GONDWANA UNIVERSITY, GADCHIROLI Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Third Semester B.E. (Instrumentation Engineering)

		-	Teac	hing S	Scheme					Examina	ation Scher	ne			
C. http://		Но	ours Wee	Per ek				THEOF	RY				PRA	CTICAL	
Code	Subject	L	Т	Р	Number of Credits	Duration of Paper	Max. Marks	Max Mar	k. ks	Total	Min . Passing	Max. Marks	Max. Marks	Total	Min . Passing
						(Hrs.)	ESE	Sessio	nal		Marks	τw	POE		Marks
IN301	Mathematics-III	3	1	0	4	3	80	10	10	100	40				
IN302	Electronic Devices & Circuits	3	1	0	3	3	80	10	10	100	40				
IN303	Network Theory	3	1	0	4	3	80	10	10	100	40				
IN304	Sensors & Transducers -I	3	1	0	3	3	80	10	10	100	40				
IN305	Electronics Measurements	3	1	0	3	3	80	10	10	100	40				
Laborator	ies														
IN306	Electronic Devices & Circuits	0	0	3	2							25	25	50	25
IN307	Sensors & Transducers -I	0	0	3	2							25	25	50	25
IN308	Electronics Measurements	0	0	3	2							25	25	50	25
IN309	Programming Practice - I C++	0	0	2	2							50		50	25
Total		15	5	11	25					500				200	
Semester		15 5 11 25 31											700		

GONDWANA UNIVERSITY, GADCHIROLI Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Fourth Semester B.E. (Instrumentation Engineering)

		-	Теас	hing S	cheme					Examina	ition Scher	ne			
		Но	ours Wee	Per ek				THEO	RY				PRA	CTICAL	
Subject Code	Subject	L	т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Ma Mai Sessio MSE	ix. rks onal IE	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
IN401	Mathematics-IV	3	1	0	4	3	80	10	10	100	40				
IN402	Feedback Control Systems	3	1	0	4	3	80	10	10	100	40				
IN403	Sensors and Transducers-II	3	1	0	3	3	80	10	10	100	40				
IN404	Linear Integrated Circuits	3	1	0	3	3	80	10	10	100	40				
IN405	Digital Circuits	3	1	0	3	3	80	10	10	100	40				
Laborato	ries														
IN406	Sensors and Transducers-II	0	0	3	2							25	25	50	25
IN407	Linear Integrated Circuits	0	0	3	2							25	25	50	25
IN408	Digital Circuits	0	0	3	2							25	25	50	25
IN409	Programming Practice II: ORCAD	0	0	2	2							50		50	25
Total		15	5	11	25					500				200	
Semester Total 31														700	

GONDWANA UNIVERSITY, GADCHIROLI Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Fifth Semester B.E. (Instrumentation Engineering)

	-	Геас	hing S	cheme					Examina	tion Schen	ne				
C. http://		Но	ours Wee	Per k				THEC	DRY				PRA	CTICAL	
Code	Subject	L	т	Ρ	of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	M Ma Sess MSE	ax. arks ional IE	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
IN501	Process Automation	3	1	0	4	3	80	10	10	100	40				
IN502	Signals & Systems	3	1	0	4	3	80	10	10	100	40				
IN503	Power Electronics	3	1	0	3	3	80	10	10	100	40				
IN504	Microprocessors and Interfacing	3	1	0	3	3	80	10	10	100	40				
IN505	Control System Components	3	1	0	4	3	80	10	10	100	40				
Laborator	ies														
IN506	Process Automation	0	0	3	2							25	25	50	25
IN507	Power Electronics	0	0	3	2							25	25	50	25
IN508	Microprocessors and Interfacing	0	0	3	2							25	25	50	25
IN509	Programming Practice III: MATLAB/SCILAB	0	0	2	2							50		50	25
Total		15	5	11	26					500				200	
Semester	Total		31												700

GONDWANA UNIVERSITY, GADCHIROLI Four Year Degree Course in Engineering and Technology Course and Examination Scheme With Credit Grade System Sixth Semester B.E. (Instrumentation Engineering)

		٦	Геас	hing S	cheme					Examina	tion Schen	ne			
		Ho	ours Wee	Per k				THEOR	Υ				PRA	CTICAL	
Code	Subject	L	т	Ρ	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessio MSE	k. ks nal IE	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
IN601	Industrial Organization & Management	3	0	0	3	3	80	10	10	100	40				
IN602	Bio-Medical Instrumentation I	3	1	0	4	3	80	10	10	100	40				
IN603	Control System Design	3	1	0	3	3	80	10	10	100	40				
IN604	Microcontroller and Applications	3	1	0	3	3	80	10	10	100	40				
IN605	Digital Signal Processing	3	1	0	3	3	80	10	10	100	40				
Laborato	ries														
IN606	Control System Design	0	0	3	2							25	25	50	25
IN607	Microcontroller and Applications	0	0	3	2							25	25	50	25
IN608	Digital Signal Processing	0	0	3	2							25	25	50	25
IN609	Programming Practice IV: LabVIEW	0	0	2	2							25		25	12
IN610	Case Study / Industrial Visit	0	0	2	2							25		25	12
Total		15	4	13	26					500				200	
Semester Total			32												700

GONDWANA UNIVERSITY, GADCHIROLI Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Seventh Semester B.E. (Instrumentation Engineering)

		٦	Геас	hing S	cheme		•			Examina	ition Schen	ne			
		Ho	ours Wee	Per k				THEOR	Y				PRA	CTICAL	
Code	Subject	L	т	Р	Number of Credits	Duration of Paper	Max. Marks	Max Marl	«. «s	Total	Min . Passing	Max. Marks	Max. Marks	Total	Min . Passing
						(Hrs.)	ESE	Sessio MSE	nal IE		Marks	TW	POE		Marks
IN701	Instrumentation System Design	3	1	0	3	3	80	10	10	100	40				
IN 702	Bio-Medical Instrumentation II	3	1	0	3	3	80	10	10	100	40				
IN 703	Intelligent Systems	3	1	0	3	3	80	10	10	100	40				
IN 704	Elective-I														
	i i) Opto Electronic														
	Instrumentation	2	1	0	4	2	80	10	10	100	40				
	ii) Power Plant and Unit	Э	1	0		5	00	10	10	100	40				
	Operation														
	iii) Robotics and Automation														
Laborator	ies														
IN 705	Instrumentation System Design	0	0	3	2				-			25	25	50	25
IN 706	Bio-Medical Instrumentation II	0	0	3	2							25	25	50	25
IN 707	Intelligent Systems	0	0	3	2							25	25	50	25
IN 708	Project Seminar	0	0	4	4							100		100	50
Total 12 4 13				23					400				250		
Semester		29												650	

