categories: Honours **Course Type:** Theory

### **Course outcomes:**

On Successful completion, students can be able to

CO1: describe and analyze pests that damage agricultural produces.

CO2: analyze methods to control pests of cereals and pulses CO3: analyze methods to control pests of vegetables, oil crops and spices

CO4: analyze methods to control pests of tropical and sup tropical fruits

CO5: describe integrated and innovative pest management concepts

# **CO-PO Mapping**

CO/PO	P01	P02	PO3	P04	PO5	P06	PO7	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	Н	М		L		М	М	L			М	М	L	L	
CO2		М	М	L		М	М			L			L	L	
CO3		М	Н	L		М	М			L			L	L	
CO4		М	Н	L		М	M			L			L	L	
CO5		М	М	L		M	М			L	М		L	L	

**Unit I** Definition of pests, classification of insects, diagnostic characters of arachinda and diploma. Some knowledge of phytophagous, mites, slugs and snails, crows, parrots, rats, mice and ungulates. Pathway of pest entry, risk analysis, prevention of entry, pest free areas, An introduction of acaricides, rodenticides, weedicides, fumigants etc. insect growth regulators like repellents, attractants, inhibitors etc.

**Unit II** Insect pests of cereals and pulses including nature of damage life history of important pests and physical, mechanical & biological control.

**Unit III** Insects pests of vegetables, oil crops and spices with nature of damage, physical, mechanical & biological control and life history of at least two important pests from each category

**Unit IV** Insects pests of tropical and sub-tropical fruits including nature of damage. physical, mechanical & biological control and life history of at least two important pests from each category

**Unit V** Components of Integrated pest management(IPM) -implementation of IPM, legal approach- sanitary and phytosanitory measures (SPS) measures and quarantine concepts, health approach- pesticide residual effects, pest management informatics, Innovative pest management concepts – biotechnological approaches, pesticide resistance management,

### **TEXT BOOKS**

- 1.L.R. Verma and V.K. Joshi, (Eds).,Post Harvest Technology of Fruits and vegetables, Indus Publishing company, New Delhi, 2000.
- 2. Mircea Enachescu Dauthy, "Fruit and Vegetable Processing" FAO Agricultural Services Bulletin No.119, 1995
- 3. Pantastico, E.C.B., Postharvest physiology, handling and utilization of tropical and subtropical fruits and vegetables. AVi Pub. Co, 1975.
- 4. Birch, G. and Campbell-Platt, G. (Eds.)., Food Safety the Challenge Ahead. Intercept Ltd., Andover, England., 1993

### REFERENCES

1.Hand book of Food dehydration and drying, NIIR board, 2000.

2.P H Pandey, Post Harvest Technology of Fruits and Vegetables (Principles and practices), Kalyani Publishers, New Delhi, 1998

FT18R420	FOOD MATERIAL SCIENCE	L	Т	Р	Credit						
		3	0	0	3						
Pre requisite:	FT18R272	Course Categories: Honours									
Course Type: Theory											
Course	Enable the students to understand foods with modified textural properties										
<b>Objective</b> (s)											
Course Outcome(s)											
CO1	Describe the structural properties of foods materials										
CO2	Analyze and describe the structural relationship and emulsion										

CO3		Desc	Describe the composite properties of foods												
CO4		Describe the structural properties of different foods													
CO5		Describe and Analyze the kinetics of maillard reaction													
Mapping of Course Outcome(s):															
СО															
			~~					~		0	1	2	1	02	)3
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO1	PO1	POI	PSC	PSC	PSC
CO1	М		М	М									М		
CO2		М	М	М							L		М		
CO3	L		М	L									М		
CO4	L		М	L							L		М		
CO5	М			L						М	L		М		

## **Course Topic(s)**

**Unit 1:** Composite structure of biological tissue used for food, food polymers-fringed micelle structural model, state diagram of food materials, concept of glass transition, crystallization kinetics, dynamic maps, interfacial properties

**Unit 2:** Structure property relationship in food, structure in water by gelation, bubble containing food, emulsions, fat crystal network, processing of food powder

**Unit 3:** Food structuring-composite materials, factors affecting composite materials, types of composite-particulate, fibrous, laminate. Solid, foam and sponges.

Unit 4: Structuring food products-dairy products, cereal, dairy, meat, chocolate.

**Unit 5:** Maillard reaction, strecker degradation, flavor formation via maillard reaction, role of kinetic modelling in maillard reaction

# **Text Book(s):**

1. Aguilera, José Miguel, Lillford, Peter J. (Eds.), Food Materials Science Principles and Practice, (2008)

2. Pieter Walstra , Physical Chemistry of Foods (2002)

# **Reference Book(s):**

Hans-Dieter Belitz, Werner Grosch, Peter Schieberle and published, Springer, Food Chemistry (4th revised and extended edition) 2009.