## B.E. DEGREE END SEMESTER EXAMINATIONS, NOV/DEC 2012 MECHANICAL ENGINEERING BRANCH FIFTH SEMESTER - (REGULATIONS 2008) ME 9301 DESIGN OF JIGS, FIXTURES AND PRESS TOOLS

Time: 3 Hours

Max. Marks: 100

Note: i) Use of Approved Design Data Books permitted

- ii) Drawing sheets will be provided
- iii) Drawings need not be drawn to scale but should follow standards.

Roll No

iv) Assume missing dimensions suitably

## PART-A

 $(10 \times 2 = 20 \text{ Marks})$ 

- 1. Explain how Jigs and fixtures help in mass producing interchangeable parts at a low cost.
- 2. Explain how a component is located with respect to two holes.
- 3. Sketch and explain a spring actuated indexing pin arrangement.
- 4. Explain with sketches the use of tenons and setting blocks in Fixtures?
- 5. How is the Press capacity determined for V, edge and channel bending dies?
- 6. What are the advantages of Compound Dies over Progressive Dies?
- 7. Distinguish between direct and indirect knock out.
- 8. What is the effect of excessive and insufficient clearance in blanking operations?
- 9. What is meant by reverse redrawing? What is its advantage?
- 10. Explain what is Poka Yoke and how it is implemented in the design of toolings.

## PART-B

(4 x 20 = 80 Marks)

(2)

(5)

(8) (2)

- 11. Design and give two views of a progressive die to be designed for producing the component shown in Fig.11. The sheet metal is of 2 mm thickness and made of Cold Rolled Steel of Shear strength 500 N/mm<sup>2</sup>
  - i) Determine the press tonnage and the various stations required (3)
  - ii) How is center of pressure to be determined for this die layout?
  - iii) Design all the parts of the die.
  - iv) Draw two fully dimensioned views of the die in engaged position.
  - v) Give a neat parts list.



12.a) Design a drilling jig for use when drilling the four  $\phi$  6 holes in the component shown in Fig. 12 a

(2)

(12)

(3)

(3)

- i) Give a neat operation chart.
- ii) Draw two views of the Jig.
- iii) Specify appropriate fits and tolerances for critical parts.
- iv) Dimension the views and give a neat parts list.





## (OR)

Design an indexing jig for use when drilling the 4  $\phi$ 12 inclined holes in the component shown in Fig12.b.

i) Give a neat operation chart.(2)ii) Draw two views of the Jig.(12)iii) Specify appropriate fits and tolerances for critical part.(3)iv) Dimension the views and give a neat parts list.(3)

12.b)



Fig.12.b

| 13. a) | Design a Milling fixture for finish machining | the 20 mm slot marked | $\nabla$ | in the |  |
|--------|-----------------------------------------------|-----------------------|----------|--------|--|
|        | component shown in Fig. 13.a                  |                       |          |        |  |

i) Give a neat operation chart. (2)

(12)

(3)

(3)

- ii) Draw two views of the Fixture.
- iii) Specify appropriate fits and tolerances for critical parts.
  - iv) Dimension the views and give a neat parts list.





(OR)









| 14. a) | Design and draw two views of a combination blanking and drawing die for the    |      |
|--------|--------------------------------------------------------------------------------|------|
|        | component showed in Fgi.14.a                                                   | (3)  |
|        | I. Calculate the size of Blank required                                        | (2)  |
|        | II. Determine the press tonnage                                                | (5)  |
|        | III. Design all the parts of the die.                                          | (10) |
|        | IV. Draw two fully dimensioned views of the die in engaged position and give a |      |

neat parts list.





- 14.b) The component shown in Fig.14.b is to be done in two stages- Blanking followed by Bending. Design and draw 2 views of a compound die for the first stage piercing and blanking operation.
  i) Calculate the size of Blank required
  (2)
  - ii) Determine the press tonnage
  - iii) Design all the parts of the compound die.
  - iv) Draw two fully dimensioned views of the die in engaged position and give a neat parts list.

(5)

(10)



Fig.14b