GONDWANA UNIVERSITY, GADCHIROLI Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Eighth Semester B.E. (Instrumentation Engineering)

		٦	Teaching Scheme Examination Scheme Hours Per Turcopy						ne						
C. http://		Ho	ours Wee	Per k				THEOF	RY				PRA	CTICAL	
Code	Subject	L	т	Ρ	of Credits	Duration of Paper	Max. Marks	Max Marl Sessio	k. ks Inal	Total	Min . Passing	Max. Marks	Max. Marks	Total	Min . Passing
						(Hrs.)	ESE	MSE	IE		Marks	ΤW	POE		Marks
IN 801	Pollution Control and Analytical Instrumentation	3	1	0	3	3	80	10	10	100	40				
IN 802	Process Modelling and Optimization	3	1	0	3	3	80	10	10	100	40				
IN 803	Project Planning Estimation and Assessment	3	1	0	3	3	80	10	10	100	40				
IN804	Elective II:														
	i) Digital Control System	3	1	0	4	3	80	10	10	100	40				
	ii)Embedded Systems														
Labarata	III) Agriculture Instrumentation														
	nes														
IN 805	Pollution Control and Analytical Instrumentation	0	0	3	2							25	25	50	25
IN 806	Process Modelling and Optimization	0	0	3	2							25	25	50	25
IN 807	Project Planning Estimation and Assessment	0	0	3	2							25	25	50	25
IN 808	Project	0	0	6	6							50	50	100	50
Total		12	4	15	25					400				250	
Semester Total															650

GONDWANA UNIVERSITY, GADCHIROLI

FACULTY OF ENGINEERING AND TECHNOLOGY

CONSLIDATED STATEMENT OF VARIOUS PARAMETERS IN TEACHING & EXAMINATION SCHEME OF B.E. (INSTRU ENGINEERING)

SR.NO.	SEMESTER	NO. OF	NO OF	TEACHING	TEACHING	TOTAL	MAX.	MAX.PRACT	MAX.
		THEORY	LABS/PRACT	HOURS(TH)	HOURS	CREDIT	THEORY	MARKS	MARKS
		SUBJECTS		(L+T)	(PRACT)		MARKS		TOTAL
1	1								
2	П								
3	III	5	4	20	11	25	500	200	700
4	IV	5	4	20	11	25	500	200	700
5	VI	5	4	20	11	26	500	200	700
6	VI	5	4	19	13	26	500	200	700
7	VII	4	4	16	13	23	400	250	650
8	VIII	4	4	16	15	25	400	250	650
		28	24	111	74	150	2800	1300	4100

*Audit course. It is neither considered as passing head nor considered for earning some credit(s). However, this is mandatory to be taken up at the respective college level

Subject wise Board of Studies Affiliation

Board of Studies	Subject Codes
APPLIED SCIENCES & HUMANITIES	IN301, IN401, IN601
ELECTRICAL ENGINEERING	IN503
INSTRUMENTATION ENGINEERING	Rest all ,except above enlisted

Course Code : IN301

Title of the Course : APPLIED MATHEMATICS - III

Common for B.E Electronics/Electrical Engineering/Instrumentation Engg.

		Course Sch	neme		Evaluation S	cheme (Theo	ry)	
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Units	Contents	Hours
1	Laplace Transform Definition, Properties (statements only). Periodic	10
	functions and unit step function, Inverse Laplace transform by partial	
	fractions and convolution theorem. Solution of ordinary linear differential	
	equations with constant coefficients by Laplace transform	
2	Matrices Inverse of matrix by adjoint and partitioning method, Rank of a	08
	matrix and consistency of system of linear simultaneous equations. , Linear	
	dependence, Linear and orthogonal transformation, Eigen values and eigen	
	vectors, Reduction to diagonal form	
3	Matrices Cayley-Hamilton Theorem, Sylvester's Theorem (statements only)	08
	Solution of second order linear differential equation with constant	
	coefficient by matrix method. Largest eigen value and corresponding eigen	
	vector by iteration.	
4	Partial Differential Equations Linear Partial Differential Equations first	09
	order and first degree i.e. Lagrange's form, Linear homogeneous equations of	
	higher order with constant coefficients Method of separation of variables.	
5	: Fourier series and Fourier Transforms Periodic functions and their	10
	Fourier series expansion, Fourier Series for even and odd functions, Change of	
	interval, Half range expansions, Fourier integrals and Fourier Transforms.	
		45

TEXT BOOKS:

- 1. Higher Engineering Mathematics By B.S.Grewal
- 2. Probability and Statistics by Murray R Spiegel
- 3. Higher Engineering Mathematics By H.K.Dass

Reference Book:

A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal

Course Code : IN302

Title of the Course : Electronic Devices and Circuits

		Course Scl	neme		Evaluation S	cheme (Theo	ory)	
Lecture	Tutorial	Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	3	3	10	10	80	100

