Department of Chemistry, College of Basic Science and Humanities

Class: M. Sc. 2nd Year; Semester: III

Course Code: CHE(C) 5313 Course Title: Matter and Physical Transformation

Name of the faculty: Dr (Mrs) N. Swain and Dr. S. Muni

Lesson Plan

Unit	Name of the	Topic Title	No. of	Name of the Faculty
No	Chapter		Lectures	_
I	Properties of	Equation of state	5	
	real gases	Properties	4	Dr. S. Muni
11	Properties of	Characteristics of liquid	3	
	Liquids	Thermodynamic considerations of internal pressure	2	Dr. (Mrs.) N. Swain
		Surface tension and contact angle	2	
		Spreading of liquid and surface phenomenon	3	
	Electronic	Types of crystals and defects and their defects	4	
	Properties and	Electronic structure of solids	3	Dr. S. Muni
	Band Theory	Optical properties	2	
		Organic metals and conductors	2	
IV	Physical	General introduction	2	
	transformation of	Thermodynamic criteria of phase stability	2	Dr. (Mrs.) N. Swain
	pure substances	Phase diagram	4]
		Thermodynamic aspects of phase transition	5	

Course Break Up

Unit – I

Chapter Name: Properties of real gases

Name of the faculty: Dr. S. Muni	
----------------------------------	--

Lecture No.	Details of the topic to be covered
1.	Equation of state for real gases and their range of applicability
2.	van der Waals equation of state
3.	Redlich – Kwong equation of state
4.	Beattie – Bridgeman equation of state
5.	Virial equation of state
6.	Compression factor
7.	Law of corresponding state
8.	Fugacity
9.	Equilibrium constant for real gases

Unit – II Name of the faculty: Dr. (Mrs.) N. Swain

Chapter Name: Properties of Liquids

Inalle of the faculty. Dr. (Mis.) IN Swall	
Lecture No.	Details of the topic to be covered
1.	Properties of liquid
2.	Liquid as dense gas, Liquid as disordered solid
3.	Internal pressure and thermodynamic derivations
4.	Implications of internal pressure
5.	liquid – vapour interface
6.	surface tension and its behaviour
7.	contact angle and wetting, Spreading of one liquid on another
8.	Antoff's rule, surface film
9.	Surface layer and surface pressure
10.	Thermodynamics of surface film

Unit – III Name of the faculty: Dr. S. Muni

Lecture No.	Details of the topic to be covered
1.	Perfect and imperfect crystals.
2.	Intrinsic and extrinsic defects – point defects, line defects and plane defects
3.	Schottky defects and Frenkel defects
4.	Thermodynamics of Schottky defect formation
5.	Thermodynamics of Frenknel defect formation
6.	Band theory of solids, Band structure of metals
7.	Insulators and semiconductors. Intrinsic and extrinsic semiconductors,
8.	Doping on semiconductors, p-n junctions, super conductors.
9.	Organic metals, Organic charge transfer complex, new superconductors
10.	Optical reflectance
11.	Photoconduction - photoelectric effects

Unit – IV

Chapter Name: Physical transformation of pure

substances

Name of the faculty: Dr. (Mrs.) N. Swain

Lecture No.	Details of the topic to be covered
1.	States of matter, phase and physical change
2.	Phase transition, physical equilibria and phase rule
3.	Molar Gibbs energy and change in Gibbs energy
4.	Thermodynamics of transition and condition of stability
5.	Variation of Gibbs energy with pressure
6.	Variation of Gibbs energy with pressure (continued)
7.	Variation of Gibbs energy with temperature
8.	Variation of Gibbs energy with temperature (continued)
9.	Phase diagram and phase boundaries
10.	Location of phase boundaries
11.	Phase diagram of Helium
12.	Super critical fluids
13.	Response of melting to applied pressure

