CHAROTAR UNIVERSITY OF SCIENCE \& TECHNOLOGY

II Semester of MSc (Physics) Examination May 2018
Course code \& Name PS721 ELECTRONICS
Date: 03/05/2018 Day: Thursday Time: 1.30 pm To $2.00 \mathrm{pm} \quad$ Maximum Marks: 20 MCQ

Important Instructions:

- Tick the correct answer and it should be written in question paper itself.
- Use of non-programmable calculator is allowed.

Q - I Write the correct answer for the following questions. (One mark each)

1. When an op amp is not saturated, the voltages at the non-inverting and inverting inputs are
(i) Almost zero
(ii) Much different
(iii) Equal to the output voltage
(iv) Equal to $\pm 15 \mathrm{~V}$
2. An ideal op amp

(i)	has always sine waves as signals	(ii)	does not go into saturation
(iii)	has constant gain bandwidth product	(iv)	has infinite input impedance and zero output impedance

3. In a controlled current source with op amps, the circuit acts like
(i) Voltage amplifier
(iii) Voltage -to- current converter
(ii) Current-to- voltage converter
(iv) Current amplifier
4. Negative feedback does not improve
(j) Stability of voltage gain
(ii) Nonlinear distortion in later stage
(iii) Output offset voltage
(iv) Power bandwidth
5. In an averaging circuit, the input resistances are
(i) Equal to feedback resistance
(ii) Less than the feedback resistance
(iii) Greater than the feedback resistance
(iv) Unequal
6. A memory cell that represents result of a latch can store \qquad .
(i) 1 bit
(ii) 1 byte
(iii) 4 bit
(iv) 4 byte
7. System having memory elements are called

(i)	combinational circuits	(ii)
sequential circuits		
(iii)	logic circuits	(iv)
complex circuits		

8. A D/A converter is an application of the
(i) Adjustable bandwidth circuit
(ii) Non-inverting amplifier
(iii) Voltage to current converter
(iv) Summing amplifier
9. The IC series \qquad is used as positive voltage regulators, while \qquad is used as negative voltage regulators. (Fill in the blank)
10. Single-bit indicators that may be set or cleared to show the results of logical or arithmetic operations are the:
(i) flags
(ii) registers
(iii) monitors
(iv) decisions
11. The bit sequence 0101 is serially entered (right-most bit first) into a 4 -bit parallel out shift register that is initially clear. What are the Q outputs after two clock pulses?
(i) 0101
(ii) 1010
(iii) 0110
(iv) 0100
12. An oscillator always needs an amplifier with
(i) Positive feedback
(ii) Negative feedback
(iii) Compensating capacitors
(iv) Pullup resistors
13. If bandwidth increases,

(i) The center frequency	(ii)	Q decreases
decreases		

14. Feedback among logic gates make asynchronous system
(i) stable
(ii) unstable
(iii) complex
(iv) combinational
15. A counter that flows binary sequence is called
(i) ripple counter
(ii) edge counter
(iii) binary counter
(iv) level counter
16. In the world of microprocessor, a combination of letters to suggest the operation of an instruction is known as \qquad -.
(i) ASCII code
(ii) Compiler
(iii) Machine code
(iv) Mnemonics
17. A shift register that accepts a parallel input, or a bidirectional serial load and internal shift features is known as \qquad shift register.
(i) Tristate
(ii) End around
(iii) Universal
(iv) conversion
18. State of flipflop can be switched by changing its
(i) input signal
(ii) output signal
(iii) momentary signals
(iv) all signals
19. One multiplexer can take the place of \qquad
(i) several SSI logic gates
(ii) combinational logic circuits
(iii) several Ex-NOR gates
(iv) several SSI logic gates or combinational logic circuits
20. Which digital system translates coded characters into a more useful form?
(i) Encoder
(ii) Display
(iii) Counter
(iv) Decoder

CHAROTAR UNIVERSITY OF SCIENCE \& TECHNOLOGY

II Semester of MSc (Physics) Examination May 2018
 Course code \& Name PS721 ELECTRONICS

Date: 03/05/2018 Day: Thursday Time: $\mathbf{2 . 0 0} \mathbf{~ p m ~ T o ~} 4.30 \mathrm{pm} \quad$ Maximum Marks: 50 Instructions:
 1. Section I and II must be attempted in TWO ANSWER SHEET.
 2. Make suitable assumptions and draw neat figures wherever required.
 3. Use of non-programmable calculator is allowed.
 4. Show necessary calculations.