Units	Contents	Hours
1	SEMICONDUCTOR DIODES AND POWER SUPPLIES :-	09
	PN junction diode, Zener diodes, varactor diodes, Tunnel diodes, photo diode,	
	LED, LCD –V-I characteristics, Clipper & Clamper Circuits using Diode, Power	
	supplies-1 Φ & 3 Φ - Half wave & full wave Rectifiers, ripple factors &	
	regulation, Filters (L, C, LC & Π)	
2	JUNCTION TRANSISTORS :-	10
	Theory of operation, characteristics (CE, CB, and CC), break down voltage,	
	current voltage power limitations of BJT, Different biasing arrangement.	
	Stability factor. Thermal runway, Power Transistors. DC load line, AC load line.	
3	FET ANALYSIS :-	09
	Introduction to FET characteristics and configurations, DC Analysis of FET,	
	Power considerations, FET as Amplifier, Amplifier step response and frequency	
	response, MOSFET – construction, characteristics, biasing and Load line.	
4	POWER AMPLIFIERS :-	07
	Classification A, B, AB, C classes efficiency, push pull configuration (A, B,	
	AB)	
	Complimentary symmetry, Distortions and cross over distortion.	
5	FEEDBACK AMPLIFIER	10
	Classification, Feedback concept, Transfer gain with feedback, General	
	Characteristics of negative feedback amplifier, Input and output Resistance,	
	Method of analysis of feedback amplifier, Voltage-series, Current-series,	
	Voltage-shunt, Current-shunt feedback. Positive Feedback in amplifiers,	
	Barkhausen's criterion and stability of oscillators, sinusoidal oscillators - RC,	
	LC and crystal oscillator	
		45

TEXT BOOK:-

- 1. Principal of Electronics, R.S. Sedha, S. Chand Publication
- 2. Electronics Device & Circuits, Schaum's Outline Series TMH, JIMMIE J. CATHEY

REFERENCE BOOKS:-

- 1. Integrated Electronics, McGraw Hill: Millman & Halkias
- 2. Electronics Device & Circuits McGraw Hill: Millman & Halkias

Course Code : IN303

Title of the Course : Network Theory

	Course Scheme				Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits			Duration of paper, hrs	MSE	IE	ESE	Total	
3 1 0 4 4				3	10	10	80	100	

Units	Contents	Hours
1	Circuit elements, Kirchhoff's laws and methods of analyzing circuits:	08
	voltage, current, power and energy, circuit, Resistance parameter, Inductance	
	parameter, Capacitance parameter, Energy sources, Kirchhoff's voltage law,	
	Voltage division, power in a series circuit, Kirchhoff's current law, Parallel	
	resistance, current division, Power in parallel circuits, Tree and co-tree, Twings	
	and links, Incidence matrix and KCL, Tie-set matrix, cut-set and Tree Branch	
	Voltages, Mesh analysis, Mesh equation by inspection method, Super mesh	
	analysis, Nodal analysis, Nodal equations by inspection method, super node	
	analysis, source transformation techniques.	
2	Useful theorems in circuit analysis: Star-Delta transformation, Superposition	07
	theorem, Thevenin's theorem, Norton's theorem, Reciprocity theorem,	
	Compensation theorem, Maximum power Transfer Theorem, Duals and duality,	
	Tellegen's theorem, Millman'e theorem	10
3	Alternating currents and voltages: Phase relations in a pure resistor, inductor,	13
	and capacitor.	
	Complex impedance: Series circuits, parallel circuits, compound circuits	
	Power and power factor : Average power, Apparent power and power factor,	
	Reactive power, Power triangle	
	Steady state AC analysis: Mesh analysis, Nodal Analysis, Superposition	
	Comparation theorem Maximum neuror Transfer Theorem, Reciprocity theorem,	
1	Transients: Steady state and transient response. DC response of a D L D C D	07
4	L C sirewit sinuscidal response of a D L D C D L C sirewit Analysis of	07
	L-C circuit, sinusoidal response of a R-L, R-C, R-L-C circuit, Analysis of	
	transient and steady state responses using Classical technique.	10
5	Fourier method of waveform analysis: Compact trigonometric Fourier series,	10
	Complex Fourier Series, Amplitude and phase spectrum, Frequency spectrum,	
	Fourier transform, Energy spectrum, Fourier transform of power signals, Fourier	
	transform of periodic signals, Properties of Fourier transform, Applications in	
	circuit analysis.	4.5
		45

Text Book:

1. Circuits and Networks: Analysis and Synthesis by Sudhakar and Shyammohan, Tata McGraw Hill Publication ISBN:978-0-07-069972-4 ISBN 0-07-069972-0

Reference Books:

- 1. Network analysis by Van Velkenburg
- 2. Network and system by D. P. RoyChaudhari
- 3. Network analysis by G. K.Mittal
- 4. Electrical Circuit by Del tore, Prentice Hall
- 5. Modern Network analysis by Reza and Seely, McGraw Hill

Course Code : IN304

Title of the Course : Sensors and Transducers - I

	Course Scheme				Evaluation Scheme (Theory)				
Lecture Tutorial Practical Periods/week Credits			Duration of paper, hrs	MSE	IE	ESE	Total		
3 1 0 4 3				3	10	10	80	100	

Units Contents	Hours
1 Introduction Concepts and terminology of measurement system, Definition	on of 05
transducer and sensor. range and span, classification of transducers, static	and
analysis, standards and calibration	stical
2 Strain Force and torque measurement Strain measurement: principle s	strain 10
gauge, types, gauge factor, gauge wire properties, rosettes and measurem circuits. Basic methods of force measurement, elastic force traducers, s gauge, load cells, shear web, piezoelectric force transducers, vibrating wire f transducers, Strain gauge torque meter, Inductive torque meter, Magi strictive transducers, torsion bar dynamometer, etc. Dynamometer (servo co and absorption) instantaneous power measurement and alternator po- measurement.	ment train force neto- ntrol ower
3 Displacement Measurement - working principle, types, construction, typical applications of 1) Resistive: Potentiometer, Linear and rotary, Loa Effect types of strain gauges. 2) Inductive: LVDT, RVDT and Eddy current Transducers. 3) Capacitive: Capacitance pickups, Differe capacitive cells. Piezoelectric, Ultrasonic transducers and Hall effect transdu Optical transducers. Precision measuring instrument (gauges), Ang measurement: Combination protractor, universal bevel protractor, sine clinometers, optical prism method. Thickness measurement - magnetic, dielectric, LASER, capacitive, ultras and LVDT	and 10 ding type ential icers gular bar, sonic
4 Velocity and speed measurement working principle, ty construction,typical applications of: Moving magnet and moving Electromagnetic tachometer, Photoelectric tachometer, Toothed rotor vari- reluctance tachometer. Magnetic pickups, Encoders, Photoelectric pick stroboscopes and stroboscopic method, Shaft speed measurement. Vibration and acceleration measurement: working principle, types, construc- typical applications of: Eddy current type, piezoelectric type, Sei Transducer, Accelerometer: Potentiometric type, LVDT type, Piezo-ele- type, jerk meter	ypes, 12 coil, iable cups, ction, smic ectric
5 Allied Sensorsworking principle, types, construction, typical applications	s of : 08
leak detector, flame detector, smoke detector, density, viscosity sensors. So	ound
sensors and rioxinity sensors. Chemical sensors -pri and conductivity.	45

TEXT BOOK:-

1. "Instrumentation Measurement and Analysis", Nakra- Chaudhary, Tata McGraw Hill Publications.

