

## ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY

# Course Structure and Syllabus for the First Semester B. Sc. (Applied Physics) Programme

#### FIRST SEMESTER

| SL No.   | A Sub-Code Subject Hrs / Week |                                             | k  | Credits |    |    |
|----------|-------------------------------|---------------------------------------------|----|---------|----|----|
| 51. NO.  | Sub-Code                      | Subject                                     | L  | т       | Р  | С  |
| Theory   |                               | I                                           |    | 1       |    | 1  |
| 1        | MA161101                      | Mathematics I                               | 3  | 2       | 0  | 4  |
| 2        | BAP161102                     | Computer Science I                          | 2  | 2       | 0  | 3  |
| 3        | HS161104                      | English communication and technical writing | 2  | 2       | 0  | 3  |
| 4        | BAP161103                     | Methodology of Science and Physics          | 2  | 0       | 0  | 2  |
| 5        | BAP161105                     | General Physics I                           | 3  | 2       | 0  | 4  |
| 6        | BAP161106                     | General Physics II                          | 3  | 2       | 0  | 4  |
| Practica | I                             |                                             |    |         |    |    |
| 7        | BAP161115                     | Physics Lab I                               | 0  | 0       | 4  | 2  |
| 8        | BAP161116                     | Physics Lab II                              | 0  | 0       | 4  | 2  |
| 9        | BAP161112                     | Computer Science lab I                      | 0  | 0       | 2  | 1  |
| Total    |                               |                                             | 15 | 10      | 10 | 25 |
| Total Co | ntact Hours = 35              |                                             |    |         |    |    |
| Total Cr | edits = 25                    |                                             |    |         |    |    |

### Subject code: MA161101

## Subject: Mathematics-I

| L-T- | -P | 3 | -2- | -0 |
|------|----|---|-----|----|
| _    |    | • | _   | •  |

|--|

| Modules | Topics                                               | Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hours |
|---------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1       | First order<br>differential<br>equation              | Exact linear and Bernoulli's form, second order differential equation with constant coefficient, equations in Clairaut's form.                                                                                                                                                                                                                                                                                                                                                                                          | 8     |
| 2       | Vector algebra<br>and calculus                       | <b>Vector algebra</b> - Scalar and vector triple products and related problems. Equations of straight lines.<br><b>Vector calculus</b> Vector function of a scalar variable Differentiation of a vector function Scalar vector point function Gradient of a scalar point function Directional derivatives and related problems Divergence and curl of a vector point function Idea of line, surface and volume integrals Green's theorems Gauss' divergence theorems and Stokes theorems (Statements and applications). | 12    |
| 3       | Binominal,<br>Exponential<br>and logarithm<br>series | Approximation using Binomial theorem- Summation of series<br>based on the above elementary properties of a group- Centre<br>of the group- cyclic groups- Cosets normal and conjugate<br>subgroups- Homomorphism of groups- Kernel- Lagrange's<br>theorem.                                                                                                                                                                                                                                                               | 10    |
| 4       | Logarithmic<br>differentiation                       | Differentiation in parametric form- Implicit function-<br>Successive differentiation- Leibnitz theorem (statement only)-<br>Problems using above theorem- Derivatives and radius of<br>curvature- Partial differentiation- Higher order partial<br>derivatives maxima and minima.                                                                                                                                                                                                                                       | 9     |
| 5       | Preliminary<br>concepts of<br>straight lines         | Straight lines, coplanar lines, conditions for two lines to be coplanar- Equation of the plane containing two lines- To find the shortest.                                                                                                                                                                                                                                                                                                                                                                              | 9     |
|         | -                                                    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48    |

#### **Text Books/Reference Books:**

- 1. N. Seshadri, Text Book of Calculus.
- 2. T.K. Manikavasagam Pillai, "Ancillary Mathematics". S. Viswanathan.
- 3. Ordinary and Partial differential equation, B.S. Grewal.
- 4. Vector Analysis (Schaum's Outline Series).