Course Code: CHE 5314

Course Title: Quantum Chemistry and Chemistry of Special Elements

Name of the faculty: Mr. S. R. Panda, Dr (Mrs) S. Jena and Dr. H. S. Sahu

Lesson Plan

Unit	Name of the	Topic Title	No. of Lectures	Name of the Faculty
NO	Chapter	Drief review of failure of classical machanics. The	Α	
	Introduction of	Brief review of failure of classical mechanics, The	4	Dr.(Mrs) S. Jena
	Mechanical	values postulates of quantum mechanics		
	Results	particle in a box (1-dimentional 3-dimentional)	Λ	
	1 (Coulto	harmonic oscillator	4	
1		the energy Eigenvalue of the rigid rotator, the hydrogen atom,	5	
		laguerre and associated laguerre polynomials, Significance of n, I and m.	4	
	Angular Momentum	angular momentum, eigen functions and values for angular momentum	3	
		ladder operators, addition of angular momenta	4	
		spin, anti-symmetry,Pauli's exclusion principle	2	
11	Approximate Methods	variation theorem and its derivation, Perturbation theory	3	
		first order and non-degeneratePerturbation theory, Applications of variation method and perturbation theory	3	
	Molecular	Huckel theory, bond order and charge density,	3	
	Orbital Theory	Applications	4	
	Electronic	Electronic configuration, Russell-Saunders coupling schemes	3	
	Structure of	p ⁿ configuration, d ⁿ configuration,	3	
	Atoms	Term and symbol,magnetic effects, Slater- Condon parameters	3	
111	Chemistry of Inner transition	Introduction to lanthanides occurance and separation tecniques.	5	Mr S. R. Panda
	Elements	Oxidation state -size relationships -lanthanide contraction	2	
		spectral and magnetic properties of lanthanides - uses of lanthanides and their compounds	2	
		Actinides: Synthesis of elements -electronic configuration and oxidation states	3	
		spectral and magnetic properties -comparative account of lanthanides and actinides and revision	2	
IV	Chemistry of	Silanes, silicates, silicones, silanols	4	
	Some Important	germanium, tin and lead organyls	3	
	elements	phosphorous halides, acids and oxyacids of	4	
		phosphorous, phosphazenes; oxo acids of sulpur.		
		Synthesis and reactivity: calixarines, cryptands and crown ethers in complexation chemistry and revision	3	

Course Break Up

Unit – I

Chapter Name: Introduction of Exact Quantum . Mechanical Results

Name of the faculty: Dr.(Mrs) S. Jena		
Lecture No.	Details of the topic to be covered	
1.	Brief review of failure of classical mechanics	
2.	The Schrodinger equation and its derivation	
3.	Interpretation of the wave function.	
4.	Significance of wave function	
5.	Eigen function and Eigen values	
6.	postulates of quantum mechanics(1 st and 2 nd)	
7.	Related theorems on 1 st and 2 nd postulates	
8.	3 rd and 4 th postulates and derivation of theorems	
9.	Discussion of solutions of the Schrodinger equation to some model systems viz. particle in a	
	box,(1-dimentional)	
10.	Discussion of solutions of the Schrodinger equation to some model systems viz. particle in a	
	box,(3-dimentional)	
11.	The harmonic oscillator. classical treatment	
12.	quantum mechanical treatment of harmonic oscillator	
13.	Hermite's differential equation,	
14.	the complete Eigenfunctions and the energy Eigenvalue of the rigid rotator	
15.	The hydrogen atom. Spherical co-ordinates, the r, θ , \emptyset equation	
16.	solving radial equation, laguerre and associated laguerre polynomials,	
17.	Nature of n & L, Significance of n, I and m.	

Unit – I

Chapter Name: Angular Momentum

Name of the faculty: Dr.(Mrs) S. Jena Lecture No. Details of the topic to be covered

Lecture No.	Details of the topic to be covered
1.	Ordinary angular momentum,
2.	generalized angular momentum
3.	eigen functions for angular momentum,
4.	eigenvalues of angular momentum
5.	operator using ladder operators
6.	Theorems based on ladder operator
7.	addition of angular momenta
8.	spin, anti-symmetry
9.	Pauli's exclusion principle

Chapter Name: Approximate methods

Name of the faculty: Dr.(Mrs) S. Jena

Looturo No	Details of the topic to be accurred
Lecture No.	Details of the topic to be covered
10.	The variation theorem and its derivation
11.	Linear variation principles.
12.	Perturbation theory
13.	Derivation of perturbation theory
14.	first order and non-degeneratePerturbation theory
15.	Applications of variation method and perturbation theory to the helium atom

Unit – II

Unit – II

Chapter Name: Molecular Orbital Theory

Name of the faculty: Dr.(Mrs) S. Jena

Lecture No.	Details of the topic to be covered
1.	Huckel theory of conjugated systems
2.	bond order and charge density calculations
3.	Applications to ethylene,
4.	Butadiene
5.	cyclopropenyl radical,
6.	Cyclobutadiene
7.	Introduction to extended Huckel theory