2. Transducers and Instrumentation by D. V. S. Murty (PHI)

3. "Electrical and Electronic Measurements and Instrumentation", A. K. Sawhney, Dhanpat Rai and Sons Publications.

REFERENCE BOOKS:-

"Measurement System Application and Design", E.O. Doebelin, McGraw-Hill International Publications.

Course Code : IN305

Title of the Course : Electronic Measurements

	Course Scheme				Evaluation Scheme (Theory)				
Lecture Tutorial Practical Periods/week Credits			Duration of paper, hrs	MSE	IE	ESE	Total		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				3	10	10	80	100	

Units	Contents	Hours
1	Measurement and Error: Definitions, Accuracy and precision, Significant	5
	figures, Types of error, Statistical analysis, Probability of Errors, Limiting	
	Errors	
	Systems of units of measurement: Fundamental and derived units, System of	
	Units, Electric and magnetic units, International system of units, other systems	
	of unit, conversion of units	
2	Electromechanical Indicating instruments: Suspension Galvanometer,	7
	Torque and deflection of the galvanometer, Permanent-Magnet Moving-coil	
	mechanism, DC Ammeters, DC Voltmeters, Voltmeter sensitivity, series-Type	
	ohmmeter, Shunt-Type ohmmeter, Multimeter or volt-ohm-milliammeter,	
	Calibration of DC Instruments, Introduction to Electrodynamometer	
3	Measurement of resistance: Classification of resistances, Measurement of	13
	Medium resistances- Ammeter Voltmeter method, Substitution method,	
	Wheatstone bridge, Sensitivity of Wheatstone bridge, Precision measurement of	
	medium resistances with Wheatstone bridge, Limitations of Wheatstone Bridge.	
	Methods for Measurement of Low resistance, Kelvin's Double Bridge, Kelvin	
	Bridge Ohmmeter, Unbalanced Kelvin's Bridge	
	AC Bridges: Introduction, sources and detectors, General equation for bridge	
	balance, General form of an A.C. Bridge,	
	Measurement of self inductance: Maxwell's inductance bridge, Maxwell's	
	inductance-capacitance bridge, Hay's bridge Massurement of connectance. De Soutr's Pridge Scheming Pridge High weltage	
	Measurement of capacitance. De Sauty's Bridge, Schering Bridge, High voltage	
4	Schering Bridge, Measurement of relative Permittivity with Schering Bridge	10
4	Matan AC voltmatan voing matifiant True DMS Despending Voltmatan	10
	Flastronia multimator Digital Voltmators, Component Massuring Instruments	
	O meter, PE power and voltage measurement	
5	Oscilloscone: Oscilloscone block diagram Cathode ray tube (CPT)	10
5	Electrostatic deflection Vertical Deflection system Delay sween Horizontal	10
	deflection system Oscilloscone techniques Introduction to Digital storage	
	oscilloscone	
		45
		45

Text Books:

- 1. Modern Electronic Instrumentation and Measurement Techniques by Albert D. Helfrick and William D. Cooper, PHI Learning ISBN-978-81-203-0752-0
- 2. A course in Electrical and Electronic Measurements and Instrumentation by A. K. Sawhney and Puneet Sawhney, Dhanpat Rai and Co. ISBN-81-7700-016-0

Reference Books:

- 1. Electronic instrumentation by Terman and Petil
- 2. Electronic Instrumentation by Kalsi (TMH publication)
- 3. Electronic Measurement and Instrumentation by Oliver (TMH publication)
- 4. Measurement analysis by Barnest Frank.
- 5. Electric Measurement and Measuring Instrument by Drydat and Jolley
- 6. Electric and Electronic Measurement and Measuring Instrument by Ramabhadra (Khanna publication)

Course Code: IN306Title of the Course: Electronic Devices and Circuits Laboratory

Course Scheme				Evaluation Scheme (Laboratory)				
Lecture	Tutorial	Practical	Credits	TW	POE	Total		
0	0	3	25	25	50			

Course Objectives:

1) To understand and analyze the theoretical concepts in Electronic Devices and Circuits through experimentation.

- 2) To learn and use the proper methods while gathering experimental data.
- 3) To get familiar with the proper use of basic instruments in EDC laboratories.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least ten experiments based on contents of syllabi given in the course code IN302 in the form of a journal and necessary documentation.

Suggested list of Experiments

- 1. To plot the forward and reverse characteristics of PN junction diode.
- 2. To study the half wave and full wave rectifier with and without filter.
- 3. To study zener diode and its VI characteristics.
- 4. To plot the forward and reverse characteristics of zener diode.
- 5. To plot the characteristics of transistor in CE,CB AND CC configuration
- 6 To plot the frequency response of single stage CE amplifier.
- 7 To plot the transfer and drain characteristics of JFET and MOSFET.
- 8. To study the class B push pull amplifier..
- 9. To study the circuit of RC phase shift oscillator.
- 10. To study the LC and crystal oscillator circuits.

Course Outcomes:

• Students will be able to do experiments based on syllabus using proper methodology and derive scientific conclusion/s based on experiments conducted.