## Subject: Computer Science – I

| L-T-P: 2-2- | -0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Credit: 3 |
|-------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Modules     | Topics                    | Course Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hours     |
| 1           | Fundamentals              | Major components of a digital computer (A brief<br>introduction of CPU, main memory, secondary memory<br>devices and I/O devices), keyboard, monitor, mouse,<br>printers, secondary storage devices (floppy disks, hard disks<br>and optical disks), backup system and why it is needed ?<br>Bootstrapping a computer. Representation of numbers and<br>characters in computer. ASCII, EDCDIC and Gray codes.<br>Interpreter, assembler, linker and loader, definition and<br>concept of algorithm, flowchart. | 10        |
| 2           | Number System             | Binary, hexadecimal, octal, BCD and conversions of number<br>systems. Representations of signed integers, sign and<br>magnitude, 1's complement and 2's complement<br>representation, arithmetic operations using 2's complement<br>representation and conditions for overflow/underflow and<br>its detection                                                                                                                                                                                                  | 8         |
| 3           | Processor Logic<br>Design | Information representation, computer arithmetic and their<br>implementation, control data path, data path components,<br>design of ALU and data path, control unit, status register,<br>accumulator.                                                                                                                                                                                                                                                                                                           | 6         |
| 4           | Memory                    | Memory organization, static and dynamic memory, cache<br>memory and memory hierarchy, cache memory access<br>techniques, virtual memory.                                                                                                                                                                                                                                                                                                                                                                       | 6         |
| 5           | Operating System          | Introduction to Operating System, Operating System<br>functions, general features evolution of OS, different types<br>of OS ( batched, multi programmed, real time, time sharing,<br>distributed, parallel) operating system structure(simple,<br>layered, virtual machine), OS services, proccesses.<br>Total                                                                                                                                                                                                 | 6<br>36   |

#### **Text Books/Reference Books:**

- 1. Fundamentals of Computers by Rajaraman, Prentice Hall of India.
- 2. Operating System: Concept & Design by Milenkovie M., McGraw Hill.
- 3. Computer System Architecture by Mano, M. M.
- 4. Computer Organization & Design, by Chaudhury, P. Pal, PHI

#### Subject code: HS161104

#### Subject: English Communication and Technical Writing

| Modules | Topics                                                  | Course Content                                                                                                                                                                                                                                                                                                            | Hours |
|---------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1       | Basic of<br>Communications                              | Need of Communication skills; Channels, Forms and<br>dimension of communication, oral and written<br>communication, internal and external communication,<br>verbal and non-verbal communication, barriers to<br>communication, principles of effective communication.                                                     | 4     |
| 2       | Writing skills                                          | Letters, reports, notes, memos, Language and format of<br>various types of business letters, language and style of<br>reports, reports writing strategies, analysis of a sample<br>report                                                                                                                                 | 8     |
| 3       | Grammar and<br>vocabulary                               | Tenses and concepts of time, active and passive<br>constructions, direct-indirect speeches, preposition,<br>conditionals, parallel structure, modifiers, sentence<br>transformation, vocabulary (idioms, confusable, one word<br>substitute, Synonyms-antonyms)                                                           | 8     |
| 4       | Career oriental communication                           | Resume writing, curriculum vitae, statement of purpose, team talks, group discussion and interviews                                                                                                                                                                                                                       | 5     |
| 5       | Advanced<br>techniques in<br>technical<br>communication | Interview through telephone/video conferencing, power<br>point presentation, structure and format, using email for<br>business communication, standard email practices, language<br>in email, using internet for collecting information,<br>referencing while using internet materials for project<br>reports.            | 6     |
| 6       | Language<br>Laboratory                                  | <ul> <li>a. Emphasizing Listening and comprehension skill, reading skill, sound structure of English and intonation patterns</li> <li>b. Language laboratory training in speaking skills covering oral presentations, mock interviews and model group discussion through the choice of appropriate programmes.</li> </ul> | 5     |
|         |                                                         | I otal                                                                                                                                                                                                                                                                                                                    | 36    |