Unit – II Chapter Name: Electronic Structure of Atoms Name of the faculty: Dr.(Mrs) S. Jena

Lecture No.	Details of the topic to be covered
1.	Electronic configuration
2.	Russell-Saunders terms and coupling schemes
3.	term separation energies of the p ¹ configuration,
4.	term separation energies of the p ² configuration
5.	term separation energies for the d ² configuration,
6.	Term and symbol in p ⁿ andd ⁿ configuration,
7.	magnetic effects: spin-orbit coupling
8.	Zeeman splitting
9.	Slater-Condon parameters

Unit – III

Chapter Name: Chemistry of Inner transition Elements

Lecture No.	Details of the topic to be covered
1.	Atomic number, symbol, electronic configuration of lanthanide and stability.
2.	Occurance and theories of separation techniques fractional crystallisation, precipitationion-
	exchange, solvent-extraction
3.	separation of lanthanides by fractional crystallisation, precipitation
4.	separation of lanthanides by ion-exchange, solvent-extraction and
5.	separation of lanthanides by thermal decomposition, selective reduction and oxidation
6.	Size And different oxidation states, its variation and stability along the period
7.	Lanthide contraction, cause of it and consequencies of contraction
8.	spectral and magnetic properties of lanthanides its causes
9.	uses of lanthanides and their compounds in different field
10.	Actinides: Atomic number ,symbol ,electronic configuration of lanthanide
11.	Size and different oxidation states, its variation and stability along the periodand stability -
	electronic configuration and oxidation states
12.	Synthesis of elements in different process
13.	spectral and magnetic properties of lanthanides its causes
14.	comparative account of lanthanides and actinides in size, oxidation state etc

Unit – IV

Chapter Name: Chemistry of Some Important elements

Name of the faculty: Mr S. R. Panda

Lecture No.	Details of the topic to be covered
1.	Preparation properties , bonding and uses of Silanes,
2.	Preparation properties , bonding and uses of , silicates
3.	Preparation properties, bonding and uses of silicones,
4.	Preparation properties , bonding and uses of silanols
5.	Preparation properties , bonding and uses of germanium organyls
6.	Preparation properties , bonding and uses of tin organyls
7.	Preparation properties , bonding and uses of lead organyls
8.	Preparation properties , bonding and uses phosphorous halides,
9.	Preparation properties, bonding and usesacids and oxyacids of phosphorous
10.	Preparation properties , bonding and usesphosphazenes;.
11.	Preparation properties , bonding and usesoxo acids of sulpur
12.	Synthesis and reactivity of calixarines, in complexation chemistry
13.	Synthesis and reactivity of cryptands in complexation chemistry
14.	Synthesis and reactivitycrown ethers in complexation chemistry

Course Code: CHE(C) 5315 Course Title: Organic synthesis

Name of the faculty: Dr. P. K. Jena, Dr. H. Nayak and Dr. B. P. Acharya

Lesson Plan

Unit	Name of the	Topic Title	No. of	Name of the Faculty
No	Chapter		Lectures	
1	Oxidation	Introduction	1	Dr B. P. Acharya
		Oxidative processes in different organic systems	5	
		Special Oxidising reagents	1	
	Reduction	Introduction	1	
		Different reductive processes in organic systems	5	
		Hydrogenolysis	1	
Ш	Protecting	Protecting Groups	5	Dr. H. Nayak
	Groups			
	Disconnection	Disconnection Approach	9	Dr. P. K. Jena
	Approach			
111	One Group C-C	One Group C-C Disconnections	7	Dr. P. K. Jena
	Disconnections			
	Two Group C-C	Two Group C-C Disconnections	7	
	Disconnections			
IV	Organometallic	Principle	1	Dr. H. Nayak
	Reagents	Preparation, Properties and applications of	9	
		various Organometallics		
	Synthesis of	Camphor	1	
	Some Complex	Cortisne	1	
	Molecules	Reserpine	1	

Course Break Up

•	
Name of the faculty: Dr B. P. Acharya	

Lecture No.	Details of the topic to be covered
1.	Introduction, Different oxidative processe
2.	Oxidation of alkenes, ,
3.	Oxidation of aromatic rings
4.	Oxidation of saturated C – H groups (activated and unactivated),
5.	Oxidation of alcohols, aldehydes, ketones
6.	Oxidation of carboxylic acids and amines
7.	Oxidations with ruthenium tetraoxide, iodobenzene diacetate and thallium.