Course Code : IN307

Title of the Course : Sensors and Transducers - I Laboratory

	Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Lecture Tutorial Practical Credits				POE	Total		
0	0 0 3 2				25	50		

Course Objectives:

- 1) To understand and analyze the practical concepts about different sensors and transducers which are useful for measuring process parameters through experimentation
- 2) To learn and use the proper experimental methods while gathering experimental data.
- 3) To get familiar with the proper characterization of sensors and transducers.

Maximum ten (10) experiments are to be performed from the list given below. (at least 08 experiments are to be performed in addition to 02 demonstration experiments).

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least ten experiments based on contents of syllabi given in the course code IN304 in the form of a journal and necessary documentation.

Suggested list of Experiments:

- 1. Measurement of linear and angular displacement using Potentiometers
- 2. Characteristics of Piezoelectric measurement system
- 3. Measurement of displacement using LVDT
- 4. Measurement of strain using strain gauges
- 5. Measurement of torque using Strain gauges
- 6. Measurement using proximity sensors
- 7. Characteristics of capacitive measurement systems
- 8. Loading effects of Potentiometer
- 9. Design of Opto-coupler using photoelectric transducers
- 10. Characteristics of Micro pressure and Micro accelerometer sensing device
- 11. Study of speed measuring devices
- 12. Study of sound sensors
- 13. Measurement of pH and conductivity

Course Outcomes:

Students will be able to do experiments based on syllabus using proper methodology and derive scientific conclusion/s based on experiments conducted.

Course Code: IN308Title of the Course: Electronic Measurements Laboratory

	Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	Credits	TW	POE	Total		
$\begin{array}{c cccccc} \hline 0 & 0 & 3 & 2 \\ \hline \end{array}$				25	25	50		

Course Objectives: After completing this course, the students will be able

- 1. Understand concept of Measurement and standards
- 2. Know various terms used in Measurement and Instrumentation
- 3. Know theoretical concept of PMMC Galvanometer
- 4. Know Ammeter and Voltmeter
- 5. Understand concept and use of other electrical measuring devices
- 6. Know various bridges and their working concept
- 7. To acquire knowledge of various electronic measurement devices and its applications
- 8. Know theoretical concept of Oscilloscope and use it for various parameter measurement.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least ten experiments based on contents of syllabi given in the course code IN305 in the form of a journal and necessary documentation.

Course Outcomes: Students are

- 1. Able to define and explain concept of measurement and standards
- 2. Able to define various terms used in measurement and instrumentation
- 3. Able to draw circuit diagram and explain working concept of PMMC Galvanometer
- 4. Able to design Ammeter and Voltmeter for required specifications
- 5. Able to explain working concepts of various electrical measurement devices

6. Able to draw and identify various bridge circuits and able to express working and applications of various bridges. Practically use it.

- 7. Able to explain working of various other electronic measurement devices and state their applications
- 8. Able to explain working of Oscilloscope and state their applications and also practically us it

Course Code : IN309

Title of the Course : Programming Practice –I C++ Laboratory

	Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Lecture Tutorial Practical Credits				POE	Total		
0	0 0 2 2				0	50		

Course Objectives:

- To understand difference between procedural & object oriented programming concepts.
- To understand different object oriented concept such as Data abstraction, Classes and objects, References, Inheritance, Polymorphism, Function and operator, overloading.
- To design and Implement various programs using different object oriented concepts.
- To understand practical applications object oriented programming concepts by doing one mini project.

Unit	Contents	Hours
Ι	Introduction to OOPS: Differences with Procedural Languages, Tour of C++: Types and declarations, Expressions and statements. Decision making and loops,	12
п	Pointers, arrays and structures. Functions	12
	Data abstraction, Classes and objects, References, Inheritance, Polymorphism, Function and operator, overloading, Virtual functions, Templates, Exception handling, file handling, Name spaces.	12
	Total	24

Term Work (TW):

Term work shall consist of at least ten exercises/programs and one mini project on programming in C++ software's in the form of a journal and necessary documentation. This exercises/programs are based on contents of syllabi given above and shall be used as a guideline for solving problem statements specified within the scope of this laboratory course.

Text Books

1. Object Oriented Programming in C++ by Robert Lafore, Techmedia Publication.

Reference Books

- 1. The complete reference C by Herbert shield, Tata McGraw Hill Publication.
- 2. "Object oriented Programming with C++" by E. Balguruswamy, Tata McGraw-Hill Education, Edition: 2008

Course Code : IN401

Title of the Course : APLIED MATHEMATICS IV

Common for B.E Electronics/Electrical Engineering/Instrumentation

		Course Sc	heme		Evaluation S	cheme	(Theo	ory)		
Lect	ure Tutoria	1 Practical	Periods/week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total	
3	1	0	4	4	3	10	10	80	100	
Unit	nit Contents									
1	Z- Transform Definition and properties , Inverse Z-transform by partial fractions and convolution theorem. Application to solve difference equation with constant coefficients.								08	
2	Complex Variables Analytic functions Cauchy Riemann conditions, Conjugate functions, Singularities, Cauchy's Integral theorem and Cauchy's Integral Formula (statements only) Laurent's Theorem (statement only) Residue Theorem and application of residuals to evaluate Real integral of the form $\int_{0}^{2\pi} f(sin\theta, cos\theta) d\theta$ and $\int_{-\infty}^{\infty} \frac{f(x)}{F(x)} dx$ where F(x) has no zeros on real axis.								10	
3	Numerical Methods Solution of algebraic and transcendental equations by False position method, Newton-Raphson method. Non linear simultaneous equations by Newton-Raphson Method. Solution of system of simultaneous linear equations by Gauss Jordan method, Gauss Seidel method, Crouts method.							08		
4	Numerical equation I modified r and corres Random V functions Mathemat	Methods by Taylor's nethod, M ponding ei ariables, a of discret ical Expec	Solution of series meth lilne's Predict gen vector by nd Probabilit e and contin tations, Mon	ordinary od, Run or Corre iteration y Distrib uous ran nents, N	r first order first de ge-Kutta 4th order ector method. Larg n method. ution Random varia ndom variables, Joir Aoments generatir	gree (metho est eig bles D nt dis ng fur	differ od, E gen istril tribu	rential Euler's values oution itions, n and	09	
	Characteri	stic functi	on. Coefficier	nt of ske	wness and Kurtos	is.				