#### L-T-P: 2-2-0

#### **Text Books/Reference Books:**

- 1) P. Balasubramanium- Phonetics for English Students
- 2) David Crystal- Cambridge Encyclopedia of Enlish Language
- 3) V. Sasikumar and P.V. Dhamija- Spoken English
- 4) Ludlow And Pantheon- The Essence of Effective Communication

#### Subject: Methodology of Science and Physics

| L-T-P | : 2-0-0 |
|-------|---------|
|       |         |

Credit 2

| Module | Topics           | Course Content                                                  | Hours |
|--------|------------------|-----------------------------------------------------------------|-------|
| 1      | Methodology      | Types of knowledge: Practical, Theoretical, and Scientific      | 6     |
|        | And Perspectives | knowledge, Information. What is Science; what is not science;   |       |
|        | Of Sciences      | laws of science. Basis for scientific laws and factual truths.  |       |
|        |                  | Science as a human activity, scientific temper, empiricism,     |       |
|        |                  | vocabulary of science, science disciplines. Revolution in       |       |
|        |                  | science and Technology.                                         |       |
| 2      | Methods and      | Hypothesis: Theories and laws in science. Observations,         | 8     |
|        | tools of science | Evidences and proofs, Posing a question; Formulation of         |       |
|        |                  | hypothesis; Hypothetico-deductive model, Inductive model.       |       |
|        |                  | Significance of verification (Proving), Corroboration and       |       |
|        |                  | falsification (disproving), Auxiliary hypothesis, Ad-hoc        |       |
|        |                  | hypothesis. Revision of scientific theories and laws,           |       |
|        |                  | Importance of models, Simulations and virtual testing,          |       |
|        |                  | Mathematical methods vs. scientific methods. Significance of    |       |
|        |                  | Peer Review                                                     |       |
| 3      | Methodology      | What does physics deal with? - brief history of physics during  | 10    |
|        | and Perspectives | the last century-the inconsistency between experiments and      |       |
|        | of Physics       | theories- Birth of new science concepts .                       |       |
|        | -                | Example of quantum concepts – examples:- Design of an           |       |
|        |                  | experiment, experimentation, Observation, data collection:      |       |
|        |                  | Key breakthroughs in physics and scientific research – Example  |       |
|        |                  | from Relativity - scientific imagination and the need for       |       |
|        |                  | rigorous experimental evidence.                                 |       |
|        |                  | Need for mathematical language for physics – Electronic         |       |
|        |                  | computer as one of the greatest tools for combination of        |       |
|        |                  | mathematics and physics – Role of invention of new - Scientific |       |
|        |                  | instruments- interaction between physics and life science -     |       |
|        |                  | interaction between physics and technology.                     |       |
|        |                  | Total                                                           | 24    |
|        |                  |                                                                 |       |

#### **Text books/Reference Books**

1. Cultural Boundaries of Science, Gieryn, T F. Univ. of Chicago Press, 1999

2. The Golem: What Everyone Should Know About Science, Collins H. and T Pinch, Cambridge Uni. Press, 1993.

3. Conceptual Integrated Science, Hewitt, Paul G, Suzanne Lyons, John A. Suchocki & Jennifer Yeh, Addison-Wesley, 2007.

4. The inspiring History of Physics in the Last One Hundred Years: Retrospect and prospect Prof. Dr-Ing . Lu Yong xiang, http://www.twas.org.cn/twas/proLu.asp

5. Attitude of teachers towards physics and paranormal phenomena, HenrykSzyd Lowsky, www.Conceptsofphysics.net/IV -4-685.pdf.