Unit – I

Chapter Name: Reduction

Name of the faculty: Dr B. P. Acharya		
Lecture No.	Details of the topic to be covered	
1.	Introduction, Different reductive processes	
2.	Reduction of alkenes, and alkynes	
3.	Reduction of aromatic rings	
4.	Reduction of Carbonyl compounds: aldehydes, ketones	
5.	Reduction of carboxylic acids, Nitro compounds	
6.	Reduction of azo compounds	
7	Peduction of oximes. Hydrogenolysis	

Name of the	faculty: Dr. H. Navak
Unit – II	Chapter Name: Protecting Groups
1.	Reduction of oximes. Hydrogenolysis

Name of the faculty. Dr. n. Nayak	
Lecture No.	Details of the topic to be covered
1.	Protecting Groups: Introduction and basic principle of protection.
2.	Detailed discussion on protection of alcohol
3.	Detailed discussion on protection of amine
4.	Detailed discussion on protection of carbonyl
5.	Detailed discussion on protection of carboxyl groups.

Unit – II **Chapter Name: Disconnection Approach** Name of the faculty: Dr. P. K. Jena

Lecture No.	Details of the topic to be covered
1.	An introduction to synthons and synthetic equivalents
2.	Basic principle of disconnection approach
3.	Basic principle of functional group inter-conversions
4.	the importance of the order of events in organic synthesis
5.	Guidelines for order of events
6.	one group C-X
7.	two group C-X disconnections
8.	chemoselectivity, reversal of polarity.
9.	cyclisation reactions and amine synthesis

Unit – III

Chapter Name: One Group C-C Disconnections

Name of the facult	y: Dr. P. K. Jena
--------------------	-------------------

Lecture No.	Details of the topic to be covered
1.	One Group C-C Disconnections: One Group C-C Disconnections in alcohols
2.	One Group C-C Disconnections in carbonyl compounds
3.	One Group C-C Disconnections in carbonyl compounds contd.
4.	Regioselecitivity in disconnection
5.	Alkene sysnthesis
6.	use of acetylenes in organic synthesis
7.	use of aliphatic nitro compounds in organic synthesis

Chapter Name: Two Group C-C Disconnections

Unit – III	Chapter
Name of the faculty: Dr.	. P. K. Jena

Lecture No.	Details of the topic to be covered
1.	Two Group C-C Disconnections: Basic principles of two group C-C disconnections
2.	Diel's – Alder reaction
3.	Disconnection approach on 1,3- difunctionalised compounds
4.	unsaturated carbonyl compounds, control in carbonyl condensations
5.	Disconnection approach on 1,5-difunctionalised compounds
6.	Michael addition
7.	Robinson annellation

Unit – IV

Chapter Name: Organometallic Reagents

Name of the faculty: Dr. H. Nayak

Lecture No.	Details of the topic to be covered			
1.	Organometallic Reagents :Introduction to organometallics Prepation and properties of			
	Organocadmium			
2.	Synthetic applications of Organocadmium			
3.	Prepation and properties of organo zinc			
4.	Synthetic applications of organozinc			
5.	Prepation and properties of organocopper			
6.	Synthetic applications of organocopper			
7.	Prepation and properties of organopalladium			
8.	Synthetic applications of organopalladium			
9.	Prepation and properties of organo rhodium			
10.	Synthetic applications of organorhodium			

Unit – IV Chapter Name: Synthesis of Some Complex Molecules

Name of the faculty: Dr. H. Nayak				
Lecture No.	Details of the topic to be covered			
1.	Retrosynthetic approach in synthesis of camphor and synthesis			
2.	Retrosynthetic approach in synthesis of cortisone and synthesis			
3.	Retrosynthetic approach in synthesis of reserpine and synthesis			

Course Code: CHE(C) 5316 Course Title: Application of Spectroscopy – I

Name of the faculty: Mr. S. R. Panda, Dr. S. Jena, Dr. H. Nayak and Dr. H. S. Sahu