2. Probability and Statistics by Murray R Spiegel

3. Higher Engineering Mathematics By H.K.Dass

Reference Book:

A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal

Course Code : IN402

Title of the Course: Feedback Control Systems

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0 4 4		3	10	10	80	100	

Unit	Contents	Hours							
1	Systems and their representation: Introduction to control systems, Examples	07							
	of control systems, Open- loop (non feedback) and closed loop (Feedback)								
	control systems, Differential equations and transfer functions of physical								
	systems such as Mechanical, Electrical, Electromechanical, Thermal,								
	Pneumatic and liquid-level systems, Analogous systems, Electrical analogy of								
	control systems.								
2	Mathematical Modeling of dynamic systems: Block diagram representation	10							
	of control system, Rules and reduction techniques, Signal Flow graph:								
	Elements, definition, properties, Masons gain formula, Application of gain								
	formula to block diagrams.								
3	Time- domain Analysis: Standard test signals, Time response of first and	08							
	second order systems and transient response specifications, Effect of adding								
	poles and zeros to transfer functions, dominant poles of transfer function,								
	Steady state errors for unity feedback systems, Static error constants and								
	system type, Steady state errors for disturbances, Design system parameters								
	from steady state errors.								
4	Stability of Linear Control systems: Concept of stability, Characteristic	11							
	equation, location of roots in s-plane for stability, Asymptotic stability and								
	relative stability, Routh-Hurwitz stability criterion, Basic properties of the root								
	loci, General rules for constructing root loci, Root- locus analysis of control								
	systems, Transient response and stability from root locus.								
5	Frequency domain analysis: Frequency domain design limitations, Frequency	09							
	response analysis, Bode plot, asymptotic approximations, Stability, Gain								
	Margin, and Phase Margin via Bode plot, Polar plot, Nyquist plot.								
	Total	45							

Text Books:

- 1. Nagrath and Gopal , "Control System Engineering", New Age International Publication, Fourth ed., 2006.
- 2. B.C Kuo, "Automatic control systems", 7th Edition, Prentice Hall, New Delhi, 2002.
- 3. Norman Nise, "Control System Engineering", Wiley International, Fifth ed., 2010.
- 4. K. Ogata- Modern Control Engineering, Fourth edition, Pearson education India, 2002.

Course Code : IN403

Title of the Course : Sensors and Transducers - II

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
3	3 1 0 4 3		3	10	10	80	100		

Unit	Contents	Hours
1	Temperature Measurement	09
	Temperature scales, units and relations, classification of temperature sensors.	
	Mechanical Type: Principle, working and construction of Bimetallic thermometer. Filled	
	system thermometers. SAMA classifications of Filled system thermometer, sources of	
	errors and their remedies	
	Electrical Type: Resistance temperature detectors its types and comparison circuits for	
	lead wire compensation Thermistor its types (NTC PTC) measuring circuits	
	thermoniles Non contact type sensors-Pyrometers	
	Thermocouple: laws of thermoelectricity terminologies types ($B \in I \times R \times S \to T$)	
	characteristics study of thermocounle tables lead wire compensation cold junction	
	compensation techniques, protection (Thermo well) EME Measurement methods	
2	Pressure measurement	
2	Pressure scales units and relations manometers – U tube well type inclined tube ring	09
	balance and micro manometer	
	Electic hourdon diaphragm cancula ballows and their types. High pressure	
	masurement bulk modulus cell Bridgman type Differential pressure measurement:	
	force balance, motion balance, canacitance delta cell	
	Vacuum measurement: Units and relations. McL and gauge thermal conductivity (Pirani	
	Gauge) Melecular momentum (Knudeen) gauge	
	Jauge), Molecular momentum (Knudsen) gauge.	
	Digital Manometer etc.	
	Digital Manometer etc.	
	reluctionic – LVD1, strain gauge, capacitive, piezoelectric, tinn min, variable	
3	Eleve Measurement	00
5	Flow Measurement	09
	A. Fundamentals of now . Units, Newtonian and non-Newtonian nulus, Reynolds s	
	inamprossible flow density Date ratio Develocity prome, Demount's equation for	
	relation	
	Head type flow maters: Orifice (accentric, segmental, concentric), venture mater. Flow	
	nead type now meters. Onnice (eccentric, segmental, concentric), venture-meter, riow	
	nozzie, Dani tube, unierent pressure taps, pitot tube, annubar, variable area type.	
	Notanicici. Other flow meters: Turbing, target, electromagnetic, ultrasonic (Donnlor, transit time)	
	Uniter now interest. Furbine, target, electromagnetic, unitasonic (Doppler, transit time),	
	Onen channel flow measurement. Notches and waits Meas flow meters.	
4	Chamical Massurements A. Maisture massurement	00
4	Moisture in gases and liquide: Electrolytic hydrometer consoitance Diozoelectric	09
	Impodence	
	Inipedance. Moisture in Solids: Nuclear moisture gauge Infra Dad Absorption or Deflection NMD	
	Humidity massurement : Terminology Developmenter Hydrometer (Heir wire)	
	Furnituity measurement . remninology, rsychiometer, Hygrometer (Hall whe,	
	resistivity coll (Done colls). Solution Desistance element. Solution Desistance	
	This film canacitance humidity cancer	
	R Moisture in Gases and Liquids: Head of Adsorption Infra Dad	
	D. Moisture in Gases and Liquius. nead of Adsorption, fifth Red. Moisture in Solids: Microwaya solid moisture analyser	
	Humidity maggurament : Dry hulb and Wat hulb Developmentar. Day point hyperameter	
	Diazo electric etc	
	n 1020-5100 m cu. Smart Sensors: Introduction to IC sensors, Bio Sensors	
5	anal Massurament	00
5	ILE VEL IVIEASUI EIIIEIIE	

Total	45
level sensors. Solid level detection methods.	
Float, displacer (torque tube unit), ultrasonic, radioactive, radar, thermal, fiber optic	
Indirect: Hydrostatic pressure, Air bubbler.	
Direct (Gauges): Hook type, sight glass: tubular, transparent and reflex, float and tape.	