## Subject: General Physics I

| L-T-P: | 3-2-0 |
|--------|-------|
|--------|-------|

| Module | Topics     | Course Content                                                                                                                              | Hours |
|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.     | Elasticity | Different type of elastic constants and relation among them. Energy in a strained body, torsion of a rod, torsional oscillation, bending of | 10    |
|        |            | beam, bending moment, cantilever, depression of a cantilever                                                                                |       |
|        |            | considering the weight of the beam. Elastic properties, Young, bulk                                                                         |       |
|        |            | and rigidity moduli, yield stress, Poisson's ratio, compressibility,                                                                        |       |
|        |            | creep and fatigue, plasticity.                                                                                                              |       |
| 2.     | Fluids     | Surface Tension: Synclastic and anticlastic surface - Excess of                                                                             | 11    |
|        |            | pressure - Application to spherical and cylindrical drops and bubbles                                                                       |       |
|        |            | Viscosity: Viscosity - Rate flow of liquid in a capillary tube -                                                                            |       |
|        |            | Poiseuille's formula - Determination of coefficient of viscosity of a                                                                       |       |
|        |            | liquid - Variations of viscosity of a liquid with temperature                                                                               |       |
|        |            | lubrication.                                                                                                                                |       |
|        |            | Physics of low pressure - production and measurement of low                                                                                 |       |
|        |            | pressure - Rotary pump - Diffusion pump - Molecular pump -                                                                                  |       |
|        |            | Knudsen absolute gauge - penning and pirani gauge – Detection of                                                                            |       |
|        |            | leakage.                                                                                                                                    |       |
| 3.     | Harmonic   | Periodic Motion, Simple Harmonic Motion and Harmonic Oscillator,                                                                            | 10    |
|        | Oscillator | Energy of a Harmonic Oscillator, Examples of Harmonic Oscillator,                                                                           |       |
|        |            | Annarmonic Oscillator, Composition of Two Simple Harmonic<br>Motions of Equal Periods in a Straight Line Composition of Two                 |       |
|        |            | Rectangular Simple Harmonic Motions of Equal Periods: Lissaious                                                                             |       |
|        |            | Figures, Damping Force, Damped Harmonic Oscillator, Examples of                                                                             |       |
|        |            | Damped Harmonic Oscillator , Power Dissipation, Quality Factor,                                                                             |       |
|        |            | Forced Harmonic Oscillator                                                                                                                  |       |
| 4.     | Waves      | Wave Motion, General Equation of Wave Motion, Plane Progressive                                                                             | 8     |
|        |            | Harmonic Wave, Energy Density for a Plane Progressive Wave,                                                                                 |       |
|        |            | Intensity of a Wave, Transverse Waves in Stretched Strings, Modes                                                                           |       |
|        |            | of Transverse Vibrations of Strings, Longitudinal Waves in Rods and                                                                         |       |
|        |            | Gases, Fouriers Theorem, wave velocity and Group velocity                                                                                   |       |
| 5.     | Acoustics  | Intensity of Sound- Decibel and Bel, Loudness of Sound, Noise                                                                               | 9     |
|        |            | Pollution, Ultrasonics: Production of Ultrasonic Waves- Piezo Electric                                                                      |       |
|        |            | Liquid - Acoustic Grating Application of Ultrasonic Wayes In a                                                                              |       |
|        |            | Reverberation Sahine's Formula (Derivation not required)                                                                                    |       |
|        |            | Absorption Coefficient, Acoustics of Buildings                                                                                              |       |
|        |            | Total                                                                                                                                       | 48    |

#### **Text Books/ Reference Books**

- 1. An Introduction to Mechanics, D. Kleppner and R. J. Kolenkow
- 2. Properties of Matter, D.S. Mathur
- 3. Mechanics, .S. Hans, S.P. Puri
- 4. Physics Part-I, Halliday and Resnick
- 5. Properties of Matter and Acoustics by R.Murugeshan& Kiruthiga Sivaprasath 2005
- 6. Text book of Sound –Brij Lal& Subramaniam