SECTION -I

Q - II Answer the following questions as directed

1 Attempt any Two. (Four marks each)
(a) (i) Describe the ideal characteristics of an ideal op-amp.
(ii) Determine the bandwidth of an AC inverting amplifier. Given, $\mathrm{R}_{\mathrm{in}}=50 \Omega, \mathrm{C}_{\mathrm{i}}=0.1 \mu \mathrm{~F}$, $\mathrm{R}_{1}=100 \Omega, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$, and supply voltage $= \pm 15 \mathrm{~V}$.
(b) (i) Briefly explain the need for compensating networks in op-amps.
(ii) Calculate the open-loop voltage gain as a function of frequency at $f=0 \mathrm{MHz}$ and $\mathrm{f}=1$ MHz . For an op-amp 741C, the values of gain and break frequency are respectively 2×10^{5} and 5 Hz .
(c) (i) Briefly explain the differences between the two operating modes of the 555 timer.
(ii) What must the relationship between the pulse width t_{p} and the period T of the input trigger signal if the 555 is to be used as a divide-by-2-network?

2 Solve any Four. (Three marks each)

(a) For the non-inverting amplifier with compensative network circuit, $\mathrm{R}_{\mathrm{in}}=50 \Omega, \mathrm{C}_{\mathrm{i}}=\mathrm{C}_{1}=0.1$ $\mu \mathrm{F}, \mathrm{R}_{1}=\mathrm{R}_{2}=100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=1 \mathrm{M} \Omega$, and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$. Determine (a) the bandwidth of the amplifier and (b) the maximum output voltage swing.
(b) The 741C is used for the differential amplifier with single op-amp $R_{1}=R_{2}=100 \Omega$ and $R_{F}=$ $R_{3}=3.9 \mathrm{k} \Omega$. Other specifications provided are: $A=2,00,000, R_{i}=2 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{o}}=75 \Omega, \mathrm{f}_{\mathrm{o}}=5$ Hz , and $\mathrm{UGB}=1 \mathrm{MHz}$, supply voltages $= \pm 15 \mathrm{~V}$, Maximum output voltage swing $= \pm 13 \mathrm{~V}$. Calculate the close-loop voltage gain, and calculate the input resistances $\mathrm{R}_{\mathrm{iFx}}$ and $\mathrm{R}_{\mathrm{iFy}}$ assuming that the circuit is initially nulled.
(c) Design a wide band-pass filter with $\mathrm{f}_{\mathrm{L}}=200 \mathrm{~Hz}, \mathrm{f}_{\mathrm{H}}=1 \mathrm{kHz}$ and a passband gain $=4$. Draw the frequency response plot of this filter. Calculate the value of Q for the filter.
(d) A non-inverting averaging amplifier with the following specifications: $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}=1.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{c}}=3 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}=1.5 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{o}}=5.2 \mathrm{~V}$. Determine the required value of R_{F}.
(e) What is a voltage regulator? List four different types of voltage regulators.

SECTION - II

Q-III Answer the following questions as directed

1. Attempt any Three. (Six marks each)
(a) Prove following expressions using De Morgan's theorem.
(i) $A B+\overline{A C}+A \bar{B} C(A B+C)=1$
(ii) $A B+A \bar{B} C+B \bar{C}=A C+B \bar{C}$
(iii) $A \bar{B} C+B+B \bar{D}+A B \bar{D}+\bar{A} C=B+C$
(b) (i) Distinguish between synchronous and asynchronous latches.
(ii) Design mod-9 synchronous counter using J-K FFs.
(c) (i) For the 4-bit weighted-resistor DAC, determine (a) the weight of each input bit if the inputs are 0 V and 5 V , (b) the full scale output, if $\mathrm{R}_{\mathrm{f}}=\mathrm{R}=1 \mathrm{k} \Omega$. Also find the full-scale output if R_{f} is changed to 500Ω.
(ii) Describe the advantages of the R-2R ladder DAC over the weighted-resistor type DAC.
(d) (i) Explain why four output signals are invalid or meaningless in the following figure.

(ii) Explain the functions of the ALE and IO $/ \bar{M}$ signals of the 8085 microprocessor.
2. Attempt any Four. (Three marks each)
(a) Reduce following expressions using De Morgan's theorem.

(ii) $\overline{(\boldsymbol{P}+\overline{\boldsymbol{Q}})(\overline{\boldsymbol{R}}+\boldsymbol{S})}$
(iii) $\boldsymbol{A}+\overline{\boldsymbol{B}} \boldsymbol{C}(\boldsymbol{A}+\overline{\bar{B} \boldsymbol{C}})$
(b) What is a master-slave flip-flop? Draw its circuit diagram and discuss its working function using truth table and waveforms.
(c) What are the various types of shift-registers? Explain anyone with circuit diagram and truth table.
(d) Assume register B holds 93 H and accumulator holds 15 H . Illustrate the results of the instructions ORA B, XRA B, and CMA.
(e) The waveform shown in below figure is applied to negative edge triggered J-K FF. Draw and explain the output waveform Q and \bar{Q} along with the truth table.

(f) Describe the operations performed by
(i) Half-adder
(ii) Half-subtractor