TEXT BOOK:-

- 1. "Instrumentation Measurement and Analysis", Nakra- Chaudhary, Tata McGraw Hill Publications.
- 2. "Electrical and Electronic Measurements and Instrumentation", A. K. Sawhney, Dhanpat Rai and Sons Publications.

REFERENCE BOOKS:-

1. "Measurement System Application and Design", E.O. Doebelin, McGraw-Hill International Publications

Course Code : IN404

Title of the Course : Linear Integrated Circuits

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
3	3 1 0 4 3		3	10	10	80	100		

Unit	Content	Hours
1	Basic operational amplifier circuits:	08
	Classification of ICs and their comparison. Study of data sheets of 741,	
	324, OP-07. ac and dc analysis of differential amplifier, Op-amp ideal	
	characteristics and op-amp parameter. Differential amplifier stages current	
	sources, level shifting technique, Common mode and differential mode gains and	
	impedances of differential stages.	
2	OP-amp with positive and negative feedback:	08
	Inverting, Non inverting and differential amplifier configuration and their special	
	cases. Summing, scaling, averaging, instrumentation amplifier, integrator and	
	differentiator, V to I and I to V converters.	
3	Active filters and oscillators:	09
	Frequency response of op-amp. Low pass, high pass first and second order, band	
	pass, band reject and all pass Butterworth filters. Introduction to Oscillator using	
	op-amps: Phase shift oscillator, Wein bridge oscillator, square wave, triangular	
	wave and saw tooth wave generators.	0.0
4	Comparators and converters:	08
	Basic comparators, zero crossing detector, Schmitt trigger, voltage limiters, V/F	
	and F/V converter, Clippers and Clampers, absolute value o/p circuit, sample and	
	hold circuit, D/A converters- resisting divider and ladder networks. A/D	
	converters, counters- Ramp type, dual slope,	
	integration techniques, successive approximation, parallel comparison techniques.	
5	Study of important IC's:	12
	The 555 timer and its applications, functional diagram monostable and astable	
	multivibrator The PLL IC's 565 and its applications, DAC 0808, ADC 0809.	
	Regulated power supply, Series op-amp regulator, switching regulator, IC 723	
	and 78xx and 79xx voltage Regulator IC'	
		45

Text Book:

- 1. D.Roy Choudhry, Shail Jain, "Linear Integrated Circuit", New Age International Pvt. Ltd2000
- 2. Sergio Franco, Design with Op-amp and Analog Integrated circuits, Tata McGraw Hill Edition New Delhi.

Reference Books:

- **1.** Ramakant A. Gaikwad, Op-amp and Integrated circuits, Fourth edition, PHI Publication, 2002
- 2. Robert F. Coughlin and Frederick F. Driscoll, Operational Amplifiers and Linear Integrated Circuits.

Course Code : IN405

Title of the Course : Digital Circuits

Course Scheme					Evaluation Scheme (Theory)				
Lecture	Lecture Tutorial Practical Periods/week Credits				Duration of paper, hrs	MSE	IE	ESE	Total
3	3 1 0 4 3		3	10	10	80	100		

Unit	Contents	Hours
1	Introduction: Analog vs Digital system, Transistor as a switch, Boolean algebra,	07
	Boolean identities, logic problems, binary, gray, octal, hex and ASCII codes, Gates	
	and their truth tables, Demorgan's Law, Sum of product and product of sum.	
2	Logic families: TTL, ECL, CMOS, etc. Fan-in, fan-out, propagation delay properties. Concept, SSI, MSI and VLSI circuits classification, standard TTL, CMOS.	08
3	Combinational Logic: K-map, decoder, encoder, multiplexers, demultiplexer, code converter, arithmetic circuits– half and full adders, ripple adders, subtractors, carry look ahead adders.	10
4	Sequential Circuits: Introduction to flip flop, latches, concept of clock, master Slave,Combination and conversion of one type to another type flip-flop. Excitation table and introduction to sequential circuits counters-synchronous, asynchronous.	10
5	Sequential Circuits : Different modulo counters with reset/clear facility, design of counters of arbitrary modulo with k maps, lock free counters Introduction to FPGA,PLD & VHDL	10
	Total	45

Text Books:

- Modern Digital Electronics by R.P.Jain., Publication : Tata McGraw Hill Education. Edition : Fourth Ed., 2010.
- 2. Ronald J. Toccii, "Digital Systems: Principles and Applications", Pearson LPE, Fourth ed. 2009.

Reference Books:

- Digital Logic and Computer Design by Morris Mano Publication : Pearson Education India(PHI), Edition : 10th Impression 2008
- Digital integrated Electronics by Herbert Taub & Donald L.Schilling , Publication : McGraw Hill Edition : 1997
- 3. Digital Principles and Applications by Donald P. Leach & Albert P. Malvino Publication : Glencoe Edition : 5th , 1995
- Digital Systems Principle & Design by Raj Kamal. Publication: Pearson Education India. Edition: October 26, 2006
- Fundamentals of Digital Logic withVHDL Design, Stephan Brown, Zvonko Vranesic,McGraw Hill, Second Edition, 2005.

Course Code : IN406

Title of the Course : Sensors and Transducers - II Laboratory

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Lecture Tutorial Practical Credits				POE	Total	
0	0	3	2	25	25	50	

Course Objectives:

- 1. To understand and analyze the practical concepts about different sensors and transducers which are useful for measuring process parameters through experimentation
- 2. To learn and use the proper experimental methods while gathering experimental data.
- 3. To get familiar with the proper characterization of sensors and transducers.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least ten experiments based on contents of syllabi given in the course code IN403 in the form of a journal and necessary documentation.