#### Subject: General Physics II

| L-T- | P: | 3-2 | 2-0 |
|------|----|-----|-----|
|      | •• | 5 2 |     |

Credit 4

| Module | Topics             | Course Content                                                      | Hours    |
|--------|--------------------|---------------------------------------------------------------------|----------|
| 1      | Infinite sequences | Convergence and divergence, conditional and absolute                | 8        |
|        | and series         | convergence, ratio test for convergence. Functions of several       |          |
|        |                    | real variables - partial differentiation, Taylor's series, multiple |          |
|        |                    | integrals. Random variables and probabilities - statistical         |          |
|        |                    | expectation value, variance; Analysis of random errors:             |          |
|        |                    | Probability distribution functions (Binomial, Gaussian, and         |          |
|        |                    | Poisson)                                                            |          |
| 2      | Vector analysis    | Gradient, Divergence and Curl, Line, Surface, and Volume            | 9        |
|        |                    | integrals, Gauss's divergence theorem and Stokes' theorem in        |          |
|        |                    | Cartesian, Spherical polar and cylindrical polar coordinates,       |          |
| •      | D.At               | Dirac Deita function.                                               | <u> </u> |
| 3      | Matrices           | Hermitian adjoint and inverse of a matrix; Hermitian,               | 8        |
|        |                    | orthogonal, and unitary matrices; Eigenvalue and eigenvector        |          |
|        |                    | (for both degenerate and non-degenerate cases); Similarity          |          |
|        |                    | transformation; diagonalization of real symmetric matrices.         |          |
| 4      | Electrostatics     | Gauss's law and its applications, Divergence and Curl of            | 10       |
|        |                    | Electrostatic fields, Electrostatic Potential, Boundary             |          |
|        |                    | conditions, work and Energy, Conductors, Capacitors,                |          |
|        |                    | Laplace's equation, Method of Images, Boundary Value                |          |
|        |                    | problems in Carlesian Coordinate Systems, Dielectrics,              |          |
|        |                    | conditions in dialactrics. Energy in dialactrics. Forces on         |          |
|        |                    | dielectrics                                                         |          |
| 5      | Magneto statics    | Lorentz force Biot-Savart and Amnere's laws and their               | 5        |
| 5      | Magneto Staties    | applications Divergence and Curl of Magnetostatic fields            | 5        |
|        |                    | Magnetic vector Potential. Force and torque on a magnetic           |          |
|        |                    | dipole. Magnetic materials. Magnetization. Bound currents.          |          |
|        |                    | Boundary conditions                                                 |          |
| 6      | Electrodynamics    | Ohm's law, Motional EMF, Faraday's law, Lenz's law, Self and        | 8        |
|        | -                  | Mutual inductance, Energy stored in magnetic field,                 |          |
|        |                    | Maxwell's equations, Continuity Equation, Poynting Theorem,         |          |
|        |                    | Wave solution of Maxwell Equations                                  |          |
|        |                    | Total                                                               | 48       |

#### **Text Books/ Reference Books**

1. Mathematical methods for physicists, Arfken and Weber (Academic Press)

- 2. Mathematical Physics, Rajput and Yogprakash (Pragati Prakashan, Meerut)
- 3. Vector Analysis, Murray R. Spiegel (Schaum Series)