Unit No	Name of the Chapter	Topic Title	No. of Lectures	Name of the Faculty
1	Chemical	Molecular orbitals of AB₁ type molecules	4	Dr.H. S. Sahoo
	Application of	Splitting of d orbitals and energy level diagrams	2	1
	Group Theory	Normal modes of vibrations	4	
	. ,	Molecular orbitals of Td. Oh and square plannar	4	
		complexes		
11	Vibrational	Spectra of molecules	2	Dr.H. S. Sahoo
	Spectroscopy	Mode of bonding	3	
		Ehylenediamine and Diketonato complexes	1	
		Raman spectroscopy - active sites of	2	
		metalloproteins.		
	Election Spin	ESR ,Hyperfine coupling, spin polarization	3	Dr.(Mrs) S. Jena
	Resonance	spin –orbit coupling, g-tensors, application	3	
	Spectroscopy	Application of ESR spectra	3	
	MössbauerSpect	Basic principle, Spectral parameters	3	Dr.(Mrs) S. Jena
	roscopy	quadrupole interactions, magnetic interactions,	3	
		temperature-dependent effects,		J
		iron and tin complexes, miscellaneous applications	3	
	Nuclear	General principles and NMR shifts	3	Mr. S. R. Panda
	Magnetic	Relaxation mechanism	1]
	Resonance of	Applications	3]
	Paramagnetic			
	substances in			
	Solution			
IV	CMR	General principle and chemical shift	2	Dr. H. Nayak
	Spectroscopy	Coupling and decoupling mechanism	4	ļ
		Off resonance decoupling	1	1
		FT NMR	1	

Lesson Plan

Course Breakup

Unit – I Chapter Name: Chemical Application of Group Theory

Name of the faculty: Dr.H. S. Sahoo Lecture No. Details of the topic to be covered 1. Symmetry of AB_n type molecules and orbitals 2. Terms and splitting of energy levels 3. Bonding in H₂O, Bonding in NH₃ 4. Ligand field theory Splitting of energy levels in terms of d-orbitals in different geometry 5. Construction of energy level diagrams 6. Molecular orbitals of Oh complexes 7. 8. Molecular orbitals of Td complexes Molecular orbitals of square planar complexes 9. Molecular Vibrations-The symmetry of normal vibrations 10. 11. selection rules for fundamental vibrational transitions (IR and Raman) 12. Numerical in UV-Vis spectrum of metal complexes 13. Normal modes of vibrations in molecules 14. Determination of Normal modes of vibrations in different geometry

Unit – II Chapter Name: Vibrational Spectroscopy Name of the faculty: Dr.H. S. Sahoo

Lecture No.	Details of the topic to be covered
1.	Spectra of AB ₂ , AB ₃
2.	Spectra of AB4, AB5 and AB6
3.	Types of bonding in different ligands
4.	Types of bonding in ambidentate ligands
5.	Bonding in Ehylenediamine and Diketonato complexes

6.	Applications of resonance
7.	Discussion on Raman spectroscopy
8.	Active sites of metalloproteins.

Unit – II Chapter Name: Electron Spin Resonance Spectroscopy Name of the faculty: Dr.(Mrs) S. Jena

Name of the lacarty. Dr.(into) of ocha				
Lecture No.	Details of the topic to be covered			
1.	Introduction to ESR			
2.	Hyperfine coupling			
3.	spin polarization for atoms			
4.	spin polarization			
5.	spin polarization for transition metal irons			
6.	spin –orbit coupling			
7.	significance of g-tensors			
8.	Application to transition metal complexes (having one unpaired electron) including biological			
	systems.			
9.	application to transition metal complexes			

11014 111

Chanter Name, MässhauerSpectroscopy

Unit – III	Chapter Name: MossbauerSpectroscopy				
Name of the faculty: Dr.(Mrs) S. Jena					
Lecture No.	Details of the topic to be covered				
1.	Basic principle				
2.	conditions for Mossbauer spectroscopy				
3.	Spectral parameters (Isomer shift)				
4.	electric quadrupole interactions				
5.	magnetic interactions				
6.	temperature-dependent effects				
7.	Numerical based on isomer shift				
8.	structural deductions for iron complexes				

structural deductions for tin complexes

9. Unit – III

Chapter Name: Nuclear Magnetic Resonance of Paramagnetic substances in Solution

Name of the faculty: Mr. S. R. Panda

Lecture No.	Details of the topic to be covered	
1.	General NMR principle in paramagnetic substances and effect of electron spin.	
2.	Contact shift and pseudo Contact shift	
3.	Contact shift and spin density	
4.	Nuclear relaxation and factor affecting it in Paramagnetic system.	
5.	Application in simple biological systems i.e. Iron Porphyrins, Hemin –Imidazole-Cyanide	
6.	NMR of metal nuclides with emphasis on ¹⁹⁵ Pt	
7.	NMR of metal nuclides with emphasis on ¹¹⁹ Sn NMR	

Unit – IV

Chapter Name: CMR Spectroscopy

Name of the faculty: Dr. H. Nayak					
Lecture No.	Details of the topic to be covered				
1.	General considerations				
2.	chemical shift, coupling constants				
3.	Chemical shifts in different functional groups				
4.	Chemical shifts in different functional groups				
5.	Problems associated with ¹³ C.				
6.	FT-NMR,				
7.	Off resonance decoupling				

Course Code: CHE(E) 5317 Course Title: Heterocyclic Chemistry

Name of the faculty: Dr. P. K. Jena, Dr. H. Nayak and Dr. B. P. Acharya

Lesson Plan

Unit	Name of the	Topic Title	No. of	Name of the Faculty
NO	Chapter		Lectures	
1	Nomenclature of	Hantzsch – Widman system	1	Dr Himansulal Nayak
	Heterocycles	Fusion nomenclature	1	-
		Replacement nomenclature	2	
	Aromatic	General behaviour	2	
	Heterocycles	Criteria of aromaticity	2	
		General reactivity	1	
	Non-aromatic	Strain in heterocycles	3	
	Heterocycles	Stereoelectronic effects in heterocycles	2	
	Principles of	Principles of Heterocyclic Synthesis	3	Dr. Pradip Kumar Jena
	Heterocyclic	Three membered Heterocycles	4	
	Synthesis	Four membered Heterocycles	4	1
	Four membered	,		
	Heterocycles			
	Three			
	membered			
	Heterocycles			
	Five membered	Five membered Heterocycles with one hetero	5	Dr Baman Prasad Acharya
	Heterocycles	atom		
	with one hetero			
	atom	Six-Membered Heterocycles with One	3	
	Six-Membered	Heteroatom		
	Heterocycles			
	with One	Six-Membered Heterocycles with Two	3	
	Heteroatom	Heteroatoms		
	Six-Membered			
	Heterocycles			
	with Two			
	Heteroatoms			
IV	Benzo-Fused	Benzo-Fused Five – membered Heterocycles	6	Dr Baman Prasad Acharya
	Five –membered			
	Heterocycles	Meso – ionic Heterocycles	6	
	Meso – ionic	-		
	Heterocycles			

Course Breakup

Unit – I Chapter Chapter Name: Nomenclature of Heterocycles Name of the faculty: Dr. Himansulal Nayak

Lecture No.	Details of the topic to be covered
1.	Hantzsch – Widman system for monocyclic heterocycles
2.	fusion nomenclature system
3.	Replacement nomenclature system for monocyclic, fused heterocycles
4.	Nomenclature of spiro and bicyclic molecules

Unit – I Chapter

Chapter Name: Aromatic Heterocycles

Name of the faculty: Dr. Himansulal Nayak

Lecture No.	Details of the topic to be covered
1.	General chemical behaviour of aromatic heterocycles, the common structural type - five and
	six membered,
2.	Benzo and other fused heterocycles
3.	Criteria of aromaticity – bond lengths, ring current and chemical shifts in ¹ H NMR – spectra for
	five and six member monocyclic heterocycles;
4.	Criteria of aromaticity – bond lengths, ring current and chemical shifts in ¹ H NMR – spectra for
	five and six member monocyclic heterocycles
5.	Heteroaromatic reactivity – basic principle, selectivity and reactivity in five and six membered
	heteroatomic rings

Unit – I Chapter Chapter Name: Non-aromatic Heterocycles Name of the faculty: Dr. Himansulal Nayak

Name of the labelity. Dr. filliansular Nayak	
Lecture No.	Details of the topic to be covered
1.	Introduction; strain – angle strain and bonding in small ring heterocycles
2.	Consequences of angle strain (IR & PMR spectra, conjugative effect, basicity)
3.	Torsional strains about single bond in small ring heterocycles
4.	Basic idea on stereoelectronic effects in saturated six membered heterocycles- anomeric effect and factors affecting it
5.	other related effects and attractive interactions through space.

Unit – II Chapter

Chapter Name: Principles of Heterocyclic

Name of the faculty: Dr. Pradip Kumar Jena	
Lecture No.	Details of the topic to be covered
1.	Basic Principles of nucleophile-electrophile cyclisation
2	1.3-dipolar reaction $[3+2\rightarrow 5]$

2.	1,3-dipolar reaction [3+2→5]
3.	cycloaddition and hetero Diels Alder reaction $[4+2\rightarrow 6]$ cycloaddition

Unit – II Chapter

Chapter Name: Three membered Heterocycles

Name of the faculty: Dr. Pradip Kumar Jena	
Lecture No.	Details of the topic to be covered
1.	Aziridines: synthesis – Gabriel method, Hassner method
2.	Aziridines: reactions – nucleophilic, electrophilic ring opening reaction, Friedel – Craft reaction.
3.	Oxiranes: synthesis – peracid epoxidation of alkene,
4.	Oxiranes: Darzen reaction, reaction-nucleophilic, electrophilic ring opening reaction, reaction
	with carbonyl compounds

Unit – II Chapter

Chapter NameFour membered Heterocycles

Name of the faculty: Dr. Pradip Kumar Jena	
Lecture No.	Details of the topic to be covered
1.	Azetidines: synthesis – intramolecular cyclisation, cycloaddition reaction
2.	Azetidines: reaction with H ₂ O ₂ , HCl, HCHO, CS ₂ .
3.	Oxetanes:Sythesis by intramolecular cyclisation, photochemical cycloaddition

4. Oxetanes: reaction – nucleophilic, electrophilic ring opening reaction.

Unit – III Chapter

Chapter Name: Five membered Heterocycles with one hetero atom

Name of the faculty: Dr Baman Prasad Acharya

Lecture No.	Details of the topic to be covered
1.	Five membered Heterocycles with one hetero atom: Pyrrole: Orientation in electrophilic
	substitution reaction,
2.	reaction – Gattermannformylation, Friedel – Craft alkylation and acylation
3.	Furan: photochemical cyclisation
4.	reaction – with aldehydes and ketones, maleic anhydride
5.	Thiophene: Reaction – Birch reduct ion, reaction with nitrenes.

Unit – III Chapter Name: Six-Membered Heterocycles with One Hetero atom

Name of the faculty: Dr Baman Prasad Acharya

Lecture No.	Details of the topic to be covered
1.	Pyridine: Reaction – radical substitution
2.	Pyrylium salts: synthesis from tert-butyl alcohol
3.	reaction – nucleophilic substitution reaction

Unit – III Chapter

Chapter Name: Six-Membered Heterocycles with Two Hetero atoms

Name of the faculty: Dr Baman Prasad Acharya

Lecture No.	Details of the topic to be covered
1.	Synthesis of pyrimidines from urea and urea derivatives
2.	synthesis of purines from pyrimidines,
3.	synthesis of 1,3-oxazininium cation derivative and its reaction with ammonia.

Unit – IV Chapter Name: Benzo-Fused Five –membered Heterocycles Name of the faculty: Dr Baman Prasad Acharya

Lecture No.	Details of the topic to be covered	
1.	Indole: Synthesis – Reissert synthesis	
2.	reaction – basicity, reaction with electrophile (general mechanism), nitrosation	
3.	Benzo[b]furan: synthesis – from ortho substituted phenol,	
4.	reaction – reactivity and orientation, photosensitized cycloaddition	
5.	Benzo[c]furan: synthesis – Retro-Diels-Alder reaction,	
6.	reaction – photopolymerisation	

Unit – IV Chapter Name: Meso – ionic Heterocycles Name of the faculty: Dr Baman Prasad Acharya

rtanio or the rabarty. Dr. Danian r rabaa / tenar ya	
Lecture No.	Details of the topic to be covered
1.	Introduction, general classification,.
2.	chemistry of type – A
3.	1,3-oxazolium-4-olates – synthesis from diazoketones, reaction – with carbonyls
4.	1,3-diazolium-4-aminides - synthesis from nitriles, reaction – cycloaddition reaction,
5.	chemistry of type – B
6.	1,2-diazolium-4-aminides – synthesis from amino pyrazole derivative, reaction – thermal
	isomerisation