Suggested list of experiments:

- 1. Characterization and calibration of temperature measurement system. (Thermocouple, RTD and thermistor).
- 2. Identify the suitable sensor for temperature measurement application under study (characteristics for consideration: Accuracy, Resolution, and Response Time)
- 3. Calibration of pressure gauge using dead weight tester
- 4. Find the static and dynamic characteristics of the pressure sensor under test.
- 5. Characterization and calibration of level measurement system. (Capacitive, resistive, and bubbler methods)
- 6. Characterization and calibration of level measurement system. (Ultrasonic and fiber optic level detector).
- 7. Characterization and calibration of flow measurement system. (Orifice and venturi)
- 8. Characterization and calibration of variable area flow meter.
- 9. Characterization and calibration of flow measurement system. (Turbine, electromagnetic and ultrasonic).
- 10. Characterization and calibration of chemical sensors.

Course Outcomes:

• Students will be able to do experiments based on syllabus using proper methodology and derive scientific conclusion/s based on experiments conducted.

Course Code : IN407

Title of the Course : Linear Integrated Circuits Laboratory

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Tutorial	Practical	TW	POE	Total		
0	0	3	2	25	25	50	

Course Objectives:

- 1. To understand and analyze the theoretical concepts in linear electronic circuit through experimentation.
- 2. This course is basically a study of the characteristics, operations, stabilization, testing, and feedback techniques of linear integrated circuits.
- 3. The course includes applications in computation, measurements, instrumentation, and active filtering.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least ten experiments based on contents of syllabi given in the course code IN404 in the form of a journal and necessary documentation.

Suggested list of experiments:

1. Measurement of Opamp parameters: Input offset voltage, input bias current, Input offset current, CMRR and skew rate.

2. Inverting amplifier using IC 741 and its frequency response.

3. Noninverting amplifier using IC 741 and its frequency response.

- 4. Study of comparator, Schmitt trigger.
- 5. Summing and difference amplifier; To build summing amplifier in inverting and noninverting mode.

6. Square wave, triangular wave and sawtooth generators using opamp; to build and observe waveform on CRO

7. Instrumentation amplifier study and construction of instrumentation amplifier and to use it as a temperature controller, indicator etc.

8. Precision rectifiers; to build precision rectifiers and to observe the output waveforms.

9. Voltage limiter; to build Voltage limiter and to observe the output waveforms.

10. Differentiating circuits using opamp; to build and to observe the output waveforms for various values of R and C.

11. Integrating circuits using opamp – to build and to observe the output waveforms for various values of R and C.

12. Butter worth filter; to build High pass and low pass Butter worth filter to analyse the circuit and to observe the output waveforms for various values of R and C.

Course Outcomes:

• Students will be able to do experiments based on syllabus using proper methodology and derive scientific conclusion/s based on experiments conducted.

Course Code : IN408

Title of the Course: Digital Circuits Laboratory

Course Scheme				Evaluation Scheme (Laboratory)			
Lecture	Lecture Tutorial Practical Credits				POE	Total	
0	0	3	2	25	25	50	

Course Objectives:

- To understand digital logic families, logic gates, various combinational and sequential circuits.
- To study different types of programmable logic devices.
- To design and Implement various combinational and sequential circuits.
- To understand practical applications of digital circuits.

Term Work (TW) & POE:

Term work and practical/Oral examination shall consist of at least ten experiments based on contents of syllabi given in the course code IN405 in the form of a journal and necessary documentation.

Suggested list of experiments:

- 1. Study of basic gates using TTL, CMOS: 7432, 4011,4050, 4070,4071,40106
- 2. Study of Static I/O and transfer Characteristic of TTL.
- 3. Study of Static I/O and transfer Characteristic of CMOS.
- 4. Study of Universal gates (NAND, NOR)
- 5. K map based implementation of combinational logic
- 6. Half and Full Adder, Half and Full Subtractor
- 7. 4 bit Adder subtracor using IC 7483
- 8. Code Converters (Binary to Gray, Excess 3 to Binary)
- 9. Comparator using IC 7485
- 10. Implementation of combinational logic using MUX
- 11. Study of Decoder and DEMUX (IC 74138)
- 12. Study of 7 segment decoder driver. (IC 7447)
- 13. Study of Flip Flops (SR FF, D FF, JK FF, T FF)
- 14. Design Built and test MOD N counter
- 15. Design Built and test Shift Register

Course Outcome:

- Ability to apply Boolean algebra and other minimization techniques to digital circuits.
- Ability to design combinational and sequential circuits for a given problem / case studies related to digital circuits.
- Ability to select the appropriate hardware and software tools for combinational and sequential circuit design.

Course Code: IN409Title of the Course: Programming Practice –IIOrCAD Laboratory

Course Scheme				Evaluation Scheme (Laboratory)		
Lecture	Tutorial	Practical	Credits	TW	POE	Total
0	0	2	2	50	0	50

*Note: The objective of this laboratory is to provide hands-on experience with programming in electronic circuit design software's. It is expected that the students should design any electronic, network and control circuits on any one of the circuit design software (OrCAD/PSPICE) and test that circuit on it. It is also expected that, the students should convert that designed circuit into the PCB layout.

Unit	Contents	Hours
Ι	Getting started with Or-CAD, The Capture work environment, Starting a project,	12
	Setting up your project, Design structure, Placing, editing, and connecting parts and	
	electrical symbols, Adding and editing graphics and text, Changing your view of a	
	schematic page.	
II	About libraries and parts, Creating and editing parts, About the processing tools,	12
	Preparing & Creating a net lists, Creating reports, Exporting and importing schematic	
	data, Using Capture with OrCAD Layout, Using Capture with OrCAD PSpice, Industrial	
	Projects.	
	Total	24

Term Work (TW):

Term work shall consist of at least ten exercises/programs and one mini project on programming in electronic circuit design software's (OrCAD/PSPICE) in the form of a journal and necessary documentation. This exercises/programs are based on contents of syllabi given above and shall be used as a guideline for solving problem statements specified within the scope of this laboratory course.

Text Books:

1. Introduction To PSpice Using OrCAD For Circuits And Electronics, 3rd Edition by Muhammad H Rashid

2. "ORCAD PSpice for Windows, Vol. 1: DC and AC circuit," 3rd Edition by Goody

3. OrCAD Software manual.

Note: Syllabus for the V to VIII Semester courses shall be prescribed in due course of time.