4. Electricity and Magnetism – Chatterjee and Rakshit.

5. Electricity and Magnetism – A. S. Mahajan and A. A. Rangwala (Tata McGraw-Hill).

6. Introduction to Electrodynamics – D. J. Griffith, (Prentice Hall, India Pvt. Ltd).

## Subject: Physics Lab I

#### L-T-P: 0-0-4

#### Credit 2

| Experiment | Aim of the Experiment                                                                                                                                                       | Hours |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| No.        |                                                                                                                                                                             |       |
| 1.         | To measure the extension of an experimental wire due to different pulling forces                                                                                            | 3     |
|            | using Searle's apparatus and hence determine the Young's modulus of the material of the wire.                                                                               |       |
| 2.         | Study the variation of angle of twist of a given rod at different lengths from the fixed end, with torque & then determine the rigidity modulus of the material of the rod. | 3     |
| 3.         | To study the variation of time period of a bar pendulum about different point of suspension and use the result to find the value of g at a place.                           | 3     |
| 4.         | To determine the moment of inertia of a fly-wheel                                                                                                                           | 3     |
| 5.         | Determination of the frequency of a tuning fork with the help of a sonometer<br>/Determination of frequency of AC mains using sonometer                                     | 3     |
| 6.         | To determine the surface tension of fruit juice extracted from various citrus fruit using Jagers method.                                                                    | 3     |
| 7.         | Determination of the surface tension of water by capillary rise method.                                                                                                     | 3     |
| 8.         | To determine the spring constant and mass from vertical oscillations of a loaded spring and hence to determine the modulus of rigidity of the material of the spring.       | 3     |
|            | Total                                                                                                                                                                       | 24    |

## Subject: Physics Lab II

#### L-T-P: 0-0-4

#### Credit 2

| Experiment | Aim of the Experiment                                                               | Hours |
|------------|-------------------------------------------------------------------------------------|-------|
| No.        |                                                                                     |       |
| 1          | i. Identification of active and passive components of an electronic circuit.        | 4     |
|            | ii. Familiarization with operation of basic measuring and test equipment( analog    |       |
|            | and digital multimeters, function generator, Cathode ray oscilloscope )             |       |
|            | iii. To use a multimeter for identification of different terminals of (i) diode and |       |
|            | (ii) transistor.                                                                    |       |
| 2          | To find the value of resistor from colour code and verify by measuring the          | 1     |
|            | resistance by multimeter.                                                           |       |
| 3          | Determination of value of low resistance by potential drop method                   | 1     |
|            |                                                                                     | -     |
| 4          | Determination of internal resistance of a cell with the help of potentiometer       | 2     |
| 5          | Investigation of series resonant LCR circuit, To draw resonance curve and to        | 2     |
|            | find out the resonance frequency and thus find the values of capacitance            |       |
| 6          | To determine the temperature of the filament of a torch bulb by studying the        | 2     |
|            | change of its resistance with c                                                     |       |
| 7          | Determination of (i) an unknown resistance and (ii) resistance per unit length of   | 2     |
|            | an wire by Carey Foster method.                                                     |       |
| 8          | To convert a given galvanometer into a voltmeter of given range and then            | 3     |
|            | calibrate it with help of an ammeter and standard resistance.                       |       |
| 9          | To determine the horizontal component of earth's magnetic field with the help       | 3     |
|            | of a tangent galvanometer and copper voltameter.                                    |       |
| 10         | To convert a given galvanometer into an ammeter of given range and then             | 2     |
|            | calibrate it with the help of a copper voltameter.                                  |       |
| 11         | Determination of High resistance by substitution method.                            | 2     |
|            | Total                                                                               | 24    |

## Subject: Computer Science Lab I

#### L-T-P:0-0-2

#### Credit 1

| Experiment | Aim of the Experiment                                                            | Hours |
|------------|----------------------------------------------------------------------------------|-------|
| NO.        |                                                                                  |       |
| 1.         | Microsoft word document                                                          | 2     |
| 2.         | MS Excel                                                                         | 2     |
| 3.         | C program to print your name                                                     | 1     |
| 4.         | C program to implement different types of arithmetic operators                   | 1     |
| 5.         | C program to calculate area and circumference of a circle                        | 1     |
| 6.         | C program to find greatest of 3 nos.                                             | 1     |
| 7.         | C program to convert temperature to Fahrenheit                                   | 1     |
| 8.         | C program to find factorial of a number                                          | 1     |
| 9.         | C program to calculate the sum of the marks of five subjects and find percentage | 1     |
| 10.        | C program to reverse a given number                                              | 1     |
|            | Total                                                                            | 12    |

\*\*\*\